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Prologue

Random walks in random environments have been at the center of the proba-
bilists’ interest for several decades. A specific class of such random walks goes
under the banner of the Random Conductance Model. What makes this class
special is the fact that the corresponding Markov chains are reversible. This
somewhat restrictive feature has the benefit of fruitful connections to other,
seemingly unrelated fields: the random resistor networks and gradient fields. At
the technical level, many of the problems are thus naturally embedded into the
larger area of harmonic analysis and homogenization theory.

This survey article is an expanded version of the set of lecture notes written
for a course on the Random Conductance Model that the author delivered at
the 2011 Cornell Summer School on Probability. A personal point of view pro-
moted here is that the Random Conductance Model belongs to the collection of
“paradigm” problems such as percolation, Ising model, exclusion process, etc,
that are characterized by a simple definition and yet feature interesting and non-
trivial phenomena (and, of course, pose interesting questions in mathematics).
The text below attempts to summarize the important developments in the un-
derstanding of the Random Conductance Model. While paying most attention
to recent results, much of what is discussed draws on by-now classical work.

The text retains the layout of lecture notes that have been spiced up with
comments and references to related subjects. The general structure is as follows:
The first section introduces the three rather different areas where the Random
Conductance Model naturally appears. Sections 2–5 then deal predominantly
with the first such area — namely, the various aspects of the limit behavior
of random walks in reversible random environments. Section 6 then applies the
introduced machinery to the remaining problems. A number of Problems are
mentioned throughout the text; these refer to questions that are either solved
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directly in the text or remain a subject of research interest until present day.
Easier questions are phrased as Exercises; these are of varied difficulty but should
all be generally accessible to graduate students.
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1. Overview and main questions

1.1. Random conductance model

We begin with the definition of the problem in the context of random walks in
random environments. Consider a countable set V and suppose that we are given
a collection of numbers (ωxy)x,y∈V with the following properties: ωxy ≥ 0 with

πω(x) :=
∑

y∈V

ωxy ∈ (0,∞), x ∈ V , (1.1)

and the symmetry condition

ωxy = ωyx, x, y ∈ V . (1.2)

We will predominantly take V to be the hypercubic lattice Zd naturally embed-
ded in Rd. The quantity ωxy is called the conductance of the pair (x, y) — the
use of the term will be clarified in the subsection dealing with resistor networks.

When V has an unoriented-graph structure with edge set E , we often enforce
ωxy = 0 whenever (x, y) 6∈ E ; in that case we speak of the nearest-neighbor
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model. Such a model is then called uniformly elliptic if there is α ∈ (0, 1) for
which

α < ωxy <
1

α
, (x, y) ∈ E . (1.3)

When V := Zd, we use the phrase “nearest-neighbor model” for the situation
when E is the set of pairs of vertices that are at the Euclidean distance one
from each other.

The aforementioned “randomwalk” in environment ω is technically a discrete-
time Markov chain with state-space V and transition kernel

Pω(x, y) :=
ωxy

πω(x)
, x, y ∈ V . (1.4)

In plain words, the “walk” at site x chooses its next position y proportionally
to the value of the conductance ωxy. The non-degeneracy condition (1.1) guar-
antees that this chain is well defined everywhere; when positivity of πω fails at
some vertices — as, e.g., for the simple random walk on the supercritical per-
colation cluster, cf Fig. 1.1 — one simply restricts the chain to the subset of V

where πω(x) > 0.

A key consequence of the symmetry condition (1.2) is:

Lemma 1.1. πω is a stationary and reversible measure for the Markov chain.

Proof. Invoking the above definitions we get

πω(x)Pω(x, y) = ωxy = ωyx = πω(y)Pω(y, x), (1.5)

which is the condition of reversibility (a.k.a. the detailed balance condition).
The fact that πω is stationary follows by summing the extreme ends of this
equality on x.

Note that for the nearest-neighbor model on Zd with conductances ωxy = 1
if |x− y| = 1 and ωxy = 0 otherwise, the above Markov chain reduces to the or-
dinary simple (symmetric) random walk. In this case the increments of the walk
are i.i.d. which permits derivation of many deep conclusions — e.g., Donsker’s
Invariance Principle, Law of Iterated Logarithm, etc. However, when ω is non-
constant, the increments of the chain are no longer independent; worse yet, they
are not even stationary. As we will see, this can be overcome but only at the cost
of taking ω to be a sample from a shift-invariant distribution. This reasoning
underpins the large area of random walks in random environment of which the
above chain is only a rather specific example.

Let Ω be the space of all configurations (ωxy) of the conductances. This
space is naturally endowed with a product σ-algebra F . A shift by x is the map
τx : Ω → Ω acting so that

(τxω)yz := ωy+x,z+x, x, y, z ∈ Zd. (1.6)

We will henceforth assume that P is a probability measure on (Ω,F ) which is
translation invariant in the sense that

P ◦ τ−1
x = P, x ∈ Zd. (1.7)
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Fig 1.1. Naturally included in the family of Random Conductance Models is the simple ran-
dom walk on a supercritical percolation cluster (for details on the definition and properties of
percolation, see the monograph of Grimmett [72]). Here the conductances are nearest-neighbor
only and take values either zero or one independently at random with the same probabilities
everywhere. The density of conductance-one edges exceeds the percolation threshold so there
is an infinite connected component of vertices joined by conductance-one edges; only the ver-
tices in this component are retained in the figure. At each time the random walk chooses a
neighbor of its current position at random and passes to it. The marked vertices depict those
visited by a sample path of such random walk started at the center before it exits the box at
the point on the right indicated by the arrow.

We recall that this measure is said to be ergodic if P(A) ∈ {0, 1} for any event A
with the property τ−1

x (A) = A for all x ∈ Zd. A canonical example of an
ergodic P would be the nearest-neighbor model where the values of conductances
are chosen independently at random from the same distribution. We will use E

to denote expectation with respect to P.

Let us now turn to the main questions one may wish to ask concerning the
above setup. For this let X = (Xn) denote a sample path of the above Markov
chain and let P x

ω denote the law of X subject to the initial condition

P x
ω (X0 = x) := 1. (1.8)

Let Pn
ω denote the n-th power of the transition kernel Pω, i.e.,

Pn
ω(x, y) = P x

ω (Xn = y). (1.9)

The aforementioned connection with the special case of simple symmetric ran-
dom walk leads to the following questions:
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Problem 1.2. Does the limit

lim
n→∞

Xn

n
(1.10)

exist almost surely? Under what conditions is it zero (as it is for the simple
random walk)?

Problem 1.3. Under what conditions does the path obey an invariance principle
— i.e., does its law tend to Brownian motion under diffusive scaling of space
and time? And if so, what is the rate of convergence?

Problem 1.4. Does one have a local CLT as well in the sense that

Pn
ω(x, y) ≈

c1
nd/2

e−c2|x−y|2/n (1.11)

whenever y can be “comfortably” reached by the random walk from x in n steps?

As it turns out, there are subtle but important differences in the precise
technical sense in which these asymptotic statements might be true, or at least
provably true. Indeed, there are two natural laws on the path space that are
considered in the literature: the aforementioned quenched law P x

ω (−) and the
annealed or, more accurately, averaged law EQP

x
ω (−) where Q is a specific (nat-

ural) measure on environments (similar to P). An advantage of the annealed law
is that, thanks to averaging, it allows for an easier control of the irregularities of
the environment; a drawback is that the path law under it is no longer Marko-
vian. As we will see, one of the main challenges for the Random Conductance
Model that prevail to the present day is the resolution of:

Problem 1.5. Does the annealed invariance principle imply the quenched in-
variance principle? (Here and henceforth the words annealed and quenched des-
ignate the path distribution that is considered for the scaling limit.)

We remark that, for general random walks in random environments, the an-
nealed and quenched law can be dramatically different. See Fig. 1.2.

As soon as the above “fundamental” questions have been resolved, one can
try to imitate various derivations that have over years been accomplished in
the context of the simple random walk. This leads to further rather interesting
questions, for instance:

Problem 1.6. What are the intersection exponents — i.e., the decay exponents
for the probability of non-interection up to the first-exit time from a ball of a
large radius — of several independent copies of such random walks?

