Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] A. Belavin, A. Polyakov, A. Zamolodchikov (1984). Infinite conformal symmetry of critical fluctuations in two dimensions, J. Stat. Phys. 34, 763–774. MR0751712 [2] A. Belavin, A. Polyakov, A. Zamolodchikov (1984). Infinite conformal symmetry in two-dimensional quantum field theory, Nuclear Phys B 241, 333–380. MR0757857 [3] V. Beffara (2008). The dimension of the SLE curves. Ann. Probab. 36(4), 1421–1452. MR2435854 [4] J. Cardy (1992). Critical percolation in finite geometries, J. Phys. A 25, L201–L206. MR1151081 [5] J. Conway (1978, 1995). Functions of One Complex Variable I and II, Springer-Verlag. MR0503901 [6] P. Duren (2001). Univalent Functions. Springer-Verlag. MR0708494 [7] G. Lawler (2005). Conformally Invariant Processes in the Plane, Amer. Math. Soc. MR2129588 [8] G. Lawler (2009). Schramm-Loewner evolution, in Statistical Mechanics, S. Sheffield and T. Spencer, ed., IAS/Park City Mathematical Series, AMS, 231–295. MR2523461 [9] G. Lawler (2009). Partition functions, loop measure, and versions of SLE, J. Stat. Phys. 134, 813–837. MR2518970 [10] G. Lawler, Defining SLE in multiply connected domains with the loop measure, in preparation. [11] G. Lawler, V. Limic (2010), Random Walk: A Modern Introduction, Cambridge Univ. Press. MR2677157 [12] G. Lawler, O. Schramm, W. Werner (2004), Conformal invariance of planar loop-erased random walks and uniform spanning trees, Annals of Probab. 32, 939–995. MR2044671 [13] G. Lawler, O. Schramm. and W. Werner (2003). Conformal restriction: the chordal case. J. Amer. Math. Soc. 16, 917–955. MR1992830 [14] G. Lawler, J. A. Trujillo Ferreras (2007). Random walk loop soup. Trans. Amer. Math. Soc. 359, 767–787. MR2255196 [15] G. Lawler, W. Werner (2004), The Brownian loop soup, Probab. Theory Related Fields 128, 565–588. MR2045953 [16] G. Lawler, M. Rezaei, in preparation. [17] G. Lawler, S. Sheffield (2011). A natural parametrization for the Schramm-Loewner evolution, Annals of Probab. 39, 1896–1937. [18] G. Lawler, B. Werness, Multi-point Green’s functions for SLE and an estimate of Beffara, to appear in Annals of Probab. [19] G. Lawler, W. Zhou, SLE curves and natural parametrization, preprint. [20] D. Marshall, S. Rohde (2005), The Loewner differential equation and slit mappings. J. Amer. Math. Soc. 18, 763–778. MR2163382 [21] S. Rohde, O. Schramm (2005), Basic properties of SLE. Ann. of Math. 161, 883–924. MR2153402 [22] O. Schramm (2000). Scaling limits of loop-erased random walk and uniform spanning trees, Israel J. Math. 118, 221-288. MR1776084 [23] O. Schramm (2001). A percolation formula. Electron Comm. Probab. 6, 115–120. MR1871700 [24] D. Wilson (1996). Generating random spanning trees more quickly than the cover time, Proc. STOC96, 296–303. MR1427525 [25] D. Zhan (2007), Reversibility of chordal SLE, Annals of Prob. 36, 1472–1494. MR2435856 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |