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Abstract

A methodology is proposed to jointly model treatments with quantita-
tive levels measured throughout time by combining the response surface and
growth curve techniques. The model parameters, which measure the effect
throughout time of the factors related to the second-order response surface
model, are estimated. These estimates are made through a suitable trans-
formation that allows to express the model as a classic MANOVA model,
so the traditional hypotheses are formulated and tested. In addition, the
optimality conditions throughout time are established as a set of specific
combination factors by the fitted model. As a final step, two applications
are analyzed using our proposed model: the first was previously analyzed
with growth curves in another paper, and the second involves two factors
that are optimized over time.

Key words: Growth curves, Multiple optimization, Response surfaces,
Second order models.

Resumen

En este artículo se propone una metodología para modelar conjunta-
mente tratamientos con niveles cuantitativos medidos en el tiempo, medi-
ante la combinación de técnicas de superficies de respuesta con curvas de
crecimiento. Se estiman los parámetros del modelo, los cuales miden el efecto
en el tiempo de los factores relacionados con el modelo de superficie de res-
puesta de segundo orden. Estas estimaciones se realizan a través de una
transformación que permite expresar el modelo como un modelo clásico de
MANOVA; de esta manera, se expresan y juzgan las hipótesis tradicionales.
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Además, las condiciones de optimización a través del tiempo son estableci-
das para un conjunto de factores específicos por medio del modelo ajustado.
Como paso final, se analizan dos aplicaciones utilizando el modelo propuesto:
la primera fue analizada mediante curvas de crecimiento en otro artículo, y
la segunda consiste en dos factores que son optimizados a lo largo del tiempo.

Palabras clave: curvas de crecimiento, optimización múltiple, superficies
de respuesta, modelos de segundo orden.

1. Introduction

Sometimes in experimentation, researchers interest focuses on analyzing data
over time to know the tendencies of an individual or groups of individuals. In
other cases, the goal is not only the trend but also to know what combination of
factors can optimize the process over time. This latter context is the starting point
for analysis of growth curves and response surface methodology (RSM). Response
surface and growth curves are statistical methods frequently used in the analysis
of experiments. The purpose of the first is to determine the optimum operating
conditions of a process, whereas the latter method is used to model the effect of
treatments throughout time.

Two applications of the above hybrid model approach are analyzed in this pa-
per. The first is an experiment to analyze the effect of dietary ingestion of sodium
Zeolite A (SZA) on the growth and physiology of sixty horses reported by Frey,
Potter, Odom, Senor, Reagan, Weir, Elsslander, Webb, Morris, Smith & Weigand
(1992). The horses were randomly assigned to four treatments: control and three
levels of dietary SZA (0.66%, 1.32% and 2%). In addition, plasma silicon concen-
tration was measured at the times: t = 0, 1, 3, 6, 9 hours after ingestion on eighty
four days into the diet. The second study is an experiment about the waste-water
treatment, in which is common adding inhibitory agents to reduce the negative
environmental impact generated by these substances discharged into the receiving
water bodies. In such cases, we study the biological oxygen demand (BOD) as
a water pollution measure. Montoya & Gallego (2012) performed a central com-
posite rotatable design adding combinations of detergent (D) and animal fat (AF)
to the residual water. The BOD, biomass growth and substrate consumption at
t = 24, 48, 72, 96, 120 hours after of mixture were observed.

In both experiments, we are interested in studying the optimum combination
of factors throughout time that optimizes our response variable. Therefore, in
these kinds studies, we want to observe if the growth curves can be represented
by a cubic, quadratic or linear polynomial in time, and if the response surface can
be expressed by a quadratic or linear polynomial in the treatments. Furthermore,
we want to obtain the confidence band(s) for the expected combination of factors
over time (response surface throughout growth curves).

A growth curve is a model of the evolution of a quantity over time. Growth
curves are widely used in biology for quantities such as population size, body height
or biomass. Growth curve experiments have been considered from various angles
by Rao (1959), Potthoff & Roy (1964), Khatri (1966), Khatri (1973), Verbyla
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& Venables (1988), Kshirsagar & Boyce (1995), Srivastava (2002), Pan & Fang
(2002), Chiou, Müller, Wang & Carey (2003) and Kahm, Hasenbrink, Lichtenberg-
Fraté, Ludwig & Kschischo (2010). All of these growth curve studies involve
successive and correlated measurements on the same individuals which are divided
into two or more groups of treatments. We use in this paper treatments that are
combinations of quantitative factors which are based on polynomial models in the
response surface.

RSM uses statistical models and therefore practitioners need to be aware that
even the best statistical model is an approximation to reality. In this way, if re-
searches are interested in modeling and analyzing situations to determine optimum
operating conditions for a process; this particular analysis is performed through
the RSM. It is widely applicable in the biological sciences, chemistry, social exper-
imentation agriculture, engineering, food sciences, quality control and economics,
among others. The RSM has been developed in experimental and industrial pro-
duction by Box & Wilson (1951), Hill & Hunter (1966), Mead & Pike (1975),
Lucas (1976), Box & Draper (1982), Draper & Ying (1994), Chiou, Müller &
Wang (2004) and Box & Draper (2007). These authors discussed some first-order
and second-order response surface designs from the point of view of their ability
to detect certain likely kinds of lack of fit for a higher’s degree polynomial than
has been fitted.

