Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] D. Aldous, Some inequalities for reversible Markov chains, J. London Math Society (2) 25 (1982), pp. 564–576. MR0657512 [2] D. Aldous and J. Fill, Reversible Markov chains and random walks on graphs. http://oz.berkeley.edu/users/aldous/RWG/book.html. [3] M. Cryan, M. Dyer, L.A. Goldberg, M. Jerrum and R. Martin, Rapidly mixing Markov chains for sampling contingency tables with a constant number of rows, Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS 2002), pp. 711–720. [4] P. Diaconis, S. Holmes and R.M. Neal, Analysis of a nonreversible Markov chain sampler, Annals of Applied Probability 10 (2000), pp. 726–752. MR1789978 [5] P. Diaconis and L. Saloff-Coste, Comparison theorems for reversible Markov chains, Annals of Applied Probability 3 (1993), pp. 696–730. MR1233621 [6] P. Diaconis and L. Saloff-Coste, Comparison techniques for random walk on finite groups. Ann. Probab. 21 (1993), no. 4, 2131–2156. MR1245303 [7] P. Diaconis and L. Saloff-Coste, Walks on generating sets of abelian groups. Probab. Theory Related Fields 105 (1996), no. 3, 393–421. MR1425868 [8] P. Diaconis and D. Stroock, Geometric bounds for eigenvalues of Markov chains, Annals of Applied Probability 1 (1991), pp. 36–61. MR1097463 [9] M. Dyer, A. Frieze and M. Jerrum, On counting independent sets in sparse graphs, SIAM J. Computing 33 (2002), pp. 1527–1541. MR1936657 [10] J.A. Fill, Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains, with an application to the exclusion process, Annals of Applied Probability 1 (1991), pp. 62–87. MR1097464 [11] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985. MR0832183 [12] M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, Birkhäuser Verlag, Basel, 2003. MR1960003 [13] J. Keilson, Marlov Chain Models: Rarity and Exponentiality, Springer-Verlag, New York, 1979. MR0528293 [14] L. Miclo, Remarques sur l’hypercontractivité et l’évolution de l’entropie pour des chaînes de Markov finies, Séminaire de Probabilités XXXI Springer Lecture Notes in Mathematics 1655 (in French). [15] M. Mihail, Combinatorial Aspects of Expanders, PhD Thesis, Harvard University, 1989. [16] J.R. Norris, Markov Chains, Cambridge University Press, Cambridge, 1997. MR1600720 [17] J. Quastel, Diffusion of colour in the simple exclusion process, Comm. Pure Appl. Math. 45 (1992), pp. 623–679. MR1162368 [18] D. Randall and P. Tetali, Analyzing Glauber dynamics by comparison of Markov chains. J. Mathematical Physics 41 (2000), pp. 1598–1615. MR1757972 [19] A. Sinclair, Improved bounds for mixing rates of Markov chains and multicommodity flow, Combinatorics, Probability and Computing 1 (1992), pp. 351–370. MR1211324 [20] A. Sinclair, Algorithms for Random Generation & Counting: A Markov Chain Approach, Birkhäuser, Boston, 1993. MR1201590 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |