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Abstract
The distribution of the linear combination of two chi-square variables is

known if the variables are independent. In this paper, we derive the distribu-
tion of positive linear combination of two chi-square variables when they are
correlated through a bivariate chi-square distribution. Some properties of
the distribution, namely, the characteristic function, cumulative distribution
function, raw moments, mean centered moments, coefficients of skewness
and kurtosis are derived. Results match with the independent case when the
variables are uncorrelated. The graph of the density function is presented.
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Resumen
La distribución de una combinación lineal de dos variables chi cuadrado

es conocida si las variables son independientes. En este artículo, se deriva la
distribución de una combinación lineal positiva de dos variables chi cuadrado
cuando éstas están correlacionadas a través de una distribución chi cuadrado
bivariada. Algunas propiedades de esta distribución como la función carac-
terística, la función de distribución acumulada, sus momentos, momentos
centrados alrededor de la media, los coeficientes de sesgo y curtosis son
derivados. Los resultados coinciden con el caso independiente cuando las
variables son no correlacionadas. La gráfica de la función de densidad es
también presentada.
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1. Introduction

Let X1,X2, . . .Xn be (N > 2) two-dimensional independent normal random
vectors from N2(µ,Σ) with mean vectorX = (X1, X2)′, where NXi =

∑N
j=1Xij ,

(i = 1, 2) so that sums of squares and cross product matrix is given by
∑N
j=1(Xj−

X)(Xj −X)′ = A. Let the matrix A be denoted by A = (aik), i = 1, 2; k = 1, 2
where aii = mS2

i , (i = 1, 2),m = N − 1 and a12 = mRS1S2. That is, S1 and
S2 are the sample standard deviations based on the bivariate sample, and R is
the related product moment correlation coefficient. Also let Σ = (σik), i = 1, 2;
k = 1, 2 where σ11 = σ2

1 , σ22 = σ2
2 , σ12 = ρσ1σ2 with σ1 > 0, σ2 > 0. The quantity

ρ(−1 < ρ < 1) is the product moment correlation coefficient between X1j and
X2j(j = 1, 2, . . . , N).

The joint density function U = mS2
1/σ

2
1 and V = mS2

2/σ
2
2 , called the bivariate

chi-square distribution, was derived by Joarder (2009) in the spirit of Krishnaiah,
Hagis & Steinberg (1963) who studied the bivariate chi-distribution.

The distribution of linear function of random variables is useful in the theory
of process capability indices and the study of two or more control variables. See,
for example, Glynn & Inglehart (1989) and Chen & Hsu (1995). It also occurs in
statistical hypothesis testing and high energy physics (See Bausch 2012).

The density function of positive linear combination of independent chi-square
random variables was derived by Gunst & Webster (1973). Algorithms were writ-
ten by Davies (1980) and Farebrother (1984) for the distribution of the linear
combination of independent chi-square variables. The exact density function of a
general linear combination of independent chi-square variables is a special case of
a paper by Provost (1988) for a more general case of Gamma random variables.
Interested readers may go through Johnson, Kotz & Balakrishnan (1994) for a
detailed historical account.

By application of the inversion formula to the characteristic function of the
sum of correlated chi-squares, Gordon & Ramig (1983) derived an integral form of
the cumulative distribution function (CDF) of the sum and the used trapezoidal
rule to evaluate it. Since this integral form of the CDF involves integration of
complex variables, the percentage points depends on the type of numerical tech-
nique you employ. Recently Bausch (2012) has developed an efficient algorithm for
numerically computing the linear combination of independent chi-square random
variables. He has shown its application in string theory.

In Section 2, some mathematical preliminaries are provided. In Section 3,
we derive the density function and the Cumulative Distribution Function of the
positive linear combination of two correlated chi-square variables when they are
governed through a bivariate chi-square density function given by (6). In Section
4, we derive the characteristic function of the distribution. In Section 5, we also
derive some properties of the distribution, namely, raw moments, mean centered
moments, coefficient of skewness and kurtosis. The results match with the inde-
pendent case when the variables are uncorrelated. The results also match with
the special case of the sum of two correlated chi-square variables considered by
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Joarder & Omar (2013). The graph of the density function of the sum is presented
at the end of the paper.