The two previous approaches to growth curve and RSM problems are now
mixed to give a solution to our two applications because we need to know what is
the combination of factors over time that best works in the optimization process.
Our methodology is derived from the theory of multivariate normal analysis of
variance, and it is based on polynomial models for both growth curve and response
surface. Moreover, we provide both confidence bands and the over-all tests of
significance for various kinds of compound hypotheses that involve the parameters
of the proposed model. Furthermore, we find the optimal operating conditions
over time.

This kind of problem was previously studied by Guerrero & Melo (2008) pro-
viding a solution where they combined the response surface and the growth curve
techniques using an univariate analysis. In this paper, the same is done to obtain
the functional relationship that exists between the treatment and time in order
to predict its effect in any future time. Although, there are several phenomena of
this kind where these two techniques may be used simultaneously, a procedure that
combines them at the same time is not known using multivariate analysis. This
analysis works better than the univariate approximation presented by Guerrero &
Melo (2008) because the different statistics for hypothesis testing are exact, which
does not always happen in the univariate approach.

The experiments to be considered are characterized by the presence of k fixed
quantitative factors, ζ1, ζ2, . . . , ζk, associated with a continuous variable of interest
Y , where the observed levels of each factor are equally spaced and the response
variable is measured on the same experimental units in several moments.
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The plan of the paper is the following: Section 2 presents the response surfaces
model in growth curves. Then in Section 3, parameter estimation, hypotheses
testing and test statistics are presented. Section 4 is dedicated to locating the
optimum; at first the model is reparametrized (Section 4.1), and then the optimal
point is found (Section 4.2). Finally, two applications of our procedure are showed
in Section 5, and the conclusions are exposed in Section 6.

2. Response Surfaces Model in Growth Curves

The growth curve model implies that there are g different groups or treatments
and a single growth variable y, which is measured at q time points t1, t2, . . . , tq
on nj individuals chosen at random from the j-th group (j = 1, 2, . . . , g). A
polynomial regression of degree (p − 1) for y on the time variable t is defined.
Thus,

E(yt) = φj0t
0 + φj1t

1 + · · ·+ φj(p−1)t
p−1 (1)

t = t1, t2, . . . , tq, q > p − 1, j = 1, 2, . . . , g. The observations yt1 , . . . , ytq on the
same individual are correlated, and come from a multivariate normal distribution
with unknown variance-covariance matrix Σ, equal for all the individuals. Let Y j

denote the nj × q matrix of the observations for the j-th group, and let

Y′ = [Y ′1,Y
′
2, . . . ,Y

′
g]

denote the q × n matrix for all the n = n1 + n2 + · · ·+ ng individuals. Then from
(1)

E(Y j) =


φjG

φjG
...

φjG

 = Jnj1φjG, j = 1, 2, . . . , g (2)

where φj = [φj0, φj1, . . . , φj(p−1)]
′ denotes the vector of the regression or growth

curve coefficients for the j-th group, and

G =


t01 t02 . . . t0q
t11 t12 . . . t1q
...

...
. . .

...
tp−11 tp−12 . . . tp−1q


and Ja×b denotes, in general, an a × b matrix with all unit elements. Further-
more, the matrix Gp×q relates the parameters of the curve with the corresponding
polynomial degree.
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Combining (2) for all g groups, we now have

E(Y) =


Jn11φ1G

Jn21φ2G
...

Jng1φgG

 = AΦG (3)

where

Φ =


φ1

φ2
...
φg


is the g×p matrix of the growth curve coefficients, and A = diag[Jn11,Jn21, . . .Jng1]

is a block diagonal matrix of order n× g ‘group indicator’. Therefore, assuming
independence between individuals, we have that

V ar(V ec(Y)) = In ⊗Σq (4)

where ⊗ denotes the Kronecker product of two matrices (see Magnus (1988)).
The equations (3) and (4) conform to the growth curve model introduced by

Potthoff & Roy (1964), and later analyzed by Khatri (1966), Grizzle & Allen
(1969), Kabe (1974), and Khatri (1988), among many others.

2.1. Construction of Proposed Model

With the idea of making a joint modeling of growth curves and response sur-
faces, a couple of aspects were considered:

1. The matrix An×g, whose columns contain information about treatments,
was changed by a new matrix Xn×s, whose columns register the levels of
a factor and their interactions for each of the n individuals, just like in
second order response surfaces designs with k quantitative fixed factors and
s = 1 + k + (k +

(
k
2

)
) parameters in the surface.

2. For relating the parameters from the response surface with each of the
groups, a new matrix of parameters θs×g was included in the model where θlj
measures the effect of the l-th parameter in the surface for the j− th group.
Let Φg×p be the matrix that relates the groups with the growth curve co-
efficients, i.e., φjm is the parameter associated to the degree coefficient m
in the growth curve for the j-th group (l = 1, 2, . . . , s; j = 1, 2, . . . , g;m =
0, 1, . . . , p− 1).

Under the usual assumptions described above and maintaining the same struc-
ture and interpretation for the matrices Yn×q and Gp×q, the proposed model is
given by

E(Yn×q) = Xn×s θs×g Φg×p Gp×q (5)
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Notice that the model (5) is a classic model Potthoff & Roy (1964) adaptation
in which the matrix ξs×p = θs×gΦg×p, whose components are given by

ξml =

g∑
j=1

θljφjm

which is the parameter associated with the l-th component of the surface in the
m-th growth curve degree (l = 1, 2, . . . , s and m = 0, 1, . . . , p− 1). This allows to
write (5) as

E(Yn×q) = Xn×s ξs×p Gp×q (6)

Another form for writing this model is

E(yia) =

p−1∑
m=0

(
ξm0 +

k∑
r=1

ξmr xir +
k∑
r=1

k∑
r′=1

ξmrr′ xirxir′

)
tma (7)

or equivalently the model (6) can be written as

E(yia) =

( p−1∑
m=0

ξm0 t
m
a

)
+

k∑
r=1

xir

( p−1∑
m=0

ξmr t
m
a

)
+

k∑
r=1

k∑
r′=1

xirxir′

( p−1∑
m=0

ξmrr′t
m
a

)
(8)

with a = 1, 2, . . . , q and i = 1, . . . , n, and where ξmrr′ is the parameter that denotes
the effect of the interaction between the factors r and r′ in the m-th growth
curve degree (r, r′ = 1, 2, . . . , k and m = 0, 1, . . . , p− 1), xir and xir′ are encoded
explanatory variables associated to the factors r-th and r′-th, respectively, and yia
is the response variable associated to the i-th individual in the a-th time.

Note that the model (7) is in fact a growth curve whose coefficients are them-
selves a response surface of order two, and the model (8) is a response surface
whose parameters are growth curves. Moreover in (7), it is necessary to point out
that for a fixed m, all the parameters of the form ξm0 , ξmr , ξmrr′ (r, r′ = 1, 2, . . . , k)
belong to the m-th column of ξ. Similarly, in (8), each set of parameters of the
form ξm0 , ξmr , ξmrr′ with m = 0, 1, . . . , p− 1 and fixed r, r′, conforms the rows of ξ.
The remarks above are of great utility in section 3.2 for building the hypotheses
of interest on the model parameters.

3. Inference on the Model

3.1. Parameter Estimation

Parameter estimation is achieved by expressing the model (6) as a MANOVA
classic model, using the following transformation

Y4 = YP−1G′(GP−1G′)−1 (9)

with P any symmetric positive definite matrix, such that (GP−1G′)−1 exists.
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By applying the transformation (9) in (6), the next expression is obtained

E(Y4n×p) = Xn×s ξs×p (10)

V ar(Y4i ) = (GP−1G′)−1GP−1ΣP−1G′(GP−1G′)−1

= Σ4p , i = 1, 2, . . . , n

Potthoff & Roy (1964) found that taking P = Σ produces the minimum vari-
ance estimator for ξ; however, since Σ is unknown, in practice P is given by

P = S = Y′{I−X(X′X)−1X′}Y (11)

Note that P can take different forms which depend of the data correlation struc-
ture; a complete discussion about P can be found in Davis (2002), Molenberghs
& Verbeke (2005), and Davidian (2005).

Then, for model (10), the parameter estimators obtained with the maximum
likelihood method are given by

ξ̂ = (X′X)−1X′Y
4 (12)

From a slight extension of the result given by Rao (1967) in equation 50, we
can find that the unconditional covariance matrix of the elements of ξ̂ can be
expressed as

V ar
(
ξ̂ ′
)

= n−s−1
n−s−q+p−1 (X′X)

−1 ⊗Σ4 (13)

where ⊗ is the Kronocker product, and V ar(ξ̂ ′) denotes the covariance matrix of
the elements of ξ̂ taken in a columnwise manner.

It is easily shown that E(ξ̂) = ξ, and using a result given by Grizzle & Allen
(1969), we find that E((GS−1G′)

−1
) = (n−s−q+p)Σ4. From this last equation

and equation (13), it follows that an unbiased estimator of the variance of ξ̂ is

V̂ ar
(
ξ̂ ′
)

= n−s−1
n−s−q+p−1 (X′X)

−1 ⊗ Σ̂4 (14)

where
Σ̂4 =

1

n− s− q + p
(GS−1G′)−1

In next Subsection, we will present a classic technique for testing a hypothesis
of the form C ξU = 0 under the generalized expectation model (6), and also we
will obtain related confidence bounds.

3.2. Hypothesis of Interest and Test Statistics

As shown in the section 2.1, the model (6) can be written by expressions (7)
and (8), where it can be observed that the hypotheses of interest lie mainly on the
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rows or the columns of the matrix ξ. These and many other can be written in the
conventional general linear hypothesis form

H0 : C ξU = 0 vs H1 : C ξU 6= 0 (15)

where Cc×s and Up×u are known matrices of ranges c (≤ s) and u (≤ p), re-
spectively. The matrices that define the main hypotheses, together with their
corresponding interpretation, are shown in Table 1.