Problem 1.7. Does the (chronological) loop-erasure of the walk have the same
scaling limit as the simple random walk? And how many steps of the walk are
needed to generate n steps of the loop-erased walk?

Problem 1.8. Is there a scaling limit for the trace of the walk in Fig. 1.1 as
the size of the box tends to infinity?

The last question naturally puts us into a bounded domain where, as it turns
out, many additional technical difficulties arise compared to the full lattice.
However, even the following questions are quite relevant:
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Fig 1.2. An example of a random walk in a random environment where, at each vertex, one
of the North or East arrows is chosen independently at random (with equal probabilities).
The random walk is then forced to follow the arrows. The extremity of this example is seen
from the fact that while the quenched law of the path is deterministic — and no invariance
principle can hold for fluctuations — the averaged law looks like an ordinary North&East
random walk whose fluctuations are described by the Central Limit Theorem.

Problem 1.9. Is there a scaling limit of the random walk among random con-
ductances restricted to the half-space, quarter space or a wedge (i.e., for the
problem with conductances “leading” outside these regions set to zero)?

1.2. Digression on continuous time

Although the discrete-time Markov chain is very natural, one is often interested
in a continuous-time version thereof. We will therefore introduce these objects
right away and discuss some of the technical issues that come up in this context.

There are two natural ways how to make the time flow continuously. First,
we may simply Poissonize the discrete time and consider the transition kernel

Qt
ω(x, y) :=

∑

n≥0

tn

n!
e−t Pn

ω(x, y). (1.12)

The corresponding (continuous-time) Markov process is then referred to as
constant-speed random walk among random conductances (CSRW), where the
adjective highlights the fact that the jumps happen at the same rate regardless
of the current position.

Another natural way how to make time flow continuously is by attaching a
clock to each pair (x, y) that rings after exponential waiting times with expec-
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tation 1/ωxy. This can just as well be done by prescribing the generator

(Lωf)(x) :=
∑

y

ωxy

[

f(y)− f(x)
]

, (1.13)

and demanding that the corresponding transition kernel Rt
ω is the (unique)

stochastic solution of the backward Kolmogorov equations,

d

dt
Rt
ω(x, y) =

∑

z

Lω(x, z)R
t
ω(z, y) (1.14)

with initial condition
Rt
ω(x, y) = δx(y). (1.15)

Here δx(z) equals one when x = z and zero otherwise. This leads to the variable
speed random walk among random conductances (VSRW), because the resulting
Markov chain at x makes a new jump at rate πω(x).

A specific problem with the VSRW is that the walk may escape to infinity
in finite time — a blow-up occurs. (This will not happen for the discrete-time
walk and thus also the CSRW.) A simple criterion to check is:

Exercise 1.10. Consider a configuration ω of conductances such that πω(x) ∈
(0,∞) for each x. Let (Xk) be the path of the discrete-time random walk among
conductances ω and let T0, T1, . . . be the times between the successive jumps of
the corresponding VSRW. Show that

P 0
ω

( ∞
∑

k=0

Tk < ∞
)

= P 0
ω

( ∞
∑

k=0

1

πω(Xk)
< ∞

)

(1.16)

The upshot of this Exercise is that the question of blow-ups in VSRW can
be resolved purely in the context of the discrete-time walk. We refer to, e.g.,
Liggett [95, Chapter 2] for a thorough discussion of such situations. See also
Exercise 2.8 in Sect. 2.2.

The above transition kernels are distinguished by their invariant measures
and natural function spaces they act on. Indeed, we can write Rt

ω as

Rt
ω(x, y) := 〈δy , et Lωδx〉ℓ2(Zd), (1.17)

where we think of ℓ2(Zd) as endowed by the counting measure. On the other
hand, the constant speed Markov chain admits the representation

Qt
ω(x, y) :=

1

πω(x)
〈δy, et(Pω−1)δx〉ℓ2(πω) (1.18)

where ℓ2(πω) is the space of functions f : Zd → R that are square integrable
with respect to the measure πω on Zd. In this case the generator of the Markov
chain is simply Pω − 1. The reason why one uses different underlying measure
on Zd in the two cases is seen via:
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Exercise 1.11. Show that Lω is symmetric on ℓ2(Zd) while Pω−1 is symmetric
on ℓ2(πω). In particular, the VSRW is reversible with respect to the counting
measure on Zd while the CSRW is reversible with respect to πω.

It is clear that the constant-speed chain will follow the discrete-time chain
very closely, but the variable-speed chain may deviate considerably because
its time parametrization depends on the entire path. This discrepancy will be
particularly obvious in the places where, in comparison with the neighbors,
πω(x) is either very small (VSRW gets stuck but CSRW departs easily) or very
large (VSRW departs easily but CSRW gets stuck). This may or may not be a
disadvantage depending on the context.

1.3. Harmonic analysis and resistor networks

The above (discrete-time) Markov chain is in a class of models for which we
can apply a well-known connection between reversible Markov processes and
harmonic analysis/electrostatic theory. This connection goes back to the work of
Kirchhoff in mid 1800s (Kirchhoff [87]) and it underlies many modern treatments
of Markov processes. For our purposes the best general introductory text seems
to be the monograph by Doyle and Snell [48].

We begin by introducing some relevant notions for the full lattice; the finite-
volume counterparts will be dealt with later. For a configuration of the conduc-
tances (ωxy) and a function f : Zd → R, let us define

E(f) := 1

2

∑

x,y

ωxy

[

f(y)− f(x)
]2
. (1.19)

In physics vernacular, this is the electrostatic or Dirichlet energy corresponding
to the electrostatic potential f . We then define the effective (point-to-point)
resistance R(x, y) between x and y by the formula

R(x, y)−1 := inf
{

E(f) : f ∈ ℓ2(πω), f(x) = 1, f(y) = 0
}

. (1.20)

More generally, we define an effective point-to-set resistance R(x,A) by requiring
f(y) = 0 for all y ∈ A in the formula above. Of course, both E(f) and R(x, y)
depend on ω, but we leave that notationally implicit.

A key problem now is a computation, an analysis of various scaling proper-
ties, of the effective resistance. As a warm-up, consider now the homogeneous
problem when the conductances are equal to one for nearest neighbors and zero
otherwise. Leaving aside some technical issues, any minimizer of the Dirichlet
energy in (1.20) will then obey

∑

u : |u−v|=1

[

f(u)− f(v)
]

= 0, v ∈ Zd \ {x, y}, (1.21)

with
f(y)− f(x) = 1. (1.22)
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Fig 1.3. An example of an electrostatic problem connected to the Random Conductance Model.
Here part of the percolation cluster in a slab with vertical coordinates in the interval [−N,N ]
is attached to metal plates with a given voltage difference. The edges present in the cluster
have resistivity one, the edges that are absent are total insulators. A key question is to find the
total current density — per unit area of the plates — running through the system. Another
question is the value of the electrostatic potential at the origin.

In other words, f is discrete harmonic everywhere away from x and y. It is an
interesting exercise in upper-division analysis to solve:

Exercise 1.12. Fix I ∈ R. For the homogeneous nearest-neighbor problem, use
Fourier transform to solve the equation

∑

u : |u−v|=1

[

f(u)− f(v)
]

= I
[

δx(v)− δy(v)
]

, v ∈ Zd, (1.23)

and then adjust I so that f(x)−f(y) = 1. Use this to derive an integral formula
for R(x, y).

We can thus check that while the following problem may appear hard, it is
at least not ill posed:

Exercise 1.13. For the homogeneous nearest-neighbor problem on Z2, show
without relying on Fourier transform that R(x, y) = 1/2 whenever x and y are
nearest neighbors.