2. Mathematical Preliminaries

Let fX,Y (x, y) be the joint density function of X and Y . Then the following
lemma is well known.

Lemma 1. Let X and Y be two random variables with common probability density
function fX,Y (x, y). Further let Z = X + Y . Then the density function of Z at z
is given by

hZ(z) =

∫ ∞
0

fX,Y (z − y, y)dy (1)

The duplication of the Gamma function is given below:

Γ(2z)
√
π = 22z−1Γ(z)Γ

(
z +

1

2

)
(2)

The incomplete Gamma is defined by

γ(α, x) =

∫ x

0

tα−1e−tdt (3)

where Re(α) > 0 (Gradshteyn & Ryzhik 1994, Equation 8.350, p. 949).

The hypergeometric function pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) is defined by

pFq(a1, a2, . . . , ap; b1, b2, . . . , bq; z) =

∞∑
k=0

(a1){k}(a2){k} . . . (ap){k}

(b1){k}(b2){k} . . . (bq){k}

zk

k!
(4)

where a{k} = a(a+ 1) . . . (a+ k − 1)

The following integral will be used:∫ ∞
0

xa−1e−bxγ(c, dx)dx =
dcΓ(a+ c)

c(b+ d)a+c
2F1

(
1, a+ c; c+ 1;

d

b+ d

)
(5)

with Re(a+ b) > 0, b > 0, (a+ c) > 0, (Gradshteyn & Ryzhik 1994).
The following theorem is due to Joarder (2009), although it can be followed

from Krishnaiah et al. (1963).

Theorem 1. The random variables U and V are said to have a correlated bivariate
chi-square distribution each with m(> 2) degrees of freedom, if its density function
is given by

fU,V (u, v) =
(uv)(m/2)−1

2mΓ2(m/2)(1− ρ2)m/2
exp

(
− u+ v

2− 2ρ2

)
0F1

(
m

2
;

ρ2uv

(2− 2ρ2)2

)
(6)

where 0F1(; b; z) is defined in 4 and −1 < ρ < 1.
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In case ρ = 0, the density function of the joint probability distribution in
Theorem 1, would be fU,V (u, v) = fU (u)fv(v) where U ∼ X2

m and V ∼ X2
m. The

product moment correlation coefficient between U and V can be calculated to be
ρ2. For the estimation of correlation coefficient ρ by modern techniques, we refer
to Ahmed (1992).

3. The Density Function and the Cumulative
Distribution Function

Let c1 and c2 be positive numbers so that T1 = c1U + c2V. Equivalently, let
T1 = c1T where T = U + cV, c = c2/c1 defines a general linear combination of the
variables U and V .

Theorem 2. Let U and V be two chi-square variables each having m degrees of
freedom with density function given in Theorem 1. Then for any positive constant
c, the density function of T = U + cV is given by

fT (t) =
Γ((m+ 1)/2)tm−1

2mΓ(m)[c(1− ρ2)]m/2
exp

(
− t

2− 2ρ2

)
×
∞∑
k=0

1

Γ(k + (m+ 1)/2)

(tρ)2k

(4− 4ρ2)2kckk!
1F1

(
k +

m

2
; 2k +m;

(c− 1)t

(2− 2ρ2)c

)
(7)

where m > 2,−1 < ρ < 1 and 0 ≤ t <∞.