Table 1: Hypotheses more common over treatments and times.

H0 Interpretation C U

ξ = 0

The time-parameter
interaction adjusted
by the intercepts is
not significant.

(
0 01×s−1

0s−1×1 Is−1

) (
0 01×p−1

0p−1×1 Ip−1

)

ξ(m) = 0

The m-th column of
ξ is zero, indicating
that the degree m co-
efficient is not impor-
tant in the growth
curve.

Is (0, . . . , 1
↓

m−th

, . . . , 0)′p×1

ξ(l) = 0

The l-th row of ξ is
zero, indicating that
the parameter of the
surface is not signifi-
cant.

(0, . . . , 1
↓

l−th

, . . . , 0)1×s Ip

ξml = 0

The l-th component
of the surface does
not exercise influence
in the m-th degree of
the curve.

(0, . . . , 1
↓

l−th

, . . . , 0)1×s (0, . . . , 1
↓

m−th

, . . . , 0)′p×1

For the construction of the test statistics, the following two matrices should be
kept in mind

H = U′ξ̂ ′C ′[CR1C ′]−1Cξ̂U

E = U′(GS−1G′)−1U

where

R1 =
{
I + (X′X)−1X′YS−1

[
I−G′(GS−1G′)−1GS−1

]
Y′X

}
(X′X)−1

H and E play a decisive role in building the four classic multivariate test
statistics used in testing hypothesis (15) under the model (10): the Roy’s test uses
the largest characteristic root of (HE−1), the Lawley-Hotelling T 2 = tr(HE−1),
the trace of Bartlett-Nanda-Pillai V = tr(H(H + E)−1), and the statistic proposed
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by Wilks (1932), |E|/|H + E| ∼ Λ(u,c,m) with m = n− [s+(q−p)], which is known
as the λ-criterion.

The hypotheses in Table 1 involves one row vector or one column vector. There-
fore, we now state the general rule of rejecting a null hypothesis based on Wilks’s
Λ, using a level of significance α. To test the null hypothesis ξ(m) = 0, we use the
following test presented in Kshirsagar & Boyce (1995)

u1 =
1− Λ

Λ

ddf

ndf

where ddf is the denominator degree of freedom and ndf is the numerator degrees
of freedom. Then, the null hypothesis ξ(m) = 0 is rejected if u1 > F(α,ndf,ddf).

To test the null hypothesis ξ(l) = 0, we use the following test presented in
Kshirsagar & Boyce (1995)

c1 =
1− Λ

Λ

(
c+ ddf − u

u

)
Then, the null hypothesis ξ(l) = 0 is rejected if c1 > F(α,u,c+ddf−u).

On the other hand, simultaneous 100(1-α)% confidence bounds for the function
b′CξUf , ∀ b(c×1) and f(u×1), are given by

b′Cξ̂Uf ±
{(

hα
1−hα

)
(b′CR1C

′b)(f ′Ef)
}1/2

(16)

where the prediction is, of course, the first term of the equation (16) and hα
stands for the α fractile of the distribution for the Roy’s largest characteristic root
statistic tabulated by Heck (1960) with its three parameters (denoted by s, m and
n in Heck’s notation, but here denoted, respectively, by s∗, m∗ and n∗) equal to
s∗ = min(c, u), m∗ = (|c− u| − 1)/2 and n∗ = (n− s− (q − p)− u− 1)/2.

Other test statistics are presented in some works; for instance, Grizzle and
Allen’s statistic (1969) which considers a variant for the matrix associated the
hypothesis (relating to the herein presented). Singer & Andrade (1994) remarked
on the appropriate selection of error terms and presented a test statistic that
follows an exact F distribution (under H0). This was also used in the application
of Section 5, since it yielded the same decisions as the test statistics exposed there.

4. Location of the Optimum

The crucial goal of the response surface methodology is to find the optimal
operating conditions for the variable of interest, and in this scenario, their behavior
throughout time is added.

4.1. Reparameterization of the Model

In order to find the optimal operating conditions in presence of multiple re-
sponses, it is convenient to find an expression that us allows to distinguish the
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terms of order zero, one and two of the model (10). This model can be reparametrized
as

Ŷ4i1×p = b 01×p + (x′1×kb k×p) + (x′B(0)x,x′B(1)x, . . . ,x′B(p−1)x)

= b 01×p + (x′1×kb k×p) + (x′1×kBk×kp)(Ip ⊗ xk×1)
(17)

where xk×1 is the vector associated to the k factors of the response surfaces,
b 01×p is the vector whose components are the intercepts of each curve degree,
b k×p is the matrix that contains the coefficients associated to the k linear terms
of the response surface for each of the curve degrees, and Bk×kp is the matrix
(B(0),B(1), . . . ,B(p−1)) with B(m) (m = 0, 1, . . . , p − 1) being the k × k matrix
associated to the quadratic form of the response surface for the m-th growth curve
degree.