Returning to the full-fledged Random Conductance Model, let us now dis-
cuss the (somewhat degenerate) example of the supercritical percolation cluster
depicted in Fig. 1.3. Assuming the potential is fixed to ϕ ≡ −1 at a conducting
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plate at “height” −N and to ϕ ≡ +1 at the corresponding plate at “height”
+N , the question is what is the electrostatic potential right at the center. As
before, this potential is a minimizer of the Dirichlet energy E(f) in (1.19) sub-
ject to the conditions that f(x) := 1 when ê2 · x ≥ N and f(x) := −1 when
ê2 · x ≤ −N . Here êi is the coordinate unit vector in the i-th lattice direction.

What makes this problem relevant for probabilists is the existence of a direct

probabilistic “solution:” Let τ
(N)
± be the first hitting time of the upper, resp.,

lower metal plate,

τ
(N)
± := inf{n ≥ 0: Xn · ê2 = ±N}. (1.24)

Then the electric potential at vertex x turns out to be given by the formula

ϕ(x) := P x
ω

(

τ
(N)
+ < τ

(N)
−

)

− P x
ω

(

τ
(N)
− < τ

(N)
+

)

, (1.25)

where P x
ω is our notation for the law on paths (Xn) of the random walk on

environment ω such that P x
ω (X0 = x) = 1. The key point is that the function

ϕ defined by (1.25) is harmonic with respect to the generator of the continuous
time Markov chain (1.13) with the boundary values given as above. Here a
function is said to be harmonic at x when Lωf(x) = 0.

Exercise 1.14. Prove the formula (1.25) by showing that such a harmonic
function is uniquely determined by its boundary data.

Notice that, as soon as the conductances are non-constant, there is no reason
why the potential ϕ at the symmetry point should be equal to zero — as it would
be, thanks to symmetry considerations, for the case of homogeneous networks.
Obviously, this is quite related to Problem 1.9.

The concept of effective resistance is closely related to the question of recur-
rence and transience of the corresponding Markov chain. Let

τ̃x := inf{n ≥ 1 : Xn = x} (1.26)

and, for A ⊂ Zd,
τA := inf{n ≥ 0: Xn ∈ A}. (1.27)

Set ΛN := [−N,N ]d∩Zd. The chain will then be recurrent if P 0
ω(τ̃0 < τΛc

N
) → 1

as N → ∞ and transient otherwise. The connection with effective resistance
shows that the tendency to recurrence decreases with increasing conductances.
Explicitly, we have:

Exercise 1.15. Show that the function

ϕ(x) :=

{

P x
ω (τ̃0 < τΛc

N
), if x 6= 0,

1, if x = 0.
(1.28)

is the unique minimizer of the Dirichlet energy for the boundary conditions
corresponding to point-to-set resistance R(x,Λc

N ) and use this to derive

R(x,Λc
N )−1 = πω(0)P

0
ω(τ̃0 ≥ τΛc

N
). (1.29)

Conclude that πω(0)P
0
ω(τ̃0 ≥ τΛc

N
) is monotone increasing in each ωxy.
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The upshot of this observation is that if ωxy ≤ ω′
xy for all pairs x, y, then

πω(0)P
0
ω(τ̃0 ≥ τΛc

N
) ≤ πω′(0)P 0

ω′(τ̃0 ≥ τΛc
N
). (1.30)

In particular, if the random walk is recurrent in the environment ω′ then so it
is in ω, and vice versa for the question of transience. For (say) nearest-neighbor
Random Conductance Models subject to the ellipticity condition (1.3), recur-
rence is thus equivalent to the recurrence of the simple random walk. However,
as soon as ellipticity is violated, interesting problems arise.

Consider for illustration the random walk on the supercritical percolation
cluster. There the conductances are bounded above but not below. This still
permits us to conclude that the random walk is is recurrent in spatial dimension
d = 2, and if it is transient in dimension d = 3, then it is transient in all
dimensions d ≥ 3. A key question to resolve is thus:

Problem 1.16. Is the random walk on almost every realization of the three-
dimensional supercritical percolation cluster transient?

The following question should ideally be solved before tackling Problem 1.16:

Problem 1.17. Let ωb ∈ {0, 1} and let C∞(ω) denote the set of vertices in Zd

that lie in an infinite self-avoiding path using only edges with ωb = 1. Let ω′ differ
from ω in a finite number of coordinates so that ω′

b ≥ ωb for all b. Assuming
that 0 ∈ C∞(ω), show that

P 0
ω(X is transient) = P 0

ω′(X is transient) (1.31)

and conclude that {X is transient on C∞} is a tail event. (In particular, for
Bernoulli ωb’s, it is also a zero-one event.)

There are a good number of variations on the problem depicted in Fig. 1.3,
but here is one that has been particularly perplexing for a number of years
— in spite of an existing solution claimed in the book of Jikov, Kozlov and
Oleinik [83]. The formulation goes back to Kesten’s monograph on percolation
(Kesten [85]). Consider the square box ΛN := [−N,N ]2 ∩ Zd and let GN be
the set of those edges whose both endpoints lie in the infinite bond-percolation
cluster and also in ΛN . Define the effective resistance

R−1
N := inf

{

∑

(x,y)∈GN

[

f(x)−f(y)
]2
: f(x) = −ê1 ·x when ê1 ·x = ±N

}

(1.32)

corresponding to the boundary conditions −N on the “left” side of the box and
+N on the “right” side of the boundary; no boundary condition is prescribed at
the remaining portions of the boundary. It is not hard to convince oneself that
R−1

N is at most of orderNd, but identifying a precise rate is far more challenging:

Problem 1.18. Prove that for almost every realization of the supercritical per-
colation cluster, the limit

lim
N→∞

R−1
N

Nd
(1.33)

exists and is independent of the realization. Characterize its value.
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Of course, once this has been settled, one may want to go beyond a LLN-type
of information and study the fluctuations. Interestingly, as observed already a
while ago by Wehr [134], the variance of R−1

N is order at most Nd — at least in
the elliptic setting — which suggests the following question:

Problem 1.19. Show that the law of N−d/2[R−1
N − ER−1

N ] tends to Gaussian
as N → ∞.

Recently, thanks to the work of Gloria and Otto [67], we even know that the
variance is actually of order Nd (at least in d ≥ 3) so the time seems ripe for
resolving this problem as well.

1.4. Gradient models

The third and somewhat unexpected context in which one naturally encounters
the Random Conductance Model is that of gradient fields. In our formulation,
a gradient field is a collection of R-valued random variables φx indexed by the
vertices x ∈ Zd. We impose the following law:

µφ̄
Λ(dφ) :=

1

Z φ̄
Λ

exp

{

−
∑

〈x,y〉∈B(Λ)

V (φx − φy)

}

∏

x∈Λ

dφx

∏

x 6∈Λ

δφ̄x
(dφx). (1.34)

Here Λ ⊂ Zd is a finite set and B(Λ) is the set of all edges with at least one
endpoint in Λ. The function V : R → R is the potential which we take to be
a continuous, even function with sufficient (e.g., quadratic) growth at infinity.
The measure depends on the values immediately outside Λ which are set to the
boundary condition φ̄ by the product of delta-masses.

Gradient models are ubiquitous in physical sciences where they arise as
effective-interface models, with φx giving the height of a surface above a ref-
erence plane, or in descriptions of the fluctuation fields in critical statistical
mechanical (spin) models. A higher-dimensional variant, particularly, φx ∈ Rd,
has the interpretation of a deformation field representing the displacements of
atoms in a crystal from their ideal positions. Further applications can be found
in field theory and material physics. The reviews by Giacomin [64], Velenik [132],
Funaki [55] and Sheffield [122] give more information and further connections.

We will actually consider the measure (1.34) to be a law on the sigma-field
of gradient events

F := σ
(

φx − φy : x, y ∈ Zd
)

, (1.35)

which is legitimate since the corresponding restriction of µφ̄
Λ does not depend

on the values of φ̄ but only on their differences. This restriction is dictated
by practical reasons — the actual “height” of an interface is usually of lesser
importance than the “shape” of its configuration — but also due to technical

restrictions in low spatial dimensions. We say that a measure µ on (RZd

,F ) is
a gradient Gibbs measure (GGM) if for every A ∈ F and any finite Λ ⊂ Zd,

µ(A) = Eµ

(

µφ̄
Λ(A)

)

, (1.36)
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where the expectation is over the boundary condition φ̄. Put another way, this
says that the conditional probability of A given the configuration φ̄ outside Λ
is exactly the measure (1.34).

