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Abstract

A central problem associated with Multidimensional Item Response The-
ory (MIRT) Models is the impossibility of ordering the examinees. In this
paper, we obtain two unidimensional synthetic indices that are optimal lin-
ear combinations of the ability vector. These synthetic indices are similar
to the reference composite commonly used in MIRT models, but they are
easier to calculate and interpret. The synthetic indices are compared with
the unidimensional ability obtained when a multidimensional data is fitted
with an unidimensional IRT (UIRT) model.

Key words: Binary response, Item response theory, Index, Multidimen-
sional data, Synthetic estimator, Latent trait.

Resumen

Un problema central asociado con los Modelos Multidimensionales de
Teoria de Respuesta al Item (TRIM) es la imposibilidad de ordenar a los
examinados. En este articulo, se obtienen dos indices sintéticos unidimen-
sionales que son combinaciones lineales 6ptimas del vector de habilidades.
Estos indices sintéticos son semejantes a la composicién de referencia comun-
mente usada en los modelos TRIM, pero son maés faciles de calcular. Los
indices sintéticos se comparan con el pardmetro de habilidad obtenido cuando
un conjunto de datos multidimensionales es ajustado con un modelo TRI uni-
dimensional.

Palabras clave: respuesta binaria, teoria de respuesta al item, indice, datos
multidimensionales, estimador sintético, trazo latente.
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128 Alvaro Mauricio Montenegro Diaz & Edilberto Cepeda

1. Introduction

This research originated in recent results obtained by Levine (2003) and Carroll
& Levine (2007) in the context of Multidimensional Item Response Theory. They
proved that any multidimensional model has unidimensional submodels that are
equivalent to the original model.

The unidimensional item response theory models (UIRT) consist of models
according to which the interactions of persons with items can be adequately
represented by a unique parameter describing the characteristics of the person
(Reckase 2009).

The multidimensional item response theory (MIRT) models are based on the
assumption that people require more than one basic ability to response correctly
to an item in a test. There are two major types of MIRT models-the compensatory
models Reckase (1985, 1997, 2007) and the non-compensatory or partial compen-
satory models (Sympson 1978). In this research, we only refer to the compensatory
MIRT models, that we will call them simply MIRT models.

Stout (1990) introduced the concept of essential unidimensionality. The cen-
tral idea of Stout is that even though the ability space is multidimensional, the
set of items used in a test may be sensitive, mainly to differences along one of
the dimensions. The statistical tests to assess unidimensionalidad can reject the
unidimensional assumption. Stout et al. (1999) developed DIMTEST, a procedure
to test the assumption of essential unidimensionality of the person’s ability.

Several authors tried to determine the relationship between the ability vec-
tor @ and the unidimensional ability denoted 6, obtained by fitting a unidimen-
sional model to data that were generated from multidimensional models. Ansley
& Forsyth (1985) examined the unidimensional estimates for two dimensional data
using a noncompensatory model. They studied situations in which the 6’s were
correlated with correlations values of 0.0, 0.3, 0.6, 0.9 and 0.95. Way et al. (1988)
also compared the effects of using a UIRT model to estimate two dimensional
data for both the noncompensatory and the compensatory MIRT model. Reck-
ase (1990, 1986) reported that, in some situations, where a multidimensional data
matrix was fitted with a UIRT model, the dimensionality and the difficulty were
confused.

Ackerman (1989) reported that, in his simulations, the unidimensional estimate
of # was highly correlated with (6; + 62)/2; this correlation was better when the
correlation of the abilities was increased. Reckase & Ackerman (1988) suggested
to build unidimensional tests from multidimensional items by grouping the items
that measure more similar the linear combinations of abilities.

Folk & Green (1989) stated that 6 is strongly related to some optimal com-
bination of #; and 65, even for simulate samples with low correlations. Doody
(1985) reported studies about the robustness of unidimensional fitting applied to
two dimensional data. Zhao et al. (2002), in a simulated study of computerized
adaptive tests, founded similar results. As Ackerman, they compared the ability 7
with (61 + 62)/2. Walker & Beretvas (2003) compared multidimensional and uni-
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Synthesizing the Ability in MIRT models 129

dimensional proficiency using real data from a large-scale mathematics test and
obtained similar results.

Recently, Sheng (2007) showed that when each one of the items measures es-
sentially only one ability , a multi-unidimensional model fits better the data.

In this paper, we review the previous works about the important issue of syn-
thesizing the latent ability vector in MIRT models. We derive two optimal linear
combinations of the components of the ability vector, which are synthetic indices
of the abilities. Through a simulation study, we compared the proposed indices
with the others proposed previously, and we infer that all the synthetic indices
are similar. Our indices are easier to compute and interpret by the experts. The
synthetic indices obtained are also estimations of the linear combination of the
latent ability vector that is best measured by a test. We state how the covariance
of the latent ability vector affects the synthetic index. Finally, we infer through
a second simulation study that when the multidimensional data is fitted with a
unidimensional model, the unidimensional latent ability is precisely the synthetic
index of the ability vector. In the paper, the terms latent ability and latent trait
are used as synonyms.

2. The geometrical facts

When a UIRT model is used to fit data set, it is usual to assume a normal
standard distribution for the abilities of the individuals. Clearly, if the data is
multidimensional, the correlation matrix of the ability vector is the identity matrix.
But, if really the correlation matrix is not the identity, the obvious question is what
happens with the item and the ability parameters when this information about
the correlation matrix of the abilities is omitted?