Proof . It follows from (6) that the joint density function of X = U and Y = cV
is given by

fX,Y (x, y) =
(1− ρ2)−m/2

2mΓ2(m/2)

(xy
c

)(m/2)−1
exp

(
− 1

2− 2ρ2

(
x+

y

c

))
0F1

(
m

2
;

ρ2

(2− 2ρ2)2
xy

c

)
1

c

so that, by Lemma 1, the density function of T = X + Y is given by

fT (t) =
(c(1− ρ2))−m/2

2mΓ2(m/2)
exp

(
− t

2− 2ρ2

)
I(t;m, ρ, c) (8)

where

I(t;m, ρ, c) = Γ(m/2)

∞∑
k=0

1

Γ[k + (m/2)]

ρ2k

(2− 2ρ2)2kckk!
J(t;m, ρ, c) (9)

with J(t;m, ρ, c) =
∫ t
0
(t− y)k−1+(m/2)yk−1+(m/2) exp

(
(c−1)y
c(2−2ρ2)

)
dy
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Substituting y = st we have

J(t;m, ρ, c) = Γ(k + (m/2))t2k+m−1
∞∑
j=0

Γ[(k + j + (m/2))]

Γ(2k + j +m)

(c− 1)jtj

(2− 2ρ2)jcjj!
(10)

which, by (4), can be expressed as

J(t;m, ρ, c) = t2k+m−1
Γ2(k + (m/2))

Γ(2k +m)
1F1

(
k +

m

2
; 2k +m;

(c− 1)t

(2− 2ρ2)c

)
Plugging this in (9) and simplifying, we have

I(t;m, ρ, c) =
Γ(m/2)

√
π

2m−1
tm−1

∞∑
k=0

1

Γ(k + (m+ 1)/2)

(tρ)2k

(4− 4ρ2)2kckk!

× 1F1

(
k +

m

2
; 2k +m;

(c− 1)t

(2− 2ρ2)c

)
Substituting this in (8) and simplifying, we have (7).
Figure 1 provides a graphical display of this density function for m = 5 and

various values of c and ρ.

Figure 1: Linear combination of chi-square variables for m = 5 and various values of ρ.

Theorem 3. Let T have a density function given by (7). Then the Cumulative
Distribution Function of T is given by

FT (t) =
Γ((m+ 1)/2)

2mΓ(m)(c(1− ρ2))m/2

×
∞∑
k=0

1

Γ(k + (m+ 1)/2)

ρ2k

(4− 4ρ2)2kckk!
I(k;m, ρ)

(11)
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where I(k;m, ρ) =
∫ t
y=0

ym+2k−1 exp
(
− y

(2−2ρ2)

)
1F1

(
k + m

2 ; 2k +m; (c−1)y
(2−2ρ2)c

)
dy,

0 ≤ t <∞,−1 < ρ < 1,m > 2 and c is any positive constant.

Proof . It is immediate from Theorem 2

The CDF in (11) is not in closed form. However, if ρ = 0, a closed form
expression is presented in Theorem 5.

Theorem 4. Let U and V be two independent chi-square variables each having
m(> 2) degrees of freedom. Then for any positive constant c, the density function
of T = U + cV is given by

fT (t) =
tm−1e−t/2

2mcm/2Γ(m)
1F1

(
m

2
;m;

(c− 1)t

2c

)
, 0 ≤ t <∞ (12)

Proof . Putting ρ = 0 in Theorem 2, we have (12).

If c = 1, then (12) simplifies to the density function of X2
2m as expected. The

equation (10) is a special case of Provost (1988)

Theorem 5. Let U and V be two independent chi-square variables each having
m(> 2) degrees of freedom. Then the Cumulative Density Function of T = U + cV
is given by

F (t) =
1

cm/2

∞∑
k=0

(m/2){k}

Γ(k +m)

(c− 1)k

ckk!
γ(k +m, t/2) (13)

where m > 2 and γ(α, x) is defined in (3).

Proof . By substituting ρ = 0 in (12), we have

F (t) =
1

2mΓ(m)cm/2

∫ t

0

ym−1 exp (−y/2) 1F1

(
m

2
;

(c− 1)y

2c

)
dy

which simplifies to (13).