Before we start discussing the relevant problems arising in this subject area, it
is interesting to note two special instances of the above formalism. The first one is
the d = 1 case. Let us assume that Λ is connected and, in fact, Λ := (−N,N)∩Z.
Then the law of of the gradients, (φx+1−φx)

N−1
x=−N is i.i.d. — with marginal law

proportional to e−V (η)dη — conditional on

N−1
∑

x=−N

(φx+1 − φx) = φ̄N − φ̄−N . (1.37)

This situation can be analyzed with the help of standard methods of large-
deviation theory (cf, e.g., Dembo and Zeitouni [45], den Hollander [79]) — in
fact, Cramér’s theorem more or less suffices — and so one can prove:

Exercise 1.20. Suppose d = 1 and a linear boundary condition, i.e., φ̄x :=
tx for some t ∈ R. Show that, for any continuous, even potential V growing
superlinearly at infinity, the law of

t 7→ N−1/2[φ⌊tN⌋ − tN ], −1 ≤ t ≤ 1, (1.38)

linearly interpolated into a continuous function, scales to a Brownian bridge
as N → ∞. Characterize the variance at t = 0.

Another instance of special interest is that when V is quadratic,

V (η) :=
κ

2
η2, (1.39)

for some stiffness κ > 0. In this case the above measure is Gaussian and so it
is amenable to explicit calculations. In fact, for (say) zero boundary condition
φ̄x = 0, one can even pass to the limit Λ ↑ Zd, provided one restricts to the
sigma-algebra of gradient events (1.35). This restriction is necessary because in
dimensions d = 1, 2, the law of φ0 is not tight in this limit. To see this in more
explicit terms, note that

Covµ0
Λ
(φx, φy) = GΛ(x, y), (1.40)

where GΛ(x, y) is the Green’s function associated with the discrete Laplacian
with Dirichlet boundary condition on ∂Λ. In probabilist’s terms, GΛ(x, y) is the
expected number of visits to y by the simple random walk started at x before
it exits from Λ. The classical formula

GΛ(x, y) =
P x
ω (τ̃y < τΛc)

1− P x
ω (τ̃x < τΛc)

, (1.41)

see, e.g., Spitzer [126] or Lawler [93], using the notation (1.26–1.27), provides
an explicit connection to the issues discussed in the previous subsection.

An analogue of Exercise 1.20 in d ≥ 2 will then be:
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Exercise 1.21. Consider the Gaussian gradient model with (1.39) with κ := 1.
For a sample of the field (φx) from the infinite-volume limit µ := limΛ↑Zd µ0

Λ,
and a smooth f : Rd → R with compact support and

∫

f(x)dx = 0 define

φǫ(f) := ǫ1+d/2

∫

φ⌊x⌋ f(ǫx) dx. (1.42)

Show that in the limit ǫ ↓ 0, the law of φǫ(f) is a Gaussian N (0, σ2
f ), where

σ2
f := (f,−∆−1f)L2(Rd) =

∫

dxdy f(x)G(x − y)f(y), (1.43)

where G := limΛ↑Zd GΛ is the infinite-volume Green’s function. (The expression
on the right is well-define because f ∈ Dom(∆−1).)

The problem is meaningful in all d ≥ 1 but only in d = 1 we have a hope
to describe the limit as a (real-valued) process. This is because the limiting
continuum object, the Gaussian Free Field (GFF), is very rough in d ≥ 2 and,
in fact, can only be interpreted in the sense of distribution theory — hence our
formulation using a linear functional φǫ in (1.42). We refer to, e.g., Sheffield [123]
for more information on the tightness issues and other aspects of the GFF.

Having dealt with these instructive examples, let us move on to general po-
tentials V . A remarkable feature of gradient models is that much of what has
already been said about the quadratic case applies to any gradient model for
which V is uniformly strictly convex — i.e., when V is C2 with V ′′ positive
and uniformly bounded away from zero and infinity. (We will expound on the
specifics in the discussion of dynamical environments in Section 4.4). Unfortu-
nately, convex potentials are not what one typically finds in models coming from
realistic systems and/or applications and so the last decade has witnessed a ma-
jor push to obtain a similar level of control also for non-convex interactions. This
has so far succeeded only partially because most of the existing techniques fail
as soon as V is non-convex anywhere, regardless how unlikely (or energetically
unfavorable) a configuration for which this happens may be.

Notwithstanding, there is a family of models with non-convex V that can
be studied by way of a connection to the Random Conductance Model. These
models are defined generally by requiring that V be given by

e−V (η) :=

∫

(0,∞)

ρ(dκ) e−
1
2
κη2

, (1.44)

where ρ is a positive measure on positive reals. Notice that when ρ is supported
at a single point, then V is quadratic, but as soon as ρ has at least two points
in its support, V can be non-convex, see Fig. 1.4. (Nontheless η 7→ V (η) will
always be increasing on positive η’s.)

An essential feature of the assumption (1.44) is that it permits us to consider

µφ̄
Λ(dφ) in (1.34) as the φ-marginal of the measure µφ̄

Λ(dφdκ) on RZd×(0,∞)B(Λ)
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V( )η

η

Fig 1.4. A plot of the potential of the form in (1.44) with ρ := pδκ1 + (1 − p)δκ2 . Once

0 < κ2 ≪ κ1 the potential is not convex.

which is given by

µφ̄
Λ(dφdκ) :=

1

Z φ̄
Λ

e−HΛ(φ,κ)
∏

x∈Λ

dφx

∏

x 6∈Λ

δφ̄x
(dφx)

∏

〈x,y〉∈B(Λ)

ρ(dκxy), (1.45)

where

HΛ(φ, κ) :=
1

2

∑

〈x,y〉∈B(Λ)

κxy(φx − φy)
2. (1.46)

To see why this holds, introduce a “private” variable κxy = κyx for each edge
〈x, y〉 ∈ B(Λ) and use the additive structure of the interaction to write the
exponential weight in (1.34) as the exponential weight in (1.45) integrated over
the product of the ρ’s. A key point is that, by regarding the κxy’s as genuine
random variables and conditioning on their values, the law of the φ’s is again
Gaussian, albeit now with a spatially inhomogeneous covariance structure.

The above constructions can be performed in infinite volume; see Biskup and
Spohn [19] for details. We will only communicate the salient conclusions: First,
one can represent every gradient measure µ for the potential V in (1.44) as the
φ-marginal of an extended measure ν on pairs of configurations (φ, κ) such that
the following holds:

(1) Conditional on the φ’s, the individual κ’s are independent with κxy having

the marginal law proportional to e−
1
2
κxy(φx−φy)

2

ρ(dκxy).
(2) Conditional on the κ’s, the φ’s are then Gaussian with covariance given

by the inverse of (the negative of) the generator

Lκf(x) :=
∑

y : |y−x|=1

κxy

[

f(y)− f(x)
]

(1.47)

of the Random Conductance Model with nearest-neighbor conductances
(κxy). (The mean can be characterized too, but we will discuss this in the
proof of Theorem 6.7.)
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(3) The κ-marginal is generally strongly correlated, but if the initial gradi-
ent measure is ergodic with respect to translations, then the extended is
ergodic as well.

For those familiar with the Random Cluster Model (see, e.g., the monograph
by Grimmett [73]) and the Fortuin-Kasteleyn represenation of the Potts model
(Fortuin and Kasteleyn [60]), the above should be quite reminiscent of the so
called Edwards-Sokal coupling of these two processes (Edwards and Sokal [53]).