4.2. Optimization

The location of the optimal point is obtained by solving the equation system
resulting from the expression

∂Ŷ4i
∂x

= b k×p + 2[B(0)x
... B(1)x

... · · ·
... B(p−1)x] = 0 (18)

which is demonstrated using properties of differential matrix calculus.
By applying the vec operator in system (18), the following system of k variables

and kp equations is obtained

vec(b k×p) + 2


B(0)x

B(1)x
...

B(p−1)x

 = 0

B′x = −1

2
vec(b k×p),

which is solved by appending to it a pre-matrix B; hence, the stationary point is

x0 = −1

2
(BB′)−1Bvec(b k×p) (19)

and the non-singularity of BB′ is guaranteed by the linear independence of the
columns of X′X.

Let γ1, γ2, . . . , γk be the characteristic roots of the matrix BB′, then the nature
of the stationary point is determined by

• If γv > 0 ∀v = 1, 2, . . . , k, then x0 is minimum.

• If γv < 0 ∀v = 1, 2, . . . , k, then x0 is maximum.
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• In any other case, x0 is a saddle point.

Using (16) with C = I, U = I, b′ = x0 and f = G(m); the confidence bounds
for the predicted values of the optimal point in each moment are given by

x′0ξ̂G
(m) ±

{(
1

2n∗+2F(α,1,2n∗+2)

)
(x′0R1x0)

[
G(m) ′EG(m)

]}1/2

(20)

where G(m) is a column of the matrix G and n∗ = (n− s− 2)/2.

5. Applications

Two applications are analyzed in this Section: the first is an experiment to
analyze the plasma silicon concentration and its effect over the dietary ingestion
of SZA on the growth of sixty horses (Frey et al. 1992), and the second is an
experiment about the waste-water treatment, where the biological oxygen demand
(BOD) as a water pollution is studied (Montoya & Gallego 2012).

5.1. Plasma Silicon Concentration

An experiment to analyze the effect of dietary ingestion of SZA on the growth
and physiology of sixty horses was reported by Frey et al. (1992). The horses were
randomly assigned to four treatments: control (0%) and three levels of dietary
SZA (0.66%, 1.32% and 2%). In addition, the plasma silicon concentration was
measured in the times: t = 0, 1, 3, 6 and 9 hours after ingestion at eighty four days
into the diet. This data was previously analyzed by Kshirsagar & Boyce (1995)
employing growth curves, but they did not consider the surface responses part.
However, Guerrero & Melo (2008) presented an optimization process that combines
response surface and growth curves from a univariate approach. The last analysis
differs from the work in this paper because we make a parameter estimation which
does not depend on the transformation of equation (9). Additionally, the test
statistics used in Guerrero & Melo (2008) follow a F distribution approximately,
while under the multivariate perspective employed throughout this paper, these
tests follow an exact distribution of Wilks’s Λ.

Figure 1 shows profiles plot for these data. In this Figure, we see that the
silicon concentration in the plasma can be modeled as a cubic polynomial over
time. Also, the control group (0%) seems to have a different behavior than other
concentrations which suggest a difference among the four treatments.

Revista Colombiana de Estadística 36 (2013) 153–176



164 Felipe Ortiz, Juan C. Rivera & Oscar O. Melo

0 2 4 6 8

4
6

8
10

Time

y

●

●

●

●

●

●

SZA = 0
SZA = 0.66
SZA = 1.32
SZA = 2

Figure 1: Profiles by time for plasma silicon concentration growth.

Fitting the model (6) to this data set, the parameter estimates given by (12)
and P as (11) are

ξ̂ =


3.267 −0.324 0.118 −0.010

3.169 0.151 0.192 −0.017

−0.921 −0.127 −0.024 0.002


where the rows are growth curves for the different parameters of the response
surface, and the columns correspond to response surfaces for the different growth
curve degrees. So, the first row contains the intercepts of the surfaces for the
polynomial degrees, the second row contains the linear component of the factor
(SZA), and the third row contains the quadratic component of the factor.

Now, the results of the hypotheses testing on the rows (surface parameters)
and the columns (curve coefficients) of ξ are shown in Table 2. The hypothesis
H0 : ξ(4) = 0 yields a p − value < 0.001; therefore, the hypothesis is rejected.
This means that the third-order coefficient of the fitted growth curve is significant
in the model (see right panel of Figure 2). The hypothesis H0 : ξ(3) = 0 also
yields a p − value < 0.001, denoting that the quadratic component of the factor
is important, too (see left panel of Figure 2). The hypothesis H0 : ξ(2) = 0 is
the only one that is not rejected, it corresponds to the linear component of the
curve. However, since the degree of the cubic growth curve is significant, the linear
component is also included due to the hierarchy of the fitted growth curve.
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Table 2: Hypotheses testing on the rows and columns for the effect of dietary ingestion
of SZA.