By substituting c = 1 in (13), we have F (t) = γ(m, t/2)/Γ(m) which is the
Cumulative Distribution Function X2

2m. Bausch (2012) developed and efficient
algorithm for computing linear combination of independent chi-square variables.

4. The Characteristic Function

The quantity i in this section is defined by the imaginary number i =
√
−1.

Theorem 6. Let U and V be two chi-square variables each having m(> 2) degrees
of freedom −1 < ρ < 1 with density function given in Theorem 1. Then the
characteristic function φU,V (w1, w2) = E(eiw1U+iw2V ) of U and V at w1 and w2

is given by

φU,V (w1, w2) = [(1− 2iw1)(1− 2iw2) + 4w1w2ρ
2]−m/2 (14)

where m > 2 and −1 < ρ < 1.
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Proof . See Omar & Joarder (2010).

The characteristic function of the linear combination of two correlated chi-
square variables is derived below.

Theorem 7. Let U and V be two chi-square variables each having m degrees of
freedom. Then for any known constant c, the characteristic function of T = U+cV
at w is given by the following:

φT (w) = [(1− 2iw)(1− 2icw) + 4w2cρ2]−m/2 (15)

where m > 2 and −1 < ρ < 1.

Proof . By definition,the characteristic function of T = U + cV is given by
φT (w) = E(eiwT ) = E[eiw(U+cV )] = E[ei(wU+cwV ].

By (14), E[ei(wU+cwV )] = φU,V (w, cw) and can be written as φU,V (w, cw) =
[(1− 2iw)(1− 2iw) + 4wcwρ2]−m/2, which is (15).

The corollary below follows from Theorem 7.

Corollary 1. Let U and V be two independent chi-square variables each having
the same degrees of freedom m. Then for any positive constant c, the characteristic
function of T = U + cV at w is given by the following:

φT (w) = [(1− 2iw)(1− 2iwc)]−m/2, m > 2 (16)

Since the above can be expressed as φT (w) = φU (w)φcV (w), clearly the random
variable T is the linear combination of two independent random variables U and
V . In case c = 1, the equation (16) will be specialized to the characteristic function
of a chi-square variable with 2m degrees of freedom.

The following results are for any general bivariate distribution.

Theorem 8. Let X and Y have a bivariate distribution with density function
fX,Y (x, y) and characteristic function ϕX,Y (w1, w2) = E(eiw1X+iw2Y ). Then for
any constant c, the characteristic function of T = X + cY at w is given by the
following:

φT (w) = φX,Y (w, cw) (17)

Proof . By definition, the characteristic function of T = X + cY is given by
φT (w) = E(eiwT ) = E[eiw(X+cY )] = E[ei(wX+cwY )] = φX,Y (w, cw).

Corollary 2. Let X and Y have a bivariate distribution with density function
fX,Y (x, y) and characteristic function ϕX,Y (w1, w2) = E(eiw1X+iw2Y ). Then, the
characteristic function of T = X + Y at w is given by the following:

φT (w) = φX,Y (w,w) (18)
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5. Moments, Coefficient of Skewness and Kurtosis

The following theorem is due to Joarder, Laradji, & Omar (2012).

Theorem 9. Let U and V have the bivariate chi-square distribution with density
function with common degrees of freedom m and density function in Theorem 1.
Then for a > −m/2, b > −m/2 and −1 < ρ < 1, the (a, b)-th product moment of
U and V , denoted by µ

′

a,b;ρ(U, V ) = E(UaV b), is given by

µ′a,b;ρ(U, V ) = 2a+b(1− ρ2)a+b+(m/2) Γ(a+ (m/2))Γ(b+ (m/2))

Γ2(m/2)

×2 F1

(
a+

m

2
, b+

m

2
;
m

2
; ρ2
)

(19)

where m > 2,−1 < ρ < 1 and 2F1(a1, a2; b; z) is defined in (4).