The structure described above offers the possibility to study the gradient
model with non-convex interaction of the type (1.44) by conditioning on the
κ’s. The proof of scaling of the gradient field to the Gaussian Free Field at large
scales then boils down to solving:

Problem 1.22. Let (φx) be a collection of Gaussian fields with mean zero and
covariance given for any g : Zd → R with finite support and

∑

x g(x) = 0 by

Var

(

∑

x

g(x)φx

)

=
∑

x,y∈Zd

g(x)g(y)(−Lκ)
−1(x, y), (1.48)

where (−Lκ)
−1(x, y) — the inverse of the operator −Lκ — can equivalently be

described as the full-lattice Green’s function of the random walk among nearest-
neighbor random conductances κ. Show that, for any ergodic law P on the κ’s,
the random functional φǫ(f) in (1.42) tends to a Gaussian random variable
P-a.s. Characterize its variance.

As we will see this will become even more interesting once we start discussing
gradient fields with non-vanishing tilt. Naturally, once these basic convergence
issues are settled one can turn to more subtle questions such as, for instance:

Problem 1.23. For a Gaussian field with covariance (−Lκ)
−1 with zero values

on the boundary of a cubic domain ΛN := [−N,N ]d∩Zd, what is the distribution
of maxx∈ΛN φx? What is the scaling limit of the level sets? And how about the
Hausdorff dimension of various exceptional sets (e.g., the so called thick points)?

These problems have recently been studied for the homogeneous lattice GFF,
e.g., by Bolthausen, Deuschel and Zeitouni [20], Daviaud [37], Hu, Miller and
Peres [81], Schramm and Sheffield [119], and also for the uniformly convex in-
teractions (Miller [104]).

1.5. Outlook

The upshot of the above overview that all of these problems, although quite
varied in nature, can be reduced to specific properties of the Random Conduc-
tance Model. In particular, many of the solutions boil down to similar technical
questions. In the rest of these notes we will attempt to explain the main ideas
underlying the existing solutions and point out the obstacles that are known of
for the problems that remain unresolved.
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2. Limit laws for the RCM

The goal of this section is to exhibit the main techniques that will allow us
to establish the validity of the SLLN (Problem 1.2) and the Functional CLT
(Problem 1.3) for rather general Random Conductance Models. We will take a
very pedagogical approach that starts off by addressing the simplest non-trivial
cases of interest while isolating, as clearly as possible, various technical issues
that come up along the way.

2.1. Point of view of the particle

A first basic problem that arises in analyzing the Markov chain (Xn) for a
fixed realization of the environment ω is that the increments of this chain are
not stationary. A way to mend this is to invoke the first fundamental idea
encountered in the theory of random walks in random environment: the point
of view of the particle. Namely, instead of making a random walk run through a
fixed environment, we will shift the environment around so that the walk remains
always at the origin. Technically, this amounts to representing the sequence
(τXnω) as a trajectory of a Markov chain on the space of all environments.

Lemma 2.1. Suppose P is translation invariant. Then (τXnω) is a sample from
a Markov chain on the space of conductances Ω with the transition kernel

P(ω, dω′) :=
∑

x

Pω(0, x)δτxω(dω
′). (2.1)

Moreover, whenever Z := Eπω(0) < ∞, this chain has the stationary and re-
versible measure

Q(dω) :=
πω(0)

Z
P(dω). (2.2)

Proof. The fact that the kernel P generates the Markov chain (τXnω) is a trivial
calculation. For the second part, we need to invoke a bit of L2-calculus. For any
two bounded measurable functions f = f(ω) and g = g(ω), define

〈 f, g〉 := EQ

(

f(ω)g(ω)
)

. (2.3)

This is a natural inner product in L2(Q). To show reversibility (and thus sta-
tionarity) of Q, it suffices to show that 〈 f,Pg〉 = 〈Pf, g〉 for any such bounded
non-negative f, g — in fact, indicators of measurable events would be enough.
For that case we compute

〈 f,Pg〉 = 1

Z

∑

x

E

(

πω(0)f(ω)Pω(0, x)g ◦ τx(ω)
)

=
1

Z

∑

x

E

(

f(ω)ω0,x g ◦ τx(ω)
)

.

(2.4)
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where all sums are meaningful by positivity of all terms and the assumption that
∑

x ω0,x is integrable. Now apply τ−x under the expectation to write this as

〈 f,Pg〉 = 1

Z

∑

x

E

(

f(τ−xω) (τ−xω)0,x g(ω)
)

. (2.5)

A key property of the environment is its symmetry (1.2) whereby we get

(τ−xω)0,x = ω−x,0 = ω0,−x. (2.6)

Relabeling −x for x, we thus conclude

〈 f,Pg〉 = 1

Z

∑

x

E

(

f(τxω)ω0,x g(ω)
)

(2.7)

which is, rolling back the first rewrite, exactly 〈Pf, g〉.
It is not hard to check that, for any bounded f, g,

〈

f, (id− P)g
〉

= − 1

2Z

∑

x

E

(

ω0,x

(

f(τxω)− f(ω)
) (

g(τxω)− g(ω)
)

)

. (2.8)

This will help us solve:

Exercise 2.2. Show that, whenever Z := Eπω(0) < ∞, the operator L :=
P − id with domain

Dom(L ) :=

{

f ∈ L2(Q) :
∑

x

E
(

ω0,x

(

f(τxω)− f(ω)
)2)

< ∞
}

(2.9)

is self-adjoint and negative semi-definite.

Notice that the stationary measure Q and the a priori law P are mutually
absolutely continuous; we in fact even have a very explicit expression for Q. In
the studies of general (non-reversible) random walks in random environments
it is (usually) not too hard to infer the existence of a stationary measure but
a key obstacle is the absolute continuity of P with respect to Q — which we
often need to conclude that events that occur Q-a.s. also occur P-a.s. But even
in such cases it is unusual to have any sort of explicit handle of Q.

These considerations move us to the question under what conditions is the
Markov chain (τXnω) ergodic. In order to explain this a bit better, recall that
a stationary Markov chain (Zn) on a general state space with stationary mea-
sure π can always be embedded into a Markov shift as follows: Sample the initial
state Z0 from π and then use the Markov kernel to sample a whole forward tra-
jectory (Zn)n≥1. If need be, also use the reversed chain to sample the entire
backward trajectory (Zn)n<0. This defines — through the Kolmogorov Exten-
sion Theorem — a law µ on trajectories of the Markov chain. The canonical
shift — simply use Zn for the value of Zn−1 for all n — then defines a measure
preserving transformation.
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This construction and the Birkhoff-Khinchine Ergodic Theorem imply that,
for π-almost every Z0 and almost every path of the Markov chain — in short,
for µ-almost every trajectory — the limit

lim
n→∞

1

n

n−1
∑

k=0

f(Zk) (2.10)

exists and is finite for any function f such that f ∈ L1(π). However, we often
wonder whether this limit is in fact almost surely constant — and this will only
be true for a general f if the chain is ergodic. Explicitly, the above Markov chain
is ergodic if any measurable set of trajectories A satisfies µ(A) ∈ {0, 1}.

Ergodicity will in our context be guaranteed by the following condition:

Proposition 2.3. Suppose P satisfies the following conditions:

(1) P(πω(0) > 0) = 1 and Eπω(0) < ∞ — i.e., Q exists and is equivalent to P.
(2) P is irreducible in the sense that, for every x ∈ Zd,

P

(

ω : sup
n≥0

Pn
ω(0, x) > 0

)

= 1. (2.11)

(3) P is ergodic with respect to the translations of Zd — i.e., P(A) ∈ {0, 1}
for any event A such that τx(A) = A for all x.

Then the Markov chain (τXnω) with initial law Q is ergodic.

Proof. The proof of this proposition is quite standard — the result has been
used at various levels of explicit detail in the literature — although the general
setting makes the use of ergodicity of P a bit subtle. Kozlov [89] proves this by
way of a functional theoretical argument; we will follow a probabilistic argument
from Berger and Biskup [11].

Let A be the event on the space of trajectories (ωn)n∈Z that is shift invariant.
Explicitly, if θ is the Markov shift, (θω)n = ωn+1, we have θ−1(A) = A. Let µ
denote the law of the trajectories induced by the Markov chain with stationary
measure Q. Our goal is to show that µ(A) ∈ {0, 1}.