The works reviewed in Section [[lsuggested us that when a data set is generated
from a MIRT model and the correlation matrix of the ability vector is not the
identity, a unidimensional model can fit well the data. This lead us to conjecture
that if the unidimensional model is used with the assumption that the abilities have
a normal standard distribution, the correlation matrix of the abilities transforms
the direction of the items in such a way that in the extreme case all of them
must be aligned. The direction of an item is discussed in Section Bl Also, the
results reported in Section [Il seems to suggest that in the extreme case the unique
direction of the items is just ﬁld, where d is the dimension of the ability space.
This conjecture lead us to propose and prove the results of this Section. The
required facts from d-dimensional geometry can be consulted in the Appendix.

Theorem 1. Let X be a d X d symmetric and positive definite matriz, such that
all its diagonal elements are 1 and the off-diagonal elements are nonnegative. Let
B1 and B2 be unitary vectors of R, such that all their elements are nonnegative.
Let |X| be the determinant of X, then
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BLES2

> 1|21 - (BB2)?) (1)
\/(Bi6:)(85562)

Proof. Let ¥/2 be the squared root of ¥. Let v; = (XV/23;)/+/B28:, i = 1,2.
Then, the vectors 1 and v2 are unitary. Let vol(v1,72) be the volume of the
parallelotope determined by the vectors v; and v2. From equations (34)), (36]) and
BT) in the Appendix, it follows that

BLE3:
V(81581 (8556,)

(2)

0012(71,72) =1-

and

|2|UOZQ(51, B2)
Bi361)(B5382)

3)

vol?(y1,72) = (

The properties of matrix ¥ permit us to conclude that g!X3; > 1, i = 1,2.

The result follows from this fact and also from the previous two equations and
Lemma [3in the Appendix. O

Corollary 1. Under the conditions of Theorem [, we have that

BLE3:
V(85581 (8556,)

> (B1B2) (4)

Proof . The result follows from the fact that |3] < 1. O

In the next result, we assume that 2%2 is the squared root of ¥,,.

Theorem 2. Let X, be a sequence of d X d matrices that have the same properties
than X in Theorem [1, and such that their determinants are decreasing and that
|| — 0 as m — oo. Let B = Ei,{zﬁ, where B is any not-zero vector, where
all of its components are nonnegative. Thus, Bm/||Bm|| — %ld, where 14 is the
vector with 1’s at all its components.

Proof . It is easy to see that |X| = 0, if and only if ¥ = J, where Jj is the matrix
with 1’s in all of its components. Thus, 2%2 — ﬁJd. [l

Suppose that 3 is a correlation matrix. It can be shown that if the off-diagonal
elements of the matrix 3 become large, then the determinant of the matrix ¥
decreases due to the relationship

| b)) |: (1—R2 )(1—312)71.1---1072)"'(1—R%l)

p.l---p—1
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where R% 4 is the squared multiple correlation coefficient between the variable
k and the following variables. See, for example (Pefa 2002), (Pefia & Rodriguez
2003).

From theorems [1] and [2] we conclude that, if the off-diagonal elements of the
matrix X are increased, all the transformed vectors E%zﬁ have a smaller angle
between them than the original vectors, and the respective transformed normal-
ized vectors have a greater orthogonal projection between them. Also, all the
transformed vectors are conducted toward the unitary vector %ld. In the limit
case, all the transform vectors align with that unitary vector.

3. The nature of the items in the MIRT model

In this Section, we show that any item in a compensatory MIRT model is
essentially unidimensional and prove that the item response hypersurface of an
item in a MIRT model is monotonic along any direction. This property allows
exchanging the item response function (IRF) and the item response hypersurface
(IRHS) as in the unidimensional case, but also permits us to determine what an
item really measures in a MIRT model.

In the logistic two parameter model (Baker & Seok-Ho 2004), (Bock 1972),
(Bock & Jones 1968), (Hambleton et al. 1991), the probability of a correct response
for the unidimensional case is given by

1

pi(ti) = P(Xyy = 110,05, b)) = -5

(5)
where X;; is the response of person ¢ to item j; X;; = 1 if the examinee ¢ responses
correctly to item j, and X;; = O otherwise; 6; is the unidimensional ability param-
eter for person i. The scale parameter a; is called the discrimination parameter
of item j, and b; is the difficulty or position parameter of item j.

The function f;(0) = p,(0) is called the item response function (IRF) and its
graph is the item response curve (IRC). Note that

fi(bj) = 5 (6)

and, .
f'(by) = 1% (7)

50, except by the term 1/4, a; represents the slope of the IRC at the point b;.

In the classical compensatory MIRT model, there is more that one ability
measured by a test. Let 0; be a vector of R¢ that represents the ability vector
of the examinee 7. The parameters of item j in this case are: a;, a vector of
R related with the discrimination of the item and +;, a scalar related with the
difficulty of the item. The probability that an examinee with ability vector 6;
responses correctly to item j is given by

1
1 4 ¢ (@j8it+7)

P(Xi; =1|6;,a;,v) = (8)
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The component 6;; of 8; represents the ability of the person ¢ in the k-th
dimension. The interpretations of a;’s and +;’s parameters are a little different
from those in the unidimensional case. Reckase (1985, 1997, 2007) states that the
MIRT model does not provide a direct interpretation about the parameters a;
and ;. In this case, the item response function f;(0) = p;(0) is a multivariate
function and its graph is a hypersurface. Let o; be the norm of the vector a;,
that is,

where the aj;’s are the components of vector a;. Then, the vector a; can be
rewritten as

a; =o;B; 9)

where 85 = (Bj1, B2, - -, Bja)’s Bjr = aji/aj. Clearly, B, is a unitary vector of
R?. Thus, the model given by Equation (8) can be rewritten as

1
14+e % (B30:—b;)

where b; = —v;/a;. Reckase (1985) defined the value a; as the multidimensional
discrimination (MDISC) parameter and the value b; as the multidimensional dif-
ficulty (MDIFF) parameter. He showed that «; is the slope at the point of the
steepest slope in the direction specified by the vector 3;, called the direction of
item J.