Theorem 10. Let T have a density function given by (7). Then the first four
moments of T are respectively given by

E(T ) = (c+ 1)m (20)

E(T 2) = (c2 + 1)m(m+ 2) + 2cm(m+ 2ρ2) (21)

E(T 3) = (c3 + 1)m(m+ 2)(m+ 4) + 3c(c+ 1)(m(m+ 2)(m+ 4ρ2)) (22)

E(T 4) = (c4 + 1)[m(m+ 2)(m+ 4)(m+ 6)]

+ 4c(c2 + 1)[m(m+ 2)(m+ 4)(m+ 6ρ2)]

+ 6c2m(m+ 2)[m(m+ 2) + 8(m+ 2)ρ2 + 8ρ4]

(23)

where c > 0,m > 2 and −1 < ρ < 1.

Proof . The moment expressions between (20) and (23) inclusively follow from
Theorem 9 by tedious algebraic simplification.

Let T have a density function given by (7). Then the a-th moment of T denoted
by E(T a) = E(U + cV )a, where c is any non-negative constant, is given by

µ′a(T ) =

a∑
j=0

(
a

j

)
ca−jµ′j,a−j;ρ(U, V ) (24)

where µ′j,a−j;ρ(U, V ) = E(U jV a−j) is given by Theorem 9.
The centered moments of T of order a is given by µa = E(T − E(T ))a, a =

1, 2, . . . That is the second, third and fourth order mean corrected moments are
respectively given by

µ2 = E(T 2)− µ2 (25)

µ3 = E(T 3)− 3E(T 2)µ+ 2µ3 (26)

µ4 = E(T 4)− 4E(T 3)µ+ 6E(T 2)µ2 − 3µ4 (27)
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Where µ = E(T ). The explicit forms for the centered moments of the linear
combination of bivariate chi-square random variables are given in the following
theorem.

Theorem 11. Let T have a density function given by (7). The second to fourth
centered moments of T are given by the following:

µ2 = 2m(1 + c2 + 2cρ2) (28)

µ3 = 8(c+ 1)m(c2 − c+ 1 + 3cρ2) (29)

µ4 = 12m
[
2c2m+ (c4 + 1)(m+ 4)

+ 4c(4c2 + 4c+ 4 + c2m+m)ρ2 + 4c2(m+ 2)ρ4
] (30)

where m > 2, c is any positive constant and −1 < ρ < 1.

Proof . The moments between (28) to (30) inclusively follow from (25),(26) and
(27) with tedious algebraic simplifications.

In case ρ = 0,the moments match with that of T = U + cV where U and V
have independent chi-square distributions each with degrees of freedom m(> 2).

The skewness and kurtosis of a random variable T are given by the moment
ratios αi(T ) = µiµ

−i/2
2 , i = 3, 4. The theorem below follows from Theorem 11.

Theorem 12. Let T have a density function given by (7). The coefficient of
skewness and kurtosis of T where c is any non-negative constant, are given by

α3(T ) =
2
√

2(c+ 1)(3cρ2 + c2 − c+ 1)√
m(2cρ2 + c2 + 1)3/2

(31)

and
α4(T ) = 3 +

12

m(2ρ2c+ c2 + 1)2
(2c2ρ4 + 4c(c2 + c+ 1) + c4 + 1) (32)

respectively, where m > 2, c is any positive constant and −1 < ρ < 1.

In case ρ = 0, the above coefficient of skewness and kurtosis simplifies to, as
expected, that for T = U+cV where U and V are independent chi-square with the
same degrees of freedom m(> 2). In case c = 1, ρ decreases to 0 and the degrees
of freedom m increases indefinitely, then the coefficient of skewness and that of
kurtosis converges to 0 and 3 as expected.

6. Conclusion

We have developed the distributional characteristics of linear combination of
correlated chi-square variables. Based on the results in the paper, efficient com-
putational algorithms can be developed along the line of Bausch (2012) who de-
veloped an efficient algorithm for computing linear combination of independent
chi-square variables.
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