</script> This paper presents a synthesis on the mathematical work done on level crossings of stationary Gaussian processes, with some extensions. The main results [(factorial) moments, representation into the Wiener Chaos, asymptotic results, rate of convergence, local time and number of crossings] are described, as well as the different approaches [normal comparison method, Rice method, Stein-Chen method, a general (m)-dependent method] used to obtain them; these methods are also very useful in the general context of Gaussian fields. Finally some extensions [time occupation functionals, number of maxima in an interval, process indexed by a bidimensional set] are proposed, illustrating the generality of the methods. A large inventory of papers and books on the subject ends the survey.">
Home | Current | Past volumes | About | Login | Notify | Contact | Search
 Probability Surveys > Vol. 3 (2006) open journal systems 


Level crossings and other level functionals of stationary Gaussian processes

Marie F. Kratz, ESSEC, MAP5 (Univ. Paris V) and SAMOS-MATISSE (Univ. Paris I)


Abstract
This paper presents a synthesis on the mathematical work done on level crossings of stationary Gaussian processes, with some extensions. The main results [(factorial) moments, representation into the Wiener Chaos, asymptotic results, rate of convergence, local time and number of crossings] are described, as well as the different approaches [normal comparison method, Rice method, Stein-Chen method, a general \(m\)-dependent method] used to obtain them; these methods are also very useful in the general context of Gaussian fields. Finally some extensions [time occupation functionals, number of maxima in an interval, process indexed by a bidimensional set] are proposed, illustrating the generality of the methods. A large inventory of papers and books on the subject ends the survey.

AMS 2000 subject classifications: Primary 60G15; secondary 60G10, 60G12, 60G60, 60G70, 60F05.

Keywords: (up) crossings, (non) central limit theorems, Gaussian processes/fields, Hermite polynomials, level curve, level functionals, local time, (factorial) moments, normal comparison method, number of maxima, Poisson convergence, rate of convergence, Rice metho

Creative Common LOGO

Full Text: PDF


Kratz, Marie F., Level crossings and other level functionals of stationary Gaussian processes, Probability Surveys, 3, (2006), 230-288 (electronic).

References

[1]   R. Adler, The Geometry of Random Fields, Wiley (1981). MR0611857

[2]   R. Adler and J.E. Taylor, Random fields and geometry, Springer
(to appear).

[3]   J. Albin, Extremes and crossings for differentiable stationary processes with application to Gaussian processes in IRm and Hilbert space, Stoch. Proc. Appl. 42 (1992) 119-147. MR1172511

[4]   M. Arcones, Limit theorems for non linear functionals of a
stationary Gaussian sequence of vectors, Ann. Probab. 22 (1994) 2242-2274. MR1331224

[5]   J.-M. Azaïs, Approximation des trajectoires et temps local des diffusions, Ann. I.H.P. Vol 25 (2) (1989) 175-194. MR1001025

[6]   J.-M. Azaïs, Conditions for convergence of number of crossings to the local time, Probab. Math. Stat. 11 (1990) 19-36. MR1096937

[7]   J.-M. Azaïs, C. Cierco and A. Croquette, Bounds and asymptotic expansions for the distribution of the maximum of a smooth stationary Gaussian process, Esaim: Probab. and Stat. 3 (1999) 107-129. MR1716124

[8]   J.-M. Azaïs and D. Florens-Zmirou, Approximations du temps local des processus gaussiens stationnaires par régularisation des trajectoires, Probab. Th. Rel. Fields 76 (1987) 121-132. MR0899448

[9]   J.-M. Azaïs, J.R. león and J. Ortega, Geometrical characteristics of Gaussian sea waves, J. Appl. Probab. 42 (2005) 1-19. MR2145485

[10]   J.-M. Azaïs and M. Wschebor, Almost sure oscillation of certain random processes, Bernoulli 2 (1996) 257-270. MR1416866

[11]   J.-M. Azaïs and M. Wschebor, Oscillation presque sûre de martingales continues, Séminaire de Probabilités XXXI, L.N.M.1655 (1997) 69-76. MR1478717

[12]   J.-M. Azaïs and M. Wschebor, On the regularity of the distribution of the maximum of one-parameter Gaussian processes, Probab. Th. Rel. Fields 119 (2001a) 70-98. MR1813040

[13]   J.-M. Azaïs and M. Wschebor, The distribution of the maximum of a Gaussian process: Rice method revisited, Prog. Probab. 51 (2001b)
321-348. MR1901961

[14]   J.-M. Azaïs and M. Wschebor, On the distribution of the maximum of a Gaussian field with d parameters, Ann. Appl. Probab. 15 (2005) 254-278. MR2115043

[15]   S. Banach, Sur les lignes rectifiables et les surfaces dont l’aire est finie, Fund. Math. 7 (1925) 225-237.