Additionally, he proved that b; is the distance from the origin to the point of
the steepest slope. We will show in this Section why the MDISC and MDIFF
names are justified.

At this point, we introduce the concept of item response hypersurface. In the
UIRT models, one may use the item response function (IRF) and its geometri-
cal representation-the item response curve (IRC)-almost interchangeable. In the
multidimensional case, however, the matter is not so straightforward.

First, we fix some notations. For any v € R, the ray of v is defined to be the
line R - v in R? determined by R-v = {tv € R? | ¢t € R}. Similarly, for v,w € R?
the directed line going through w is defined by

w+R-v={w+tv cR? |t € R}
Definition 1. A dichotomous item response hypersurface is a d-dimensional smooth
submanifold M of R? x [0,1], so that for any two vectors v,w € R? the in-
tersection of (w + R - v) x [0,1] and M is the graph of a monotonic function

fow:w+R-v—10,1].

We shall use the notation f, = f, 0. Definition [[land the notation were taken
from Antal’s paper (Antal 2007).
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Lemma 1. The graph of the item response function given by,

£(8) !

- 1 4 e~ (B50+7)

(11)
is a dichotomous item response hypersurface.

Proof. Let v,w be two arbitrary vectors of R? and consider the line given by
n(t) = w+ tv,t € R. Clearly, ﬁz»n(t) = ﬁzw + (ﬁz»'v)t is a monotonic function of
t and then f(n(t)) is a monotonic function along the direction v through w. O

As a consequence of Lemmal[ll, the item response function (Il defines a dichoto-
mous item response hypersurface and the MIRT model is completely determined
by these hypersurfaces.

Lemma 2. The item response function f;(0) of a MIRT model is constant in the
orthogonal complement of vector 3.

Proof. For any vector m in the orthogonal subspace of 3;, an = 0, so,
fitm) =1/ +e ). O

The next Corollary can be directly proven.

Corollary 2. Given w € R?, the item response function f;(0) is constant in the
hyperplane parallel to the orthogonal complement of vector B; that contains w.

This Corollary is well-known. It states that the contours of equiprobability
are hyperplanes, and that all of them are parallel. However, the important fact is
that they are orthogonal to the vector B;. Theorem [ is the main result of this
Section. It establishes that the item response function f;(0) is a trivial extension
of a unidimensional item response function (UIRF). According to Equation (@) we
will use the expression a; = a;3; in the Proof. It is not necessary, but is useful
to understand the result.

Theorem 3. The multidimensional IRF f;(6) of a MIRT model is a trivial ex-
tension of a classical UIRF.

Proof. Let 6 be a vector in R?, and let {B;,v1,...,v4-1} be a normed orthog-

onal basis of R% that contains the vector B;. Then, there exist real numbers
t,t1,...,tq—1 such that

0= tﬁj +t1v1 4+ -+ lg—1v4-1
then,

B0 = (Bi8;)t =t (12)
Hence,

f(6) = : : :

14 e~ P50 1 + e~ait=7 1 + e~ (t=b;

7 =P, (t) (13)
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The notation pg, is used to emphasize the direction B, and that f;(0) is an
extension of a UIRF. Theorem Bl shows an explicit way to construct the hypersur-
face defined by f;(0) from a unidimensional IRC. Let p;(¢) be the UIRF defined
by

1
S e (14

The function p;(t) can be trivially extended to a multivariate function by
pj(t1,...,ta) = pj(t1). The original hypersurface is obtained by a rigid rotation
of the hypersurface defined by p;(t1,t2,...,tqs) on the hyperplane defined by the
canonical vectors ey, es, ..., eq4, which aligns vector e; with vector ﬁj. This is a
general result, since any rotation in R? can be done in this way. The theory of
rigid rotations in d-dimensional spaces can be found in Aguilera & Pérez-Aguila
(2004) and Mortari (2001). A direct and important consequence of Theorem [l is

stated in the next Corollary.

Corollary 3. Let’s suppose that the directions of all items in a MIRT model
coincide, that is, B, = 3, for all i. Then, the model is essentially unidimensional.
In other words, the MIRT model is a trivial extension of a UIRT model.

The result of Corollary [ was first proven by Stout and Reckase in a paper pre-
sented at a meeting of the Psychometric Society (Reckase & Stout 1995). Reckase
(2009) reproduced the result (Theorem 1, page 197).

Other useful properties of the MIRT model follow. On the hyperplane ﬁ;@ —
b; = 0 we have that

fi(0) =1/2 (15)
It is straightforward to verify that for all 8 in that hyperplane
of; 1
%(0) = 7%B; (16)

So, as in Equation (7)), the parameter «;, except by the constant 1/4, is the
slope of the IRHS for all 8 in the hyperplane ﬁ;@ —b; = 0. The slope in the
direction B; is maximum when the IRHS crosses the hyperplane (Reckase 1985).

