Home | Current | Past volumes | About | Login | Notify | Contact | Search | |||||
|
|||||
References[1] Bowen, R. (2008). Equilibrium states and the ergodic theory of Anosov diffeomorphisms, 2nd revised. Lect. Notes Math. 470. Springer, Berlin. MR2423393 [2] Boyle, M. (1991) Quotients of subshifts. Adler Conference lecture. [3] Boyle, M. and Downarowicz, T. (2004). The entropy theory of symbolic extensions. Invent. Math. 156, no. 1, 119–161. MR2047659 [4] Boyle, M., Fiebig, D. and Fiebig, U. (2002). Residual entropy, conditional entropy and subshift covers. Forum Math. 14, no. 5, 713–757. MR1924775 [5] Burguet, D. (2010). Examples of Cr interval map with large symbolic extension entropy. Discrete and Continuous Dynamical Systems - A 26, no 3, 873–899. [6] Burguet, D. (2009). Symbolic extensions for Cr nonuniformly entropy expanding maps. Preprint. [7] Burguet, D. (2009). C2 surface diffeomorphisms have symbolic extensions. Preprint. [8] Burguet, D. and McGoff, K. (2010). Orders of accumulation of entropy. Preprint. [9] Buzzi, J. (1997). Intrinsic ergodicity of smooth interval maps. Israel J. Math. 100 125–161. MR1469107 [10] Díaz, L. and Fisher, T. (2009). Symbolic extensions for partially hyperbolic diffeomorphisms. Preprint. [11] Downarowicz, T. (2001). Entropy of a symbolic extension of a dynamical system. Ergodic Theory Dynam. Systems 21, no. 4, 1051–1070. MR1849601 [12] Downarowicz, T. (2005). Entropy structure. J. Anal. Math. 96 57–116. MR2177182 [13] Downarowicz, T. and Durand, F. (2002). Factors of Toeplitz flows and other almost 1 - 1 extensions over group rotations. Math. Scand. 90, no. 1, 57–72. MR1887094 [14] Downarowicz, T. and Maass, A. (2009). Smooth interval maps have symbolic extensions: the Antarctic theorem. Invent. Math. 176, no. 3, 617–636. MR2501298 [15] Downarowicz, T. and Newhouse, S. (2005). Symbolic extensions and smooth dynamical systems. Invent. Math. 160, no. 3, 453–499. MR2178700 [16] Lindenstrauss, E. (1999). Mean dimension, small entropy factors and an imbedding theorem. Publ. Math. I.H.E.S. 89 227–262. MR1793417 [17] Lindenstrauss, E. and Weiss, B. (2000). Mean topological dimension. Israel J. Math. 115 1–24. MR1749670 [18] McGoff, K. (2010). Orders of accumulation of entropy on manifolds. Preprint. [19] Misiurewicz, M. (1976). Topological conditional entropy. Studia Math. 55, no. 2, 175–200. MR0415587 [20] Newhouse, S. (1990). Continuity properties of entropy. Ann. Math. 129 215–235. Corr. in 131 409–410 (1990). MR0986792 [21] Reddy, W. L. (1968). Lifting expansive homeomorphisms to symbolic flows. Math. Systems Theory 2 91–92. MR0224080 [22] Ruelle, D. (1978). An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat. 9, no. 1, 83–87. MR0516310 [23] Yomdin, Y. (1987). Volume growth and entropy. Israel J. Math. 57, no. 3, 285–300. MR0889979 |
|||||
Home | Current | Past volumes | About | Login | Notify | Contact | Search Probability Surveys. ISSN: 1549-5787 |