Hypothesis C U Λ Fc ndf ddf p− value
ξ(1) = 0 I3 (1, 0, 0, 0)′ 0.099 169.45 3 56 < 0.001

ξ(2) = 0 I3 (0, 1, 0, 0)′ 0.928 1.44 3 56 0.2407
ξ(3) = 0 I3 (0, 0, 1, 0)′ 0.584 13.29 3 56 < 0.001

ξ(4) = 0 I3 (0, 0, 0, 1)′ 0.471 20.98 3 56 < 0.001

ξ(1) = 0 (1, 0, 0) I4 0.350 24.57 4 53 < 0.001

ξ(2) = 0 (0, 1, 0) I4 0.290 32.38 4 53 < 0.001

ξ(3) = 0 (0, 0, 1) I4 0.510 12.74 4 53 < 0.001

0.0 0.5 1.0 1.5 2.0

3
4

5
6

7
8

9
1

0

x

y

t0
t1
t3
t6
t9

0 2 4 6 8

4
6

8
1

0

t

y

1.7%
0%
0.66%
1.32%
2%

Figure 2: Fitted response surfaces (left panel) and growth curves (right panel).

From the matrix of estimated parameters, it is possible to construct the es-
timated growth curves for the four treatments of the experimental design. For
example, for treatment 0.66%, the growth curve is given by the equation

(
1 0.66 0.662

)
3.267 −0.324 0.118 −0.010

3.169 0.151 0.192 −0.017

−0.921 −0.127 −0.024 0.002




1

t

t2

t3


= 4.957− 0.279t+ 0.233t2 − 0.019t3 (21)

For the four treatments, the fitted growth curves are summarized in Table 3
and on Figure 2 (right panel). In the same way, we can find the estimation of the
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response surface parameters at each point in time. From product matrix, ξ̂G, the
equations are derived and summarized in Table 4, and they are plotted on Figure
2 (left panel).

Table 3: Fitted growth curves for the effect of dietary ingestion of SZA.

Treatment (SZA) Growth curve

0.00 3.266− 0.323t+ 0.117t2 − 0.009t3

0.66 4.957− 0.279t+ 0.233t2 − 0.019t3

1.32 5.845− 0.345t+ 0.328t2 − 0.027t3

2.00 5.921− 0.529t+ 0.403t2 − 0.034t3

Table 4: Fitted response surfaces for the effect of dietary ingestion of SZA.

Time Response surfaces

t0 3.266 + 3.169(SZA)− 0.92(SZA)2

t1 3.051 + 3.495(SZA)− 1.07(SZA)2

t3 3.097 + 4.88(SZA)− 1.456(SZA)2

t6 3.051 + 7.292(SZA)− 2.038(SZA)2

t9 2.936 + 7.616(SZA)− 2.27(SZA)2

On the other hand, the level of SZA that maximizes the plasma silicon con-
centration regularly well throughout time obtained with (19) is 1.70%, where
b = (3.169, 0.151, 0.192,−0.017) and B = (−0.921,−0.127,−0.024, 0.002). The
confidence bounds in the optimal point constructed using (20) and x0 = (1, 1.7, 1.72)
are shown in Table 5.

Table 5: Parameter estimation and confidence bounds in the optimal point for the effect
of dietary ingestion of SZA.

t0 t1 t3 t6 t9

Estimated value 5.99 5.9 7.19 10.01 9.32

Lower limit 5.72 5.66 6.93 9.74 9.06
Upper limit 6.25 6.13 7.45 10.27 9.59

Under the same reasoning used in equation (21), it is possible to construct
the growth curve for the optimum point (1.7%), which is given by 5.99− 0.43t+
0.37t2 − 0.03t3. Figure 2 (right panel) shows the optimum supremacy over all
treatments throughout time.

According to the results obtained in this application, we can stand out three
facts:

1. in the solution via univariate developed by Guerrero & Melo (2008), in which
one time (t = 1) was removed to get that the remaining times (t = 0, 3, 6, 9)
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were equally spaced; the quadratic component SZA factor in the response
surface was not significant, and also a linear polynomial for the growth curve
was fitted.

2. the hypothesis H0 : ξ(3) = 0 is rejected, justifying the inclusion of the
quadratic component in the response surface to fit the plasma silicon con-
centration. Note that in our proposal the test statistic follows an exact F
distribution.

3. Figure 1 clearly suggests that we should fit a cubic model in the growth
curve, which is corroborated by the results of the hypothesis H0 : ξ(4) = 0.

5.2. Environmental Pollution

During waste-water treatment it is common inhibitory agents to reduce the
negative environmental impact generated by to add substances discharged into the
receiving water bodies. Montoya & Gallego (2012) performed a central composite
rotatable design adding combinations of detergent (D in ppm) and animal fat
(AF in ppm). They studied the residual water BOD and biomass growth and
substrate consumption at t = 12, 24, 36, 48, 60 hours after the mixture. These
components interfere with the biological degradation of organic material during
the process of waste-water treatment. In this case, we study the biomass (in mg/l)
growth as a water pollution measure. According to Montoya & Gallego (2012), the
presence of detergents and animal fat in the affluent waste-water affect the size and
shape of the resulting floccules, which produces as a result a decrease in biomass
concentration demanding more time for the system retention that translates into
a low BOD elimination.