The first part of the proof is the classical approximation argument that drives
the proof of more or less every known zero-one law. Define the function

f(ω0) := Eµ(1A|ω0). (2.12)

We claim that f2 = f µ-a.s. To this end approximate A by a sequence of events
An ∈ σ(ω−n, . . . , ωn) so that

‖1A − 1An‖L1(µ) −→
n→∞

0. (2.13)

The shift invariance of A implies that the same holds for An replaced by θn(An)
and by θ−n(An).
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Invoking the general fact Eµ|Eµ(g|ω0)| ≤ Eµ|g| and applying (2.13), we thus
have

∥

∥f − Eµ(1θ±nAn
|ω0)

∥

∥

L1(µ)
−→
n→∞

0. (2.14)

Similarly, replacing 1A by 1A1A and approximating the first indicator by 1θn(An)

and the second by 1θ−n(An) we obtain

‖f − Eµ(1θ−n(An)1θn(An)|ω0)‖L1(µ) −→
n→∞

0. (2.15)

But θn(An) ∈ σ(ω0, . . . , ω2n) and θ−n(An) ∈ σ(ω−2n, . . . , ω0) have only one
coordinate in common and so, conditional on ω0, they are independent. This
means

Eµ(1θ−n(An)1θn(An)|ω0) = Eµ(1θ−n(An)|ω0)Eµ(1θn(An)|ω0). (2.16)

Passing to n → ∞, the right-hand side tends to f(ω0)
2 in L1(µ) thus proving

that f = f2 µ-a.s.

The second step is more subtle. Indeed, we claim that f(τxω) = f(ω) for
all x ∈ Zd and Q-almost every ω. To this end let us note that, by the θ-
invariance of A, if ω0 is the initial configuration of a path in A, then also ω1 is
the initial step of a path in A — namely, the shifted path! A moment’s thought
shows that this implies f(ω0) = f(ω1) µ-a.s. and thus

f(τXnω) = f(ω) (2.17)

for Q-a.e. ω and P 0
ω-a.e. trajectory (Xn) of the Markov chain. The conditions

on P guarantee that for P-a.e. ω, with positive probability (Xn) visits any given x
and so we must have f(τxω) = f(ω). The event {f = 1} is thus shift invariant
and so P(f = 1) ∈ {0, 1}, by the ergodicity of P. Then

µ(A) = EQ(f) =
f=0,1

Q(f = 1) ∈ {0, 1}, (2.18)

where we used that the ω0-marginal of µ is Q and that Q ∼ P.

2.2. Vanishing speed

The conclusion of Lemma 2.1 and Proposition 2.3 can be formalized in multiple
ways. E.g., we thus know that for any f = f(ω) with EQ|f(ω)| < ∞,

lim
n→∞

1

n

n−1
∑

k=0

f(τXk
ω) = EQf(ω) (2.19)

for P-a.e. ω and P 0
ω-a.e. path (Xn). But since the convergence comes from the

Markov shift, we are not limited to functions of only one argument. Thus,
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for instance, we also know that for any function f = f(ω0, ω1) such that
EQE

0
ω |f(ω, τX1

ω)| < ∞,

lim
n→∞

1

n

n−1
∑

k=0

f(τXk
ω, τXk+1

ω) = EQE
0
ωf(ω, τX1

ω) (2.20)

for P-a.e. ω and P 0
ω-a.e. path (Xn). This permits us to prove:

Theorem 2.4 (Vanishing speed). Suppose P obeys assumptions (1-3) in Pro-
position 2.3 and

E

(

∑

x

ω0,x|x|
)

< ∞. (2.21)

Then for P-a.e. ω and P 0
ω-a.e. trajectory (Xn),

lim
n→∞

Xn

n
= 0. (2.22)

Proof. Our key problem is to represent Xn as an additive functional of the
Markov chain (τXk

ω). This can be done easily under the assumption that the
environment is not periodic:

P
(

{ω : τxω = ω}
)

= 0, x 6= 0. (2.23)

(Clearly, if the environment is periodic in some direction, there is no way for the
walk to “notice” its motion through it when it makes a step in that direction.)
We will thus prove the theorem only in this case leaving the periodic cases —
which for ergodic P are a.s. events — to a (simple) Exercise afterwards.

We claim that, under (2.23), we get

Xn =

n−1
∑

k=0

f(τXk
ω, τXk+1ω) where f(ω, ω′) :=

∑

z

z1{ω′=τzω}. (2.24)

Indeed, for almost every environment and any path of the chain, at most one of
the indicators in the definition of f will be non-zero, and it is precisely the one
that relates ω′ to the shifted configuration ω.

We will now apply the conclusion (2.20), but to get the conclusion of the
theorem we need to show that

EQE
0
ω |f(ω, τX1

ω)| < ∞ and EQE
0
ωf(ω, τX1

ω) = 0. (2.25)

This is a matter of a straightforward calculation. First,

EQE
0
ω |f(ω, τX1

ω)| = EQE
0
ω|X1| =

1

Z
E

(

∑

x

ω0,x|x|
)

< ∞. (2.26)

Second, the absolute summability we just showed permits us to write

EQE
0
ωf(ω, τX1

ω) = EQE
0
ωX1 =

1

Z
E

(

∑

x

ω0,xx

)

=
1

2Z

∑

x

E
(

ω0,xx+ ω0,−x(−x)
)

. (2.27)
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To see that the last expectation vanishes, recall (2.6) to see that Eω0,x =
E(ω0,−x).

The minor trouble with periodic configurations disappears if we encode the
sequence of environments along with the corresponding (next) step of the walk.
This is an approach that was taken in Kozlov [89]; however, the above works
just as well. Indeed, we pose:

Exercise 2.5. Consider a product law on configurations (ω, σ) where ω is sam-
pled from P and σ = (σx)x∈Zd are i.i.d. (non-degenerate) Bernoulli. Show that
this law is ergodic with respect to the Markov shift

(ω, σ) 7→ (τX1
ω, τX1

σ) with X1 sampled from P 0
ω . (2.28)

Find a function of the (joint) environment which encodes Xn as an additive
function of two consecutive environments. Use this to conclude that (2.22) still
holds for almost every path of the Markov chain over ω, regardless of whether
the aperiodicity condition (2.23) holds or not.

Notice that, for a shift-invariant configuration ω, the condition (2.21) reduces
exactly to the first moment condition in the SLLN. So (2.21) should generally
fail once (2.21) is violated, although exact conditions under which this is true do
not seem to be available. The same should apply (under a different condition)
when only convergence in measure is in question.

The following lemma, which arose in the writing of a proof in Biskup, Louidor,
Rozinov and Vandenberg-Rodes [16], can sometimes be useful in applications:

Lemma 2.6. Let f ∈ L logL(Q) and suppose that P obeys assumptions (1-3)
in Proposition 2.3. Then for P-a.e. ω,

lim
n→∞

1

n
E0

ω

( n−1
∑

k=0

f(τXk
ω)

)

= EQf(ω). (2.29)

In particular, the limit exists P-a.s.

Proof. Without loss of generality assume that f ≥ 0 and recall that L logL(Q)
is the space of functions f such that f log |f | ∈ L1(Q). By Wiener’s Domi-
nated Ergodic Theorem (e.g., Petersen [116, Theorem 1.16]) these functions are
distinguished by the fact that

f⋆ := sup
n≥1

1

n

n−1
∑

k=0

f ◦ τXk
∈ L1(Q). (2.30)

Since 1
n

∑n−1
k=0 f ◦τXk

are dominated by f⋆ and tend to EQf(ω) P
0
ω-almost surely

for P-a.e. ω, the result follows by the Dominated Convergence Theorem.

A subtlety of the above statement is that although the averages 1
n

∑n−1
k=0 f ◦

τXk
converge almost surely and in L1(Q⊗ P 0

ω), this is not enough to guarantee
convergence in L1(P 0

ω), for P-a.e. ω. A useful step towards understanding this
is solving:
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Exercise 2.7. Construct a sequence of random variables Zn such that Zn →
Z almost surely in L1, but such that, for some σ-algebra A , the conditional
expectations E(Zn|A ) do not converge almost surely.