[16]   A. Barbour, L. Holst and S. Janson, Poisson approximation, Oxford
Science Pub. (1992). MR1163825

[17]   I. Bar-David and A. Nemirovsky, Level crossings of nondifferentiable shot processes, IEEE Trans. Inform. Theory 18 (1972) 27-34. MR0378073

[18]   A. Barbé, A measure of the mean level-crossing activity of stationary normal processes, IEEE Trans. Inform. Theory 22 (1976) 96-102. MR0402900

[19]   Y.K. Belyaev, On the number of crossings of a level by a Gaussian random process, Th. Probab. Appl. 12 (1967) 392-404.

[20]   Y.K. Belyaev, On the number of exits across the boundary of a region by a vector stochastic process, Th. Probab. Appl. 13 (1968) 320-324.

[21]   S. Berman, A Central Limit Theorem for the renormalized self-intersection local time of a stationary vector Gaussian process, Ann. Probab. 20 (1992) 61-81. MR1143412

[22]   S. Berman, Sojourn and Extremes of Stochastic Processes, Wadsworth & Brooks-Cole (1992). MR1126464

[23]   C. Berzin and J.R. León, Weak convergence of the integrated number of level crossings to the local time for Wiener processes, Theory of Probab. and its Applic. 42 (1997) 568-579. MR1618738

[24]   C. Berzin, J.R. León and J. Ortega, Level crossings and local time for regularized Gaussian processes, Probab. Math. Stat. 18 (1998) 39-81. MR1644037

[25]   J.Besson, Sur le processus ponctuel des passages par un niveau d’une fonction aléatoire à trajectoires absolument continues, Thèse d’état de l’Université Lyon I (1984).

[26]   J.-L. Besson and M. Wschebor, Sur la finitude des moments du nombre des passages par un niveau d’une fonction aléatoire, C.R.A.S. I, 297 (1983) 361-363. MR0732507

[27]   I. Blake and W. Lindsey, Level-crossing problems for random processes, IEEE Trans. Inform. Theory 19 (1973) 295-315. MR0370729

[28]   A.N. Borodin and I.A.Ibragimov, Limit theorems for functionals of
random walk, A.M.S. Providence (1995). MR1368394

[29]   J. Breuer and P. Major, Central limit theorems for non-linear functionals of Gaussian fields, J. Mult. Anal. 13 (1983) 425-441. MR0716933

[30]   K. Breitung, Crossing rates for functions of Gaussian vector processes, Information theory, Trans. 11th Prague Conf. vol.A (1990) 303-314.

[31]   E.V. Bulinskaya, On the mean number of crossings of a level by a
stationary Gaussian process, Theory Probab. Appl. 6 (1961) 435-438.

[32]   E. Cabaña, Estimation of the spectral moment by means of the extrema, Trabajos de Estadística y de investigación operativa 36 (1985) 71-80.

[33]   E. Castillo, Extreme Value Theory in Engineering, Academic Press (1988) MR0958518

[34]   D. Chambers and E. Slud, Central limit theorems for nonlinear functionals of stationary Gaussian processes, Probab. Th. Rel. Fields 80 (1989)
323-346. MR0976529

[35]   D. Chambers and E. Slud, Necessary conditions for nonlinear functionals of stationary Gaussian processes to satisfy central limit theorems, Stoch. Proc. Applic. 32 (1989) 93-107. MR1008910

[36]   H. Chen, Poisson approximation for dependent trials, Ann. Probab. 3 (1975) 534-545. MR0428387

[37]   V. Chuberkis, Crossings of fixed levels by two stationary random
processes, Automat. Remote Control 32 (1971) 1581-1587.