From equations (I0), (I5) and (I6l), we can conclude that IRHS of item j in
the MIRT model is a trivial extension of a unidimensional IRC whose parameters
of discrimination and difficulty are respectively «; and b; = —v;/«;. Also, it is
clear that item j measures the linear combination of the abilities given by 620.

4. Synthesizing the latent ability

A unidimensional synthetic index of the latent trait vector in a MIRT model
is usually called a composite. The formal concept is given in Definition

Definition 2. A composite ©g of the complete latent trait vector © is a linear

combination of ©, that is O3 = 3'© = Ezzl BrOk, where B8 = (f1, 02, ..., 0a4)
is a constant vector called the direction of the composite ©g. If Var(03) =1, Og
will be called a normalized composite.
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Synthesizing the Ability in MIRT models 135

Some authors have done theoretically developments to construct a unidimen-
sional synthetic index of the latent trait vector. Yen (1985) considered an approx-
imation of a MIRT model by a UIRT, using a least squares (LS) approach. She
used the objective function

[a b, 6‘} ZZ [ GA bA - ajﬁzﬂi —%}2 (17)

~ ~ N\t~ ~ N\t
wherea = (a3, ..., aAp)t, b= (bl, cee bp) ,0 = (91, cee 9N) are the corresponding
parameters in an approximate UIRT model, and p is the number of items. The

respective LS equations do not have a closed solution. Then, she assumed the
particular case where 3, = 8,7 =1,...,p, to obtain the solution

t
~ 0.
G B0
VB'Es
where X is the covariance matrix of the latent trait 8. This result can be obtained
as a direct consequence of Theorem [B] since in this particular case all directions
of the items coincide, and then we have essentially a UIRT along the direction 3.
Let {Xi,...,X,,} be a subtest, and let Y = 7" | X; be the subtest number

correct score, let £(0) = Z;n:lpj(ﬁ) be the true subtest score. Zhang & Stout
(1999) defined the direction of score Y as the vector £ that maximizes the ezpected

multidimensional critical ratio (EMCR) defined as

L@]
[Var(Y | 9)]?

(18)

EMCR(£,0;Y)=E (19)

where V¢£(0) is the directional derivative of the true score £(0) in the direction &.
The EMCR function gives the average discrimination power of the observed score
Y in the direction &. They showed that vector £ is given by

£= Zwiﬁj (20)
j=1

where w; = cE {H;(ajﬁz-e +7;)/ v/ Var(Y | 0)} H;(-) represents the item re-
sponse function. Clearly, the direction £ in Equation (20) depends on the response
function, and it is an average on the latent trait population. In this case, £°8 is

the composite that is best measured by the subtest. The reference direction £ was
called the direction of the subtest.

Wang (1985, 1986) constructed a unidimensional approximation to a multidi-
mensional data matrix that he called the reference composite trait. He used the
transformation y = In[p/(1 — p)], the item logistic score, and rewrote the logistic
MIRT model as

Y =60A" + 1+ (21)

where 0 is the matrix of the latent traits, A is the K xd matrix of the discrimination
parameters in the MIRT model, K is the number of items, 1x is the K-vector of
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ones and < is the vector associated with the difficulty. The objective function in
~\1 ~ ~
this case is the trace of (Y — Y) (Y — Y), where Y = GH' + 1x~*. Here G

is the unidimensional latent trait in the approximate model and H is the vector
of discrimination item parameters in that model. Observe that it is assumed that
the difficult parameters do not change. Wang showed that in this case

G = 0w, (22)

where w is the (unit-length) eigenvector associated with the largest eigenvalue of
the matrix A*A.

Theorem Blstates that all items in a compensatory MIRT model are essentially
unidimensional. Then, the multidimensional nature of a MIRT model can only be
attributed to the item directions 8;. Corollary Blstates that when the directions of
all items coincide, the model is a trivial extension of a UIRT model. These results
encouraged us to derive a unidimensional synthetic ability in a different way than
Yen, Wang, and Zhang and Stout.

We observed that if all 3;’s are the same, and 8; = 3, j =1,..., K, where K
is the number of items in the test, then Equation (I0) reduces to

1
1 + e~ (B%0:=b;)

P(Xi; =1]6i,05,8,b;) = (23)
that is a trivial extension of an UIRT model, where each one of the items mea-
sures the same composite of the abilities given by 8'@;. This observation suggests
looking for a vector B that summarizes the 3;’s. Since these vectors are all uni-
tary, they are in the unitary hypersphere of R?. Also, we can assume that the
components of the vectors 3; are all non-negative, then all the vectors are in the
same hyper-quadrant. Therefore, it is reasonable to expect that the vector that
summarizes all the 3;’s is the same hyper-quadrant of the unitary hypersphere.
This leads us to search the vector 8 by optimizing the objective function given by

u

K

h(Bry. . Ba) =YY (Bu — (24)

=1 k=1

whose solution is the unitary vector given by

(25)

We will denote the solution vector in this case as 3;,.