The above arguments are useful even for the continuous-time versions of our
random walk. Indeed, we can combine Exercise 1.10 with Theorem 2.4 to solve:

Exercise 2.8. Let P be ergodic with P(πω(0) > 0) = 1 and Eπω(0) < ∞. Then
for P-a.e. ω, the VSRW does not escape to infinity — i.e., no blow-ups occur —
in finite time.

2.3. Martingale (Functional) CLT

Once a variant of the Law of Large Numbers has been established the next natu-
ral question is that of fluctuations. In order to discuss all aspects of this question
in a reasonably pedagogical fashion, for a while we will restrict attention to a
class of toy models in which the environment has the following properties:

Assumptions 2.9 (Toy-model assumptions). For some α ∈ (0, 1) and P-almost
every ω,

(1) ωxy = 0 unless |x− y| = 1 (nearest-neighbor environment).
(2) For each coordinate vector êi and each x ∈ Zd, ωx−êi,x = ωx,x+êi .
(3) α ≤ ωx,x+êi ≤ 1

α for all i and all x.

In other words, the environments are nearest-neighbor, elliptic and the conduc-
tances are constant along the edges on each line of sites in Zd.

What makes these environments special is:

Lemma 2.10. Let Fn := σ(X0, . . . , Xn). For all environments above, {Xn,Fn}
is a martingale.

Proof. Any environment satisfying conditions (1-2) above has the property that
the local drift,

V (ω) := E0
ω(X1), (2.31)

identically vanishes. To see how this implies the claim we note that, by the
Markov property the law of Xn+1 − Xn conditional on Xn is that of X1 in
distribution P 0

τXnω. Hence,

E0
ω(Xn+1|Fn) = Xn + V (τXnω) = Xn (2.32)

and so Xn is a martingale.

We remark that more general (particularly, non-reversible) cases of such bal-
anced environments have been treated by Lawler [92], Guo and Zeitouni [77]
and, quite recently, Berger and Deuschel [13]. The main issue dealt with in
those papers is a construction, and proper control, of an ergodic, invariant law
on environments.
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Returning to the setting of Toy Models, the fact that Xn is a martingale
with bounded increments immediately implies, via Azuma’s inequality, Gaussian
bounds on its tails. Explicitly, for any unit vector ê ∈ Rd we will have

P 0
ω

(

ê ·Xn > λ
√
n
)

≤ e−λ2/2. (2.33)

However, to get the desired CLT we will have to invoke a more delicate tool
which is:

Theorem 2.11 (Martingale Functional CLT). Let {Mn,Fn} be an R-valued,
square-integrable martingale such that the following conditions hold:

(LF1) There is σ2 ∈ [0,∞) such that for all t > 0,

lim
n→∞

1

n

⌊tn⌋
∑

k=0

E
(

|Mk+1 −Mk|2
∣

∣Fk

)

−→
n→∞

tσ2 (2.34)

in probability.
(LF2) For each ǫ > 0,

lim
n→∞

1

n

n
∑

k=0

E
(

|Mk+1 −Mk|21|Mk+1−Mk|>ǫ
√
n

∣

∣Fk

)

−→
n→∞

0 (2.35)

in probability.

Then for each T > 0, the law of

t 7→ 1√
n

(

M⌊tn⌋ + (tn− ⌊tn⌋)(M⌊tn⌋+1 −M⌊tn⌋)
)

(2.36)

on C([0, T ], tends to the Wiener measure with EBt = 0 and EB2
t = tσ2.

This is what is sometimes referred to as the “Lindeberg-Feller Functional
CLT,” although this is only thanks to the formulation which is borrowed from
the context of sums of independent random variable (the Lindeberg-Feller CLT,
see, e.g., Durrett [51]). The result for martingales is, in this formulation, first
due to Brown [23]. Derriennic [46] gave a thoughtful survey of these results;
unfortunately, the full version of his paper is somewhat hard to get hold of.

A simple way how to understand the scaling of the martingale paths to Brow-
nian motion is via Skorohod embedding. Explicitly, we have:

Theorem 2.12 (Skorohod [125], Strassen [127] and Dubins [49]). Suppose that
{Mn,Fn} is a square-integrable (real-valued) martingale with E(M0) = 0. Then
there is a sequence of integrable stopping times (Ti) with T0 = 0 and Ti+1 ≥ Ti,
such that

Law of (Mn)n≥0 = Law of (BTn)n≥0. (2.37)

The history of this result is roughly as follows: Skorohod [125] noted its va-
lidity for sums of independent random variables, Strassen [127] observed that
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Fig 2.1. An example of the Random Conductance Model satisfying Assumptions 2.9(1,2),
but not the uniform ellipticity requirement in part (3). Here, for each horizontal or vertical
line of edges in Z2, we independently retain, resp., drop all edges with probability p, resp.,
1− p. The resulting random subgraph of Z2 is almost-surely connected and the conclusion of
Lemma 2.10 holds for almost every sample thereof.

it holds even for martingales and Dubins [49] finessed an important technical
detail where the construction of the stopping times can be done purely on the
path-space of the Brownian motion (i.e., without reliance on additional ran-
dom variables).

Returning to the above Martingale CLT, condition (LF1) guarantees that
Tn/n → σ2 which means that the time change between the martingale and the
Brownian motion is asymptotically linear. The condition (LF2) ensures tightness
in the space of continuous paths (i.e., the Brownian motion will not wiggle
too far from the piece-wise linear path interpolating the martingale values).
The Skorohod representation only applies to R-valued martingales, hence our
restriction to those.

We can now finish the proof of:

Proposition 2.13. For any shift-ergodic environment law P satisfying (Toy
Model) Assumptions 2.9 and for P-a.e. sample from it, the law of t 7→ X⌊tn⌋/

√
n,

linearly interpolated into a continuous path, tends to Brownian motion.

Proof. We already know that Xn is a martingale for the filtration Fn :=
σ(X0, . . . , Xn) so we need to verify the conditions of the above theorem. This
will be done again by using the point of view of the particle. By the Cramér-
Wold device it suffices to prove the convergence for the projections onto all
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vectors in Rd. Fix a vector ê ∈ Rd and consider the function

f(ω) := E0
ω

(

|ê ·X1|2
)

(2.38)

and define Mn := ê ·Xn. The Markov property guarantees

E0
ω

(

|Mk+1 −Mk|2
∣

∣Fk

)

= f(τXk
ω) (2.39)

and since f is bounded and the environment is elliptic, (LF1) follows with
σ2 := EQf(ω) by (2.19). The condition (LF2) is trivially satisfied and so we
have the result.

Notice the (somewhat counterintuitive) fact that we prove a CLT type of
result by invoking a LLN type of result. But this is not so strange when we realize
that for convergence to Brownian motion we need three things: asymptotically
independent increments, their zero mean/second-moment property and their
stationarity. The former two properties can be safely attributed to the use of
martingales, but for the last one — and, in this setting, the most difficult one
— we need to use the Ergodic Theorem and thus the machinery originally
developed for the LLN.

Exercise 2.14. Consider the example of a random environment in Fig. 2.1.
Show that, for almost every realization of this environment, the Martingale CLT
applies. Characterize the variance of the limiting Brownian motion.

2.4. Martingale approximations and other tricks

The derivations in the preceding sections, however elegant, hinge on the crucial
assumption of vanishing drift. Unfortunately, this is not what one can (and
wants) to ask from a generic Random Conductance Model. Historically, this
puts us somewhere in the first half of 1980s when people made first successful
attempts to address the CLT in this level of generality. We will follow Kipnis
and Varadhan [86] where the following strategy was taken:

(1) Represent Xn as the sum of a martingale and an additive functional of (a
single state of) the Markov chain on environments.

(2) Approximate the additive functional by a martingale with an error that
can be controlled at the level of the CLT.