A description of the behavior of the four factorial points (treatments) of the
experimental design throughout time is shown in Figure 3 (left panel). This Fig-
ure shows a slight increase of biomass between 12 and 24 hours after that the
treatments were applied. Furthermore, we see an accelerated growth between 24
and 48 hours and a slight decrease from 48 until 60 hours. This behavior can be
approximated by a cubic polynomial throughout time. Moreover, it is noted that
the profiles for the four treatments have a very similar behavior, which suggests
that there is not a differential effect for factors D and AF.

In order to observe the behavior of biomass growth at each time point, we
fitted the univariate response surfaces for each time (see Figure 4). We can see
that the fitted surfaces for the first two times (t = 12, 24) have a convex shape
unlike the three last times (t = 36, 48, 60), which have concave shape. The points
that optimize each response surface are shown in Table 6; there is a change in the
optimal location point between two convex curves and three concave curves.
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Figure 3: Profiles throughout time for the biomass growth (left panel), and fitted
growth curves for the four treatments and the optimal point throughout time
(right panel).
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Figure 4: Fitted univariate response surfaces.
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Table 6: Univariate optimal surfaces.

Time AF D Characterization

t12 100.7 50.8 Minimum
t24 102.7 54.7 Minimum
t36 100.3 104.6 Maximum
t48 183.2 188.7 Maximum
t60 109.2 92.7 Maximum

To fit the model (6), we first analyzed the structure of the matrix P given in
equation (9). Then, we evaluated several possible covariance structures considering
the fit to the data and comparing them in terms of Akaike information criterion
(AIC). So, it was found that the best covariance structure was an AR(1) with
parameter estimates: φ̂ = 0.676 and σ̂ = 23.51, and the smallest AIC was 492.1.
Thus, the estimated parameters matrix using the equation (12) is

ξ̂ =



66.3998 0.5581 0.0241 −0.0010

1.4689 −0.3724 0.0131 −0.0001

−1.1473 0.1479 −0.0050 0.0000

−0.0146 0.0029 −0.0001 0.0000

−0.0111 0.0018 0.0000 0.0000

0.0245 −0.0036 0.0001 0.0000


whose first row represents the estimates of the response surface intercepts (ξm0 )
in the four degrees of growth curve following the expression (7). The second and
third rows are associated with the linear effects of factors AF and D, while the
third and the fourth rows are associated with the quadratic effects of the factors,
and finally; the sixth row estimates the interaction of two factors in all degrees of
the growth curve.

Once the above is done, we show in Table 7 the results of the hypotheses
testing on the rows (surface parameters) and the columns (curve parameters) of ξ.
According to the hypothesis ξ(4) = 0, a cubic polynomial fit to the growth curve
is suitable (p − value = 0.0039), while for the hypothesis ξ(2) = 0, . . . , ξ(6) = 0,
we do not find evidence of a significant difference between the effects generated by
AF and D factors in the experimental design. This is consistent with the behavior
seen in Figure 3 (left panel) for the four treatments of central composite rotatable
design; however, these factors could be interacting with the time (see Figure 3,
left panel) so these components will be kept in the model.
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Table 7: Hypotheses testing on the rows and columns for the biomass.

Hypothesis C U Wilks Fc ndf ddf p− value
ξ(1) = 0 I6 (1, 0, 0, 0)′ 0.057 11.074 6 4 0.018
ξ(2) = 0 I6 (0, 1, 0, 0)′ 0.046 13.849 6 4 0.012
ξ(3) = 0 I6 (0, 0, 1, 0)′ 0.028 22.996 6 4 0.005
ξ(4) = 0 I6 (0, 0, 0, 1)′ 0.026 24.865 6 4 0.004

ξ(1) = 0 (1, 0, 0, 0, 0, 0) I4 0.768 0.075 4 1 0.978
ξ(2) = 0 (0, 1, 0, 0, 0, 0) I4 0.438 0.320 4 1 0.848
ξ(3) = 0 (0, 0, 1, 0, 0, 0) I4 0.831 0.051 4 1 0.988
ξ(4) = 0 (0, 0, 0, 1, 0, 0) I4 0.271 0.671 4 1 0.710
ξ(5) = 0 (0, 0, 0, 0, 1, 0) I4 0.492 0.258 4 1 0.879
ξ(6) = 0 (0, 0, 0, 0, 0, 1) I4 0.327 0.514 4 1 0.764

From the matrix for the estimated parameters the estimated growth curves for
the four treatments are constructed. For example, for the treatment AF=140 and
D=120, the growth curve is given by the equation

(
1 140 120 1402 1202 140(120)

)
ξ̂


1

t

t2

t3


= 99.30− 10.86t+ 0.45t2 − 0.0043t3 (22)

For the four treatments, the estimated growth curves are summarized in Table
8 and Figures 5 and 3 (right panel). Figure 5 compares the estimated curve fitting
with the observed profiles where we see that the fitted growth curves provide a
good fitting for the data.