Alternatively, it is also reasonable to optimize the objective function

d K
g(ﬁla"'aﬁd :ZZ ﬁk:l (26)

=1 k=1
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whose solution, considering a unitary vector is given by

ﬁl _ 2521 ﬁkl
1 s Ball

The solution vector in this case will be denoted as 3.

l=1,....d (27)

We finish this Section with an approach about the role of the latent trait
correlation matrix. It is usual to assume that the abilities of the examinees in a
test constitute a sample drawn from a normal d-dimensional distribution N (0, X).
The marginal EM estimation is based on this assumption (Bock & Aitkin 1981).

To obtain an identifiable model, most of the programs written to estimate
MIRT models assume that 3 = I;, where I is the identity matrix. Examples are
TESTFACT (Wilson et al. 1987) and recently the Itm package (Rizopoulos 2006).
Those are examples of programs that use this assumption. In general, this is
not a realistic situation. Software NOHARM (Fraser 1988) estimates the item
parameters and the correlation matrix, but it does not estimate the latent abilities.
Bégin & Glass (2001) and De la Torre & Patz (2005) proposed MCMC algorithms
that simultaneously estimate the item parameters, the latent abilities and the
matrix 3. In this work, we assume only that the diagonal elements are all 1. This
assumption defines a common scale along the canonical axis of the ability space.
Ackerman (1989) stated that, in the case where the matrix ¥ is not the identity,
the difficulty and the dimensionality can be confused.

The usual assumption that the correlation matrix is the identity probably re-
sulting the problem mentioned by Ackerman. Let’s assume that 6, the latent
ability of the examinees, is a sample from a normal distribution N(0,3). Then X
has the stochastic representation 6 = st/ 27, where Y has a multivariate normal
standard distribution, and X1/2 is the squared root of . Then, we have that

86 = (zl/zg)t 58 (28)

Hence, when in the estimation process it is assumed that the correlation matrix
is the identity matrix, the direction of each item is estimated in a transformed space
determined by =12, Equation (28)) shows a procedure to compute the reference
direction when the correlation matrix is available.

It is clear that if 6 has a multivariate normal distribution N (0, X), any compos-
ite 3'0 has a different scale, since Var(3'0) = 'S 8. In this case, the reference
direction must be computed from the transformed vectors =t/ 28, and the syn-
thetic ability must be computed using the transformed ability Y = »~1/2g.

5. Simulation study

Two simulations were developed to evaluate and compare the synthetic indices
ﬁ',;@ and ﬁ’;@. This indices are compared with the synthetic indices £°6 and w8,
where £ is the reference direction obtained by Zhang and Stout and w is the
reference direction obtained by Wang.
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5.1. Comparison of the reference directions

Conceptually, the construction of the reference direction of Wang and the ref-
erence directions proposed in this paper are very similar. The construction of the
reference direction proposed by Zhang and Stout is different.

The vector £ is the direction in which the total score Y has maximum discrim-
inating power (Zhang & Stout 1999). The vector w maximizes the projection of
the direction of the items along of it. The vector 3, essentially minimizes the
angle between this reference direction and the direction of the items. The vector
B, minimizes the distance between this reference direction and the direction of the
items as points of the latent space. However, all the directions are very similar as
we show in this Section.

To review this fact, we generate a set of 60 vector directions in the 3-dimensional
latent space. We generate 4 clusters, each one with fifteen directions. To do
that, we fixed four directions: b; = (1.0,1.0,1.0), by = (1.0,0.2,0.1)%, b3 =
(0.3,1.0,0.1)" and by = (0.25,0.25,1.0)". Then, we generate the vectors of each
cluster by adding random noise to each component of the vectors b. The noise is
smaller in cluster 1 and is augmented progressively until cluster 4.

In a second step, we compute the reference directions w, 8, and 8, from all
the item directions and from the item directions in each cluster. Additionally,
we simulate values of MDISC and MDIFF parameters to generate all the item
parameters for 60 items, and then we also computed the reference direction &
from all the items and from the items in each cluster. We used a logistic response
function, and Equation (20]).

We considered two different distributions for the latent ability. First, we as-
sumed a 3-variate normal standard distribution and then a 3-variate normal dis-
tribution N (0, X), where

1.0 03 0.6
¥=(03 10 04
0.6 04 1.0

Tables [Il and ] show the results. In Table [ columns 3, 4 and 5 correspond to
the components of the reference directions for the first distribution of the latent
abilities and columns 7, 8 and 9 are the components of the reference directions
for the second distribution. Finally, we evaluate the synthetic indices comparing
them with the original composites. We computed the quantity

1 Kv
A, = EZE[mfev—ﬁijeH (29)

J=1

where v is respective the cluster, and K, the size of the cluster.

Table 2] shows the scalar product between the four reference directions.
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TABLE 1: Reference directions for each cluster. Columns 3, 4 and 5 are the components
of the reference directions for the distribution N(0,I) and columns 7, 8 and
9 for the distribution N(0,X).
cluster vector comp.l comp.2 comp.3 A comp.l comp.2 comp.3 A

all 13 0.5614  0.6035 0.5663 0.4236  0.4029 0.5666  0.7188  0.2805
w 0.5887  0.6071 0.5337 0.4269 0.4254 0.5679  0.7047 0.2784

Bh 0.5825 0.5843 0.5651  0.4237  0.4544 0.5758 0.6797  0.2822

By 0.5870  0.6025  0.5408 0.4260 0.4187 0.5686  0.7081 0.2787

1 13 0.5637  0.5730  0.5949 0.0472 0.4335 0.5509 0.7131 0.0267
w 0.5618 0.5735 0.5962  0.0470 0.4324 0.5512 0.7136  0.0266