[38]   H. Cramér and M.R. Leadbetter, Stationary and Related Stochastic Processes, New York: Wiley (1967). MR0217860

[39]   J. Cuzick, On the moments of the number of curve crossings by a
stationary Gaussian process, Ph.D. Dissertation, Claremont Graduate School (1974).

[40]   J. Cuzick, Conditions for finite moments of the number of zero crossings for Gaussian processes, Ann. Probab. 3 (1975) 849-858.

[41]   J. Cuzick, A central limit theorem for the number of zeros of a stationary Gaussian process, Ann. Probab. 4 (1976) 547-556. MR0420809

[42]   J. Cuzick, A lower bound for the prediction error of stationary Gaussian process, Indiana Univ. Math. J. 26 (1977) 577-584. MR0438452

[43]   J. Cuzick, Local nondeterminism and the zeros of Gaussian processes, Ann. Probab. 6 (1978) 72-84. MR0488252

[44]   J. Cuzick, Correction:”Local nondeterminism and the zeros of Gaussian processes”’, Ann. Probab. 15 (1987) 1229. MR0893928

[45]   J. Cuzick and G. Lindgren, Frequency estimation from crossings of an unknown level, Biometrika 67 (1980) 65-72. MR0570506

[46]   P. Diananda, The central limit theorem for m-dependent variables, Proc. Cambridge Philos. Soc. 51 (1955) 92-95. MR0067396

[47]   P. Deheuvels, A. Karr, D. Pfeifer, R. Serfling, Poisson approximations in selected metrics by coupling and semigroup methods with applications,
J. Stat. Planning Inf. 20 (1988) 1-22. MR0964424

[48]   P. Deheuvels, D. Pfeifer and M. Puri, A new semigroup technique in
Poisson approximation, Semigroup forum 38 (1989) 189-201. MR0976202

[49]   R. Dobrushin, Gaussian and their subordinated self-similar random
generalized fields, Ann. Probab. 7 (1979) 1-28. MR0515810

[50]   R. Dobrushin and P. Major, Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrsch. verw. Geb. 50 (1979) 27-52. MR0550122

[51]   M. Ershov, A limit theorem for the number of level-crossings by a
stationary Gaussian process, Dokl. Akad. Nauk SSSR. 177 (1967) 1259-1262. MR0224155

[52]   M. Falk, J. Hüsler and R.-D. Reiss, Laws of Small Numbers: Extremes and Rare Events, Birkhäuser (1994). MR1296464

[53]   H. Federer, Geometric Measure Theory, Springer Verlag (1969). MR0257325

[54]   D. Geman, On the variance of the number of zeros of a stationary Gaussian process, Ann.Math.Stat. 43 (1972) 977-982. MR0301791

[55]   D. Geman and J. Horowitz, Occupation densities, Ann. Probab.8 (1980) 1-67. MR0556414

[56]   L. Giraitis and D. Surgailis, CLT and other Limit Theorems for
Functionals of Gaussian Processes, Z. Wahrsch. verw. Geb. 70 (1985) 191-212. MR0799146

[57]   P. Hall, On the rate of convergence of normal extremes, J.Appl.Probab.16 (1979) 433-439. MR0531778

[58]   H. Harter, A bibliography of extreme-value theory, Intern. Statist. Rev. 46 (1978) 279-306. MR0518905

[59]   C. Helstrom, The distribution of the number of crossings of a Gaussian stochastic process, IEEE Trans. Inform. Theory 3 (1957) 232-237.

[60]   W. Hoeffding and H. Robbins, The Central Limit Theorem for dependent random variables, Duke Math. J. 15 (1948) 773-780. MR0026771

[61]   L. Holst and S. Janson, Poisson approximation using the Stein-Chen method and coupling: number of exceedances of Gaussian random
variables, Ann. Probab. 18 (1990) 713-723. MR1055429

[62]   H-C Ho and T-C Sun, A central limit theorem for non-instanataneous filters of a stationary Gaussian process, J. Multivariate Anal. 22 (1987) 144-155. MR0890889

[63]   H-C Ho and T-C Sun, On central and non-central limit theorems for non-linear functions of a stationary Gaussian process, In Dependence in Probab. and Statist., Oberwolfach (1985) 3-19. MR0899983

[64]   T. Hsing, J. Hüsler and M.R. Leadbetter, On the exceedance point process for a stationary sequence, Probab. Th. Rel. Fields 78 (1988) 97-112. MR0940870

[65]   J. Hüsler, On limit distributions of first crossing points of Gaussian
sequences, Stochastic Process. Appl. 6 (1977) 65-75.