The first step can be achieved trivially:

Xn =

n−1
∑

k=0

[

Xk+1 −Xk − E(Xk+1 −Xk|Fk)
]

+

n−1
∑

k=0

E(Xk+1 −Xk|Fk) (2.40)

The first sum on the right is clearly a martingale — call itMn —while E(Xk+1−
Xk|Fk) = V (τXk

ω) makes the second part an additive functional of the Markov
chain (τXk

ω). (Note that we already know that Xn as additive functional of two
consecutive environments, but for the application of the Martingale Functional
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CLT the dependence on a single environment is much easier.) Now we need
to write

n−1
∑

k=0

V (τXk
ω) = M ′

n + En, (2.41)

where maxk≤n |Ek|/
√
n tends to zero in probability. This can be done under

proper conditions but one then faces the (rather extreme) difficulty that Mn

and M ′
n are not independent.

To see how an additive functional of a Markov chain can be approximated
by a martingale, consider a Markov chain on a state space Ω with transition
kernel P. Suppose g : Ω → R is a function such that g ∈ Ran(id−P). In other
words, we require

g = h− Ph (2.42)

for some function h : Ω → R. If ω0, ω1, . . . denote the successive states of the
Markov chain, then a similar trick to the one used above yields

n−1
∑

k=0

g(ωk) = h(ω0)− h(ωn) +

n−1
∑

k=0

[

h(ωk+1)− Ph(ωk)
]

. (2.43)

Set En := h(ω0)−h(ωn) and define M ′
n to be the sum. By the Markov property,

Ph(ωk) = E
(

h(ωk+1)
∣

∣σ(ω0, . . . , ωk)
)

, (2.44)

which implies that (M ′
n) is a martingale. Of course, in order to have a useful

statement, we need that this martingale is properly integrable, which means
that the Poisson equation (2.42) must be solved with h in, say, L2. As we will
comment in a minute, this may be quite a challenge to prove (and in fact, it is
often too much to ask). However, such considerations are entirely unnecessary
for finite-state Markov chains:

Exercise 2.15. Consider a Markov chain with a finite state space Ω and a
stationary measure Q. Let g : Ω → R satisfy EQg = 0. Show that, for Q-a.e.
initial state ω0, the law of

1√
n

n−1
∑

k=0

g(ωk) (2.45)

tends to a mean-zero normal random variable. Characterize its variance.

This statement is actually one of the main results of a note due to Gordin
and Lif̌sic [69]. It will be easy to see that the result generalizes to arbitrary state
spaces under the condition that g ∈ Ran(id − P) — which we take to mean
that (2.42) has a solution h ∈ L2(Q); the error,

En := h(ω0)− h(ωn), (2.46)

is then trivially bounded in L2. However, a bounded error is a luxury that we
do not need; indeed, for the purpose of the CLT one can tolerate errors up to



322 M. Biskup

o(
√
n) — particularly, if that brings the benefit of weaker conditions on g. A

milestone achievement in this vain is the result of Kipnis and Varadhan [86] who
proved the following theorem:

Theorem 2.16. Suppose that a Markov chain on state space Ω with transi-
tion kernel P is reversible with respect to Q. Consider the law on trajectories
(ωn)n≥0 where ω0 is sampled from Q. Let g ∈ L2(Q) with EQ(g) = 0. Then the
law of the (2.45) tends to a (zero-mean, finite-variance) normal random variable
N (0, σ2

g) if and only if g ∈ Ran([id− P]−1/2) or, equivalently,

sup
ǫ>0

EQ

(

g(ω)(1 + ǫ− P)−1g(ω)
)

< ∞. (2.47)

Moreover, the supremum equals σ2
g and the convergence extends (with the limit

given by Brownian motion) even to paths (linearly) interpolating the values of

t 7→ n−1/2
∑⌊tn⌋

k=0 g(ωk).

Note that the claim concerns the averaged law; no statement about a typical
starting point ω0 is made. This is one of the deficiencies we will have to address in
detail when proving the quenched invariance principle in the next two sections.
The original method of proof in [86] was to consider the spectral measure µg

associated with the function g and the operator P on L2(Q). This measure has
the property that, for any F ∈ L1(µg),

〈 g, F (P)g〉L2(Q) =

∫

F (λ)µg(dλ). (2.48)

The Kipnis-Varadhan condition (2.47) can then be written as

σ2
g =

∫

1

1− λ
µg(dλ) < ∞. (2.49)

Notice that the spectrum of P, and thus the support of µg, is contained in
[−1, 1].

Exercise 2.17. Show that if (ωn) is a stationary Markov chain with ω0 dis-
tributed according to Q, and g ∈ L2(Q), then the variance of (2.45) tends to the
quantity in (2.49).

The spectral measure is a very interesting object in its own right due to
the connection with the area of random Schrödinger operators. What is quite
puzzling is that we do not have any substantive information to report on:

Problem 2.18. Describe the connection between the spectral properties of the
generator Lω of the random walk among conductances ω — many of which, as
is well known, are same for a.e. ω — and the generator L := P − id of the
Markov chain on environments.

Let us make some remarks on how the history of the above ideas seems
to have evolved. First, the idea to decompose additive functionals (of general
stationary ergodic processes) into a martingale and an error is presumably due
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to Gordin [68] who also had the insight to characterize the objects in terms of
their functional-analytic (rather than mixing) properties. Gordin and Lif̌sic [69]
then applied this idea in the specific context of finite-state Markov chains.

The understanding that martingale approximations can be the ultimate pas-
sage to limit laws for random walks in random environment seems to have
grown out of the work of Papanicolaou and Varadhan [112]; the predecessors
of this work were mostly focused on periodic environments. An alternative ap-
proach based on resolvent methods was devised by Künnermann [91]. The above
(Kipnis-Varadhan) Theorem 2.16 more or less closed the matter for the annealed
law in reversible cases. Two natural ways to generalize Theorem 2.16 are as fol-
lows: One is to go beyond the annealed law and the other is to extend beyond
reversible Markov chains. Both of these directions are far from settled and both
constitute a subject of intense research.

We will expound on how to go from annealed to quenched laws in the rest
of these notes. Concerning departures from reversible situations, two lines of
thought are generally being followed: One approach, drawing on the functional-
analytic ideas, goes by imposing (and checking) various sector conditions (e.g.,
Olla [110], Sethuraman, Varadhan and Yau [121], Horváth, Tóth and Vető [80]).
The role of these conditions is to control the antisymmetric (“non-reversible”)
part of the generator by the symmetric one. Another approach goes by imposing
decay-rate conditions on time-correlations (e.g., Maxwell and Woodroofe [103],
Derriennic and Lin [47], Peligrad and Utev [113], Klicnarová and Volný [88],
Volný [133], etc.). However, unlike the reversible situations, it does not seem
likely that a single condition will eventually cover all cases of interest.

3. Harmonic embedding and the corrector

Although the subject of martingale approximations is very attractive and use-
ful, in the sequel we will adopt a different approach that emphasizes the geo-
metrical component of the problem over its analytical component. To motivate
this approach, consider the explicit example of the simple random walk on the
two-dimensional supercritical percolation cluster. When the local drift V (ω) is
non-zero, then this is because there is an odd number of neighbors of the origin
and the origin thus no longer lies in the barycenter of its neighbors. The mar-
tingale defect can therefore be thought to arise from the use of the geometric
embedding of the graph, before the edges got removed.

This suggests an idea that one might instead try to look for a different,
harmonic embedding for which V would trivially vanish. A moment’s thought
shows that such an embedding is easy to find in any finite box using a com-
puter — just freeze the positions on the boundary and then ask the computer
to sequentially pass through all vertices and always put them at the center
of mass of their (graph-theoretic) neighbors. It turns out that this procedure
rapidly converges and leads to a picture as in Fig. 3.1. How such an embedding
is generated without recourse to finite volume is a slightly more complicated,
although not unsolvable problem. The main new ingredient will be the reliance
on homogenization theory.
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Fig 3.1. Left: A sample of a percolation cluster at 50 × 50 square with bond probability
p = 0.65. Only vertices connected