Bh 0.5621 0.5731 0.5964 0.0470 0.4328 0.5512 0.7133  0.0267

By 0.5870  0.6025  0.5408 0.0689 0.4187 0.5686  0.7081 0.0303

2 13 0.9667  0.2079  0.1495 0.0687 0.7367 0.3718  0.5649  0.0380
w 0.9675 0.2157 0.1318 0.0694 0.7388 0.3786 0.5576  0.0385

Bh 0.9631 0.2206  0.1542 0.0700 0.7380  0.3797  0.5578  0.0386

By 0.9675 0.2157 0.1317 0.0694 0.7388 0.3786 0.5576  0.0385

3 13 0.2500 0.9605 0.1225 0.0994 0.2193 0.8837 0.4134 0.0718
w 0.2488 0.9619 0.1133  0.0986  0.2195 0.8863 0.4078  0.0716

Bh 0.2634 0.9534 0.1475 0.1046 0.2312  0.8827  0.4092 0.0711

By 0.2488 0.9619 0.1135 0.0986  0.2195 0.8863 0.4078  0.0716

4 13 0.1317 0.2341 0.9632  0.1677 0.1301 0.2750 0.9526  0.1595
w 0.1571 0.2412  0.9577 0.1683 0.1533  0.2846  0.9463 0.1591

Bh 0.2102 0.2825 0.9360 0.1757  0.2008 0.3148 0.9277  0.1628

By 0.1581 0.2412 0.9575 0.1683  0.1537 0.2843 0.9464 0.1592

TABLE 2: Scalar product between the reference vectors.
cluster < &8, > <wpBp> <BgBr> <wpfPy> <€P;> <bw>

all 0.9979 0.9992 0.9989 1.0000 0.9998 0.9997
1 1.0000 1.0000 0.9997 0.9997 0.9997 1.0000
2 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
3 0.9999 0.9999 0.9999 1.0000 1.0000 1.0000
4 0.9964 0.9982 0.9983 1.0000 0.9997 0.9997
mean 0.9988 0.9995 0.9994 0.9999 0.9998 0.9999

5.2. Comparison of the synthetic ability 3}0 with the
unidimensional ability of a UIRT model

To evaluate 3/ 0 as a synthetic index of the latent trait vector, we used the fol-
lowing strategy. It is reasonable to expect that the synthetic index of the ability is
a good unidimensional summary of the ability vector. Then, if a multidimensional
data set is fitted with a unidimensional model, the unidimensional estimative of
the ability parameter must be also an estimative of the synthetic index.

In this Section, we evaluate the synthetic index 3% in forty simulated ex-
amples. For clarity, the subscript A will be omitted. All examples are based on
2-dimensional models. One hundred item parameters were simulated as follows.
First, the MDISC (the «;’s) parameters were generated from a uniform distribu-
tion in the range [.4,2]. Second, the parameters b; were generated from a normal
distribution N (0, 1). Third, the angles that determine the direction of the vectors

Revista Colombiana de Estadistica 33 (2010) 127{147]



140 Alvaro Mauricio Montenegro Diaz & Edilberto Cepeda

3; were generated from a uniform distribution in the range [5, 50]. The MDISC pa-
rameters were generated in the range [.4, 2] because, this is the usual range of this
parameter in real tests. Different prior distributions are assumed for these param-
eters as a log-normal or a non-informative positive flat distribution (Sheng 2008).
We used the last option. The range of angles was chosen to yield a more disperse
set of angles as possible. In the simulation of the previous Section, the simulated
angles were less dispersed in each cluster.

A sample of 4000 examinees was drawn from the normal bivariate distribution
N(0, I). To examine the impact of the correlation between the 6’s, we respectively
introduced correlations of 0,.3,.6 and .9. In all cases, the diagonal elements were
1, thus X is always a correlation matrix. Also, in all cases a normal standard
distribution is assumed for the ability vectors in the estimation process.

Finally, for each correlation matrix a set of binary responses were generated
as follows: for each ability vector and each parameter set, the probability of a
correct response was computed using Equation (8). Then, a random number u
was obtained, from the uniform distribution in the range [0, 1]. If the probability
of correct response was greater or equal than u the value 1 was assigned to the
response. Otherwise, the 0 value was assigned (Kromrey et al. 1999).

We fitted 10 unidimensional models for each set of responses using the Itm
package (Rizopoulos 2006). First, we took the first 10 items; then, we took the
first 20 items and so until all items were taken. Table [ shows the main results.

A number of statistical indices were calculated at the simulate sample level to
evaluate the synthetic inde:iﬁte. Let Bk, £k =1,...,40 be the vector 8 in each one
of the 40 simulations. Let 6; be the estimation of the ability parameter obtained,
when the multidimensional data was fitted with the unidimensional model. The
bias index can be expressed as

N

biasy = % S (BL6:-8) (h=1.....40) (30)
=1

The error index included is the mean absolute error (mae) defined as

N
1 .
maey = + :‘5,20,-—91- (k=1,...,40) (31)
=1

To evaluate the precision of the mae index, we included the standard deviation
sdy, of values ‘ 620,- — 91-‘. A fidelity index was computed, the Pearson product-

moment rho correlation, denoted by p. Additionally, we computed the least squares
(LS) - fitting between the values B%0; and ;. We took the synthetic index as the
explanatory variable. The c-values were the coefficients and the R2?-values the
corresponding R? statistics of the fitting in each simulation.