[66]   J. Hüsler, Extreme values and high boundary crossings of locally stationary Gaussian processes, Ann. Probab. 18 (1990) 1141-1158. MR0461642

[67]   J. Hüsler and M. Kratz, On the convergence of the number of exceedances of nonstationary normal sequences, Journal of Research of the NIST, vol. 99 (1994) 539-542.

[68]   J. Hüsler and M. Kratz, Rate of Poisson approximation of the number of exceedances of nonstationary normal sequences, Stoch. Proc. Applic. 55 (1995) 301-313. MR1313025

[69]   P. Imkeller, V. Perez-Abreu and J. Vives, Chaos expansions of double intersection local time of Brownian motion in Rd and renormalization, Stoch. Proc. Applic. 56 (1995) 1-34. MR1324319

[70]   V.A. Ivanov, On the average number of crossings of a level by sample functions of a stochastic process, Theory Probab. Appl. 5 (1960) 319-323. MR0132606

[71]   K. Itô, The expected number of zeros of continuous stationary Gaussian processes, J. Math. Kyoto Univ. 3 (1964) 207-216. MR0166824

[72]   J.Jacod, Rates of convergence to the local time of a diffusion, Ann. Inst. H. Poincaré, Probab. Stat. 34 (1998) 505-544. MR1632849

[73]   M. Kac, On the average number of real roots of a random algebraic
equation, Bull.Amer.Math.Soc. 49 (1943) 314-320. MR0007812

[74]   G. Kalliampur, Stochastic filtering theory, (1980) Springer. MR0583435

[75]   B. Kedem, Sufficiency and the number of level crossings by a stationary process, Biometrika 65 (1978), 207-210. MR0497519

[76]   A. Kostyukov, Curve-crossing problems for Gaussian stochastic processes and its application to neural modeling, Biol. Cybernetics 29 (1978) 187-191.

[77]   M.F. Kratz, Statistique des queues de distribution et approximation
Poissonnienne, Thèse de doctorat de l’Université Pierre et Marie Curie, Paris VI (1993).

[78]   M. Kratz, Chaos expansions and level crossings, preprint Samos 127 (non submitted, 2000).

[79]   M. Kratz, Level crosssings and other level functionals (part 1), Thèse d’habilitation à diriger les recherches, Université Panthéon Sorbonne, Paris I (2005).

[80]   M. Kratz and J. León, Hermite polynomial expansion for non-smooth
functionals of stationary Gaussian processes: crossings and extremes, Stoch. Proc. Applic. vol 66 (1997) 237-252. MR1440400

[81]   M. Kratz and J. León, Central limit theorems for the number of
maxima and some estimator of the second spectral moment of a stationary Gaussian process. Applications in hydroscience, Extremes 3:1 (2000) 57-86. MR1815174

[82]   M. Kratz and J. León, Central limit theorems for level functionals of stationary Gaussian processes and fields, J.Theoretical Probab.14 (2001) 639-672. MR1860517

[83]   M. Kratz and J. León, On the second moment of the number of crossings by a stationary Gaussian process, Ann. Probab. 34:4 (2006).

[84]   M. Kratz and H. Rootzén, On the rate of convergence for extremes of mean square differentiable stationary normal processes, J. Applied Probab.34 (1997) 908-923. MR1484024

[85]   M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes and related properties of random sequences and processes, Springer Series in Statistics, Springer, New York, 1983. MR0691492

[86]   M.R. Leadbetter and H. Rootzén, Extremal theory for stochastic processes, Ann. Probab. 16 (1988) 431-478. MR0929071

[87]   M. Ledoux and M. Talagrand, Probability on Banach spaces, Wiley, New-York (1991).