Table 8: Fitted growth curves for the biomass.

AF D Growth curve

60 40 96.99− 11.10t+ 0.44t2 − 0.004t3

60 120 −19.37 + 7.10t− 0.17t2 + 0.001t3

140 40 58.61− 5.74t+ 0.25t2 − 0.002t3

140 120 99.30− 10.86t+ 0.45t2 − 0.004t3

In the same way, we can find estimates for the response surfaces at each point
in time; these equations are derived from product matrix ξ̂G and are summarized
in Table 9 and in Figure 6. This Figure shows contour plots constructed for the
biomass growth at each point in time.
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Figure 5: Observed and fitted profiles growth curves for the biomass.

It is stressed that the fitted surfaces in the times t = 12, 24, 48, 60 capture the
behavior concave or convex observed in univariate surface plots (see Figure 4).
Moreover, we can conclude from the contour plots that a point located approxi-
mately at the coordinate (100, 60) optimizes the process regularly well through-
out time, minimizing the fitted surfaces at t = 12, 24 and maximizing them at
t = 48, 60.

Table 9: Fitted response surfaces for the biomass

Time Response surface

t12 74.75− 1.30AF − 0.01D + 0.0072AF 2 + 0.0029D2 − 0.0029AF ∗D
t24 79.20− 1.44AF + 0.22D + 0.0080AF 2 + 0.0045D2 − 0.0063AF ∗D
t36 68.88− 0.10AF + 0.08D − 0.0001AF 2 − 0.0004D2 + 0.0018AF ∗D
t48 32.99 + 1.59AF + 0.11D − 0.0104AF 2 − 0.0059D2 + 0.0089AF ∗D
t60 −39.43 + 2.48AF + 0.84D − 0.0124AF 2 − 0.0060D2 + 0.0025AF ∗D

When the model is reparameterized using the expression (17), we obtain the
following matrices

b =

(
1.4689 −0.3724 0.0131 −1.104e−4

−1.1473 0.1479 −0.0050 5.190e−5

)
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B(0) =

(
−0.0146 0.0123

0.0123 −0.0111

)
B(1) =

(
0.0029 −0.0018

−0.0018 0.0018

)

B(2) =

(
−1.030e−4 6.371e−5

6.371e−5 −6.445e−5

)
B(3) =

(
9.144e−7 −6.066e−7

−6.066−7 5.798e−7

)
where b is constructed using the linear effect estimations for the two factors (second
and third rows of the estimated parameters matrix, ξ̂). B(0), B(1), B(2) and B(3)

are conformed by the elements of the estimated parameters matrix and kept the
reparameterization structure used in the univariate response surface model i.e.
the diagonal terms are equivalent to the quadratic effects for each factor, and the
off-diagonal elements are equivalent to half of the estimated interaction effects.
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Figure 6: Fitted surface and contour plots for each time in the biomass study.

Thus, following the expression (19), the coordinates for the optimal point
that optimizes the process throughout time are found. These are AF= 96.6
and D= 55.3 which are within the observation region of the central composite
rotatable design and are in accordance with the behavior seen in the previous
contour plots. The confidence bounds for optimum constructed using (20) and
x0 = (1, 96.6, 55.3, 96.62, 55.32, 96.6(55.3)) are shown in Table 10.

Under the same reasoning used in equation (22), it is possible to construct the
growth curve for the optimum found (AF= 96.6 and D= 55.3), which is given by
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equation 105.2− 13.7t+ 0.53t2 − 0.005t3. This growth curve allows evaluation of
the optimization achieved throughout time, minimizing the growth of biomass for
times t = 12, 24 and maximizing relatively well for time t = 36, 48, 60 (see Figure
3, right panel).

Table 10: Parameter estimation and confidence bounds in the optimal point for the
biomass.

t12 t24 t36 t48 t60

Estimated value 9.14 15.16 71.26 125.42 125.62

Lower limit 0.00 0.00 48.84 101.63 101.34
Upper limit 33.42 38.95 93.68 149.21 149.90

6. Conclusions

A joint modelling procedure that gives additional information regarding the
interaction of the studied methodologies, as opposed to analyzing them indepen-
dently, was proposed. In this way, the functional relationship of the response
surface parameters with time was modeled by condensing the information of the
groups of the usual growth curves analysis. Also, parameter estimation, hypothe-
sis testing, test statistics and confidence bounds were obtained. Finally, under the
proposed model, the optimal point that optimizes the response variable regularly
well throughout time was found.

In both applications, we studied the optimum combination of factors that opti-
mized our response variable throughout time. Therefore, we fitted a cubic growth
curve and a quadratic response surface for the treatments in both situations. In
plasma silicon concentration study, it was optimized at a level of dietary ingestion
of SZA 1.7% throughout time, so we can say that the plasma silicon concentration
has a good growth in horses using this level. In biomass growth, we found that the
optimum condition was in the combination of animal fat at a level 96.6 ppm and
detergent at a level 55.3 ppm; consequently, using this combination between animal
fat and detergent, we optimize this inhibitory behavior during aerobic treatment
of waste-water.
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