Also, we compared the estimations 6; with (61 + 62)/2. The indices mae® and
¢! were computed by replacing the values B50; with the values (61 + 62)/2 in the
previous respective indices.
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TABLE 3: Statistical indices to evaluate the synthetic index £*@. The value p is the
number of items, o is the correlation between the 0’s, 81 and (32 are the
components of vector 8, 71 and 72 are the minimum and maximum angles of
the vectors B; with respect to the horizontal in each simulation.

1 «

P o A B2 Y1 Y2 bias mae sd p [¢ R?2 mael ¢ mae

10 0.0 094 0.34 5.2 34.3 0.022 0.38 0.30 0.88 0.73 0.77 0.40 0.93 0.10
10 0.3 0.90 0.44 13.6 37.1 0.024 0.35 0.28 0.89 0.74 0.80 0.36 0.99 0.06
10 0.6 0.85 0.53 22.4 39.6 0.026 0.35 0.27 0.90 0.75 0.81 0.32 1.03 0.08
10 0.9 0.78 0.63 34.2 425 0.026 0.33 0.28 0.90 0.76 0.82 0.29 1.07 0.07
20 0.0 0.87 0.49 5.2 49.3 0.006 0.30 0.24 0.92 0.83 0.85 0.35 1.11 0.12
20 0.3 084 0.55 13.6 48.1 0.005 0.28 0.22 0.93 0.84 0.87 0.31 1.16 0.08
20 0.6 0.80 0.60 224 47.1 0.007 0.27 0.21 0.94 086 0.89 0.29 1.20 0.07
20 09 0.75 0.66 34.2 46.0 0.004 0.26 0.21 0.94 0.86 0.89 0.27 1.22 0.08
30 0.0 0.88 0.47 5.2 49.3 0.002 0.27 0.21 0.94 0.87 0.88 0.36 1.16 0.10
30 0.3 0.84 0.54 13.6 48.1 0.007 0.25 0.19 0.95 0.88 0.90 0.32 1.21 0.06
30 0.6 0.80 0.59 224 47.1 0.000 0.23 0.18 0.96 0.89 0.91 0.29 1.25 0.07
30 0.9 0.75 0.66 34.2 46.0 0.022 0.23 0.18 0.96 0.90 0.91 0.27 1.28 0.08
40 0.0 0.88 0.47 5.2 49.3 0.003 0.25 0.19 0.95 0.90 0.90 0.35 1.20 0.10
40 0.3 0.84 0.54 13.6 48.1 -—0.008 0.23 0.18 0.96 0.91 0.92 0.31 1.25 0.07
40 0.6 0.80 0.59 224 47.1 -0.011 0.21 0.16 0.96 0.92 0.93 0.29 1.29 0.08
40 0.9 0.75 0.66 34.2 46.0 0.033 0.21 0.16 0.96 0.93 0.93 0.27 1.32 0.09
50 0.0 0.89 0.46 5.2 49.3 0.002 0.22 0.17 0.96 0.92 0.92 0.35 1.24 0.10
50 0.3 0.85 0.53 13.6 48.1 0.008 0.21 0.16 0.97 0.94 0.93 0.32 1.30 0.08
50 0.6 0.81 0.59 224 47.1 0.001 0.19 0.15 0.97 096 0.94 0.30 1.35 0.10
50 0.9 0.76 0.65 34.2 46.0 0.038 0.19 0.15 0.97 097 0.94 0.29 1.37 0.12
60 0.0 0.88 0.48 5.2 50.0 0.007 0.20 0.16 0.97 0.95 0.93 0.35 1.28 0.11
60 0.3 0.84 0.55 13.6 48.7 —0.014 0.19 0.15 0.97 0.97 094 0.32 1.34 0.11
60 0.6 0.80 0.60 22.4 47.5 0.014 0.18 0.14 0.97 1.00 0.95 0.32 1.40 0.15
60 0.9 0.75 0.66 34.2 46.1 0.040 0.18 0.14 0.98 1.01 0.95 0.30 1.42 0.16
70 0.0 0.87 0.49 5.2 50.0 0.006 0.19 0.15 0.97 097 094 0.35 1.33 0.13
70 0.3 0.84 0.55 13.6 48.7 —0.034 0.18 0.14 0.98 1.00 0.95 0.33 1.38 0.14
70 0.6 0.80 0.60 22.4 475 -0.012 0.17 0.14 0.98 1.03 096 0.33 1.45 0.18
70 0.9 0.75 0.66 34.2 46.1 0.001 0.17 0.14 0.98 1.05 0.96 0.33 1.48 0.22
80 0.0 0.88 0.48 5.2 50.0 0.020 0.18 0.14 0.97 0.99 0.95 0.36 1.35 0.14
80 0.3 0.84 0.54 13.6 48.7 0.045 0.17 0.14 0.98 1.02 0.96 0.34 141 0.15
80 0.6 0.80 0.60 22.4 47.5 0.074 0.18 0.14 0.98 1.05 0.96 0.34 1.48 0.20
80 0.9 0.75 0.66 34.2 46.1 0.011 0.17 0.13 0.98 1.06 0.96 0.33 1.50 0.22
90 0.0 0.88 0.48 5.2 50.0 0.002 0.18 0.14 0.98 1.01 0.95 0.37 1.37 0.14
90 0.3 0.84 0.54 13.6 48.7 —0.040 0.17 0.14 0.98 1.04 0.96 0.35 1.44 0.17
90 0.6 0.80 0.60 22.4 47.5 0.076 0.18 0.14 0.98 1.07 0.96 0.35 1.50 0.21
90 0.9 0.75 0.66 34.2 46.1 —-0.068 0.18 0.14 0.98 1.09 0.96 0.36 1.55 0.26
100 0.0 0.88 0.48 5.2 50.0 0.009 0.17 0.13 0.98 1.02 0.96 0.37 1.39 0.15
100 0.3 0.84 0.55 13.6 48.7 —0.054 0.17 0.14 0.98 1.07 0.96 0.36 1.47 0.19
100 0.6 0.80 0.60 22.4 47.5 0.079 0.18 0.15 0.98 1.10 0.96 0.37 1.54 0.25
100 0.9 0.75 0.66 34.2 46.1 -0.076 0.19 0.15 0.99 1.12 0.97 0.38 1.59 0.29
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Finally, in Table B] we included the mae® index for the a-parameters. This

index was computed as
P

1 ~
maej = p Z levjke — Qi (32)

j=1

for each simulation k. The value @y, is the slope parameter of the unidimensional
model estimated in simulation k.

6. Discussion

Carroll & Levine (2007) and Levine (2003) proved that any MIRT model can
be approximated by unidimensional models. However, their approximate models
are non-parametric and the response functions are not necessarily monotone.

In this paper, we reviewed the main aspects concerning to synthesize the latent
ability vector in compensatory MIRT models. We used composites, that are linear
combinations of the latent trait vector.

Theorem [3 shows that each item j in a MIRT model is essentially unidimen-
sional along the direction given by the vector 3;. Item j measures the composite
ﬁjtei. Then, each item measures a different linear combination of the 8;, unless
all the vectors 3; have the same direction.

In realistic problems, where a test measures more than one latent trait, the
components of the latent trait vector are correlated. However, Equation (28)
shows that if the latent trait random vector @ has multivariate normal distribu-
tion N(0,3X), then any composite 36 can be rewritten as El/2ﬁtT, where Y
has a normal standard distribution. This transformation has two important con-
sequences. First, according to Corollary [, the transformation induced by »1/2
shrinks the direction vectors 3;. Second, if a vector 3 is unitary, the composite
B'Y is normalized, and any normalized composite has a normal standard distri-
bution.

In Section B we stated that each item is essentially unidimensional along the
direction of the item. In Corollary B] we proved that if all the directions of the
items coincide, the test is essentially unidimensional along the unique direction of
the items.

The important issue about how to obtain a unidimensional synthetic index
of the multidimensional latent trait was discussed in Section [l Previous works
of Yen, Wang and Zhang and Stout was reviewed. Wang and Zhang and Stout
proposed two alternative synthetic indices, called respectively reference composite
(w'@) and the direction of the test (£'0). We proposed two new synthetic indices:
620 and 620. Computing these alternative indices can be easier that Computing
the previous indices, and they are more natural and easy to use by the experts.

Tables [ and 2 of the first simulation study (Section [5.1) show that all the
reference directions are very similar. This is not surprising, because although
the constructions are different, the objective in all cases is the same: to obtain a
synthetic index of the multidimensional latent trait. However, if we joint all the
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results, we can conclude additionally that each one of the reference composites is
an approximation to the best composite that is measured by a subtest. This fact,
is illustrated in Section Bl where we compared the theoretical synthetic index ﬁ’;ﬂ
with the unidimensional latent trait index obtained by fitting a multidimensional
data set with a UIRT model.

7. Conclusions and future work

From a geometrical point of view, we showed in this paper how in tests that
measure more than one latent trait the multidimensional latent trait vectors can
be synthesized to obtain unidimensional measures of the examinees. The approach
can be applied to subtests obtained from clusters of the items, or to the full test.

In the paper, nothing was stated about the item parameters that are estimated
when a unidimensional model is used to fit a multidimensional data set. We
showed that the correlation in the latent trait vector must be considered when a
synthetic latent trait must be computed. In this case, a right computation implies
to transform the direction of the items by a non orthogonal projection. But, in
this scenery, the open question is: how must be modified the MDISC and MDIFF
parameters to conserve approximately the same probability of response?. In other
words, what is the relationship between the item parameters of the MIRT model
and the item parameters of the UIRT when a unidimensional model is used to fit
a multidimensional data set?.
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Appendix

For the concepts of n-dimensional geometry, see for example (Kendall 1961i
Let v1,...,v4 be an ordered set of vectors in R",n > d. The parallelotope
with sides v1,...,v4 is the convex hull created by this vectors. This parallelo-
tope is denoted by P(v1,...,v4). It is well known that the volume or content of
P(vy,...,vq) 18

vol(vy,...,vg) = |[VIV|/2 (33)

where V' = (v1,...,v4), see for example (Mathai 1999). It is immediate that
vol(Avy,...,vq) = A-vol(vy,...,vq) (34)
Also, if S is region of R™ and ¥ a n X n matrix, then
vol(XS) = |E|vol(S) (35)
From Equation (B3) it is straightforward that
vol(Zv1, ..., Xvg) = |X| - vol(v1,...,v4) (36)
Lemma 3. Let 31 and B2 be unitary vectors of R™, then
vol?(B1,82) =1 — ﬁiﬁz (37)

Proof. It follows directly from Equation (33]). O

IThe parallelotope is the generalization of a parallelepiped to R¢
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