[88]   J.R. León and J. Ortega, Level crossings and local times for
regularized Gaussian processes: L2 convergence, C.R.A.S. 314, I (1992) 227-331. MR1150838

[89]   W.V. Li and Q.-M. Shao, A normal comparison inequality and its
applications, Probab. Theor. Rel. Fields 122 (2002) 494-508. MR1902188

[90]   M.A. Lifshits, Gaussian random functions, Math. and its Applic. 322, Kluwer (1995). MR1472736

[91]   G. Lindgren, Use and structure of Slepian model processes for prediction and detection in crossing and extreme value theory, In Statistical Extremes and Applications (J. Tiago de Oliveira, ed.), Reidel, Dordrecht (1984) 261-284. MR0784823

[92]   G. Lindgren and I. Rychlik, Slepian models and regression approximations in crossing and extreme value theory, Int. stat. Rev. 59 (1991) 195-225.

[93]   M.S. Longuet-Higgins, Reflection and refraction at a random surface. I,II,III, Journal of the Optical Society of America 50 (1960) 838-856. MR0113489

[94]   I. Macak, On the number of crossings of a curve by a random process, Theory Probab. math. Statist. 17 (1979) 101-110.

[95]   I. Macak, On the tangencies and intersections of a random process with a continuous curve, Theory Probab. math. Statist. 18 (1979) 103-107. MR0517662

[96]   P. Major, Multiple Wiener-Itô integrals, Lecture Notes Math. 849 (1981) Springer. MR0611334

[97]   P. Major, Limit theorems for non-linear functionals of Gaussian sequences, Probab. Theor. Rel. Fields 57 (1981b) 129-158. MR0623458

[98]   T. Malevich, Asymptotic normality of the number of crossings of level 0 by a Gaussian process, Theory Probab. Applic. 14 (1969) 287-295. MR0268952

[99]   T. Malevich, Some bounds for the probabilities of events generated by Gaussian processes and fields, and applications to problems of level
crossings, Theory Probab. Appl. 19 (1974) 142-153.

[100]   T. Malevich, On conditions for the moments of the number of zeros of Gaussian stationary processes to be finite, Theory Probab. Appl. 24 (1979) 741-753. MR0550530

[101]   M.B. Marcus, Level crossings of a stochastic process with absolutely
continuous sample paths, Ann. Probab. 5 (1977) 52-71. MR0426124

[102]   G. Maruyama, Nonlinear functionals of Gaussian stationary processes and their applications, In Maruyama and Prokhorov (eds.) Lecture Notes Math. 550 (1976) 375-378. MR0433575

[103]   G. Maruyama, Wiener functionals and probability limit theorems I: the central limit theorems, Osaka J. Math. 22 (1985) 697-732. MR0815441

[104]   R. Miroshin, On the finiteness of the number of zeros of a differentiable Gaussian stationary process, Dokl. Akad. Nauk SSSR. 200 (1971) 1321-1324.

[105]   R. Miroshin, A sufficient condition for finiteness of moments of the number of zeros of a differentiable stationary Gaussian process, Theory Probab. Applic. 18 (1973) 454-463. MR0329012

[106]   R. Miroshin, A necessary condition for finiteness of moments of the number of zeros of a differentiable stationary Gaussian process, Theory Probab. Applic. 19 (1974) 570-577.

[107]   Y. Mittal, A new mixing condition for stationary Gaussian process, Ann. Probab. 7, (1979) 724-730. MR0537217

[108]   Y. Mittal, Comparison technique for highly dependent stationary Gaussian processes, in Statistical Extremes and Applications (J. Tiago de Oliveira, ed.), Reidel, Dordrecht (1984) 181-195. MR0784821

[109]   Y. Mittal and D. Ylvisaker, Limit distributions for the maxima of stationary Gaussian processes, Stoch. Proc. Appl. 3 (1975) 1-18. MR0413243

[110]    D. Nualart, The Malliavin Calculus and Related Topics, Springer-Verlag (1995). MR1344217

[111]   D. Nualart and J. Vives, Chaos expansions and local times, Publicaciones Matemáticas 36 (1992a) 827-836. MR1210022

[112]   D. Nualart and J. Vives, Smoothness of Brownian local times and related functionals, Potential Analysis 1 (1992b) 257-263. MR1245230

[113]   D. Nualart and M. Wschebor, Intégration par parties dans l’espace de Wiener et approximation du temps local, Probab. Th. Rel. Fields 90 (1991) 83-109. MR1124830

[114]   M. Ochi, Ocean waves. The stochastic approach, Cambridge ocean
technology series 6 (1998).

[115]   G.Perera and M.Wschebor, Crossings and occupation measures for a class of semimartingales, Ann. Probab. 26 (1998) 253-266. MR1617048

[116]   J. Pickands, Upcrossings probabilities for stationary Gaussian processes, Trans. Amer. Math. Soc. 145 (1969) 51-73. MR0250367

[117]   J. Pickands, Asymptotic properties of the maximum in a stationary Gaussian process, Trans. Amer. Math. Soc. 145 (1969) 75-86. MR0250368

[118]   V.I. Piterbarg, The central limit theorem for the number of level crossings of a stationary Gaussian process, Theory Probab. Appl. 23 (1978) 178-182. MR0488255

[119]   V.I. Piterbarg, Asymptotic expansions for the probability of large
excursions of Gaussian processes, Soviet Math. Dokl. 19 (1978) 1279-1283.

[120]   Pickersgill, and V.I. Piterbarg, Estimation of the rate of convergence in a Poisson limit theorem for the excursions of stationary Gaussian processes, Theory of Probab. and Math. Stat. t.36 (1987) (in Russian).

[121]   V.I. Piterbarg, Large deviations of random processes close to Gaussian ones, Theory Prob. Appl. 27 (1982) 504-524. MR0673920

[122]   V.I. Piterbarg, Asymptotic methods in the theory of Gaussian processes and fields, Trans. Math. Monographs, 148 (1996). MR1361884

[123]   V.I. Piterbarg, Rice method for Gaussian random fields, Fundam. Prikl.Mat. 2 (1996) 187-204. MR1789005

[124]   V.I. Piterbarg, Central limit theorem for wave-functionals of Gaussian processes, Adv. Appl. Probab. 31 (1999) 158-177. MR1699666

[125]   R. Plackett, A reduction formula for normal multivariate integrals,
Biometrika 41 (1954) 351-360. MR0065047

[126]   C. Qualls, On a limit distribution of high level crossings of a stationary Gaussian process, Ann. Math. Statist. 39 (1968) 2108-2113. MR0238385

[127]   C. Qualls, On the joint distribution of crossings of high nultiple levels by a stationary Gaussian process, Ark. Mat. 8 (1969) 129-137. MR0272053

[128]   S.I. Resnick, Extreme values, Regular Variation and Point processes, Springer (1987). MR0900810

[129]   S.O. Rice, Mathematical analysis of random noise, Bell System Tech. J. 23-24 (1944,1945). MR0011918

[130]   P. Roes, On the expected number of crossings of a level in certain
stochastic processes, J. Appl. Probab. 7 (1970) 766-770. MR0283904

[131]   H. Rootzén, The rate of convergence of extremes of stationary random sequences, Adv. Appl. Probab. 15 (1983) 54-80. MR0688006

[132]   H. Rootzén, Extreme value theory for stochastic processes, Scan. Actuar. J. 1 (1995) 54-65.

[133]   M. Rosenblatt, Independence and dependence, Proc. 4th Berkeley
Sympos. Math. Statist. Probab., Berkeley Univ. Calif. Press (1961)
411-443. MR0133863

[134]   M. Rosenblatt, Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables, Z. Wahrsch. verw. 49 (1979) 125-132. MR0543988

[135]   M. Rosenblatt, Limit theorems for Fourier transforms of functionals of Gaussian sequences, Z. Wahrsch. verw. Geb. 55 (1981) 123-132. MR0608012

[136]   R. Rudzkis, Probability of large rejection of a nonstationary Gaussian process. I, Liet. Mat. Rinkinys 25. 1 (1985) 143-154. MR0795863

[137]   R. Rudzkis, Probability of large rejection of a nonstationary Gaussian process. I, Liet. Mat. Rinkinys 25. 2 (1985) 148-163. MR0814466

[138]   I. Rychlick, On some reliability applications of Rice’s formula for the
intensity of level crossings, Extremes 3:4 (2000), 331-348. MR1870462

[139]   H. Sato and M. Tanabe, Level dependence of the variance of the number of level-crossing points of a stationary Gaussian process, IEEE Trans. Inform. Theory 25 (1979) 127-129.

[140]   R. Serfling, A general Poisson approximation theorem, Ann. Probab. 3 (1975) 726-731. MR0380946

[141]   R. Serfling, Some elementary Results on Poisson approximation in a
sequence of Bernoulli trials, Siam review 20 (1978) 567-579. MR0482958

[142]   R. Serfozo, High level exceedances of regenerative and semi-stationary processes, J. Appl. Probab. 17 (1980) 423-431. MR0568952

[143]   K. Sharpe, Level crossings of a constructed process, J. Appl. Probab. 16 (1979) 206-212. MR0520951

[144]   E. Sjö, Crossings and maxima in Gaussian fields and seas, Phd thesis, Lund University (2000). MR1794448

[145]   M. Sköld, Kernel intensity estimation for marks and crossing of differentiable stochastic processes, Theory Stoch. Process. 2(18) (1996) 273-284.

[146]   D. Slepian, The one-side barrier problem for Gaussian noise, Bell Syst. Tech. J. 41 (1962) 463-501. MR0133183

[147]   E. Slud, Multiple Wiener-Itô integral expansions for level-crossing-count functionals, Prob. Th. Rel. Fields 87 (1991) 349-364. MR1084335

[148]   E. Slud, MWI expansions for functionals related to level-crossing counts, in: Chaos Expansions, Multiple Wiener-Ito Integrals and their
Applications by Christian Houdré and Victor Pérez-Abreu, Probability and Stochastics Series (1994a) pp. 125-143. MR1278041

[149]   E. Slud, MWI representation of the number of curve-crossings by a differentiable Gaussian process, with applications, Ann.Probab.22 (1994b) 1355-1380. MR1303648

[150]   R. Smith, Extreme value theory for dependent sequences via the Stein-Chen method of Poisson approximation, Stoch. Process. Appl. 30 (1988) 317-327. MR0978362

[151]   J. Tiago de Oliveira, Bibliography of Extreme Value Theory, (1987).

[152]   C. Stein, Approximate computation of expectations, IMS-Lecture Notes 7 (1986). MR0882007

[153]   M. Talagrand, The generic chaining, Springer (2005). MR2133757

[154]   M. Taqqu, Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrsch. verw. Geb. 31 (1975) 287-302. MR0400329

[155]   M. Taqqu, Law of Iterated Logarithm for Sums of Non-Linear Functions of Gaussian Variables that Exhibit a Long Range Dependence, Z. Wahrsch. verw. Geb. 40 (1977) 203-238. MR0471045

[156]   M. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. verw. Geb. 50 (1979) 53-83. MR0550123

[157]   J. Taylor and R. Adler, Euler characteristics for Gaussian fields and
manifolds, Ann. Probab. 30 (2002) 533-563. MR1964940

[158]   Y. Tong, The multivariate normal distribution, Springer, New-York (1990). MR1029032

[159]   V.S. Tsyrelson, The density of the maximum of a Gaussian process,
Theory Probab. Appl. 20 (1975) 817-856.

[160]   V. Volkonskii and Y. Rozanov, Some limit theorems for random functions II, Theory Probab. Appl. 6 (1961) 186-198. MR0137141

[161]   S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, Springer Berlin (1984). MR0742628

[162]   M. Wschebor, Régularisation des trajectoires et approximation du temps local, CRAS I-29 (1984) 209-212. MR0741097

[163]   M. Wschebor, Surfaces Aléatoires, L.N.M. 1147 (1985) Springer Verlag. MR0871689

[164]   M. Wschebor, Sur les accroissements du processus de Wiener, CRAS 315 I (1992) 1293-1296. MR1194538

[165]   N. Ylvisaker, The expected number of zeros of a stationary Gaussian process, Ann. Math. Stat. 36 (1965) 1043-1046. MR0177458

[166]   N. Ylvisaker, On a theorem of Cramér and Leadbetter, Ann. Math. Statist. 37 (1966) 682-685. MR0193686




Home | Current | Past volumes | About | Login | Notify | Contact | Search

Probability Surveys. ISSN: 1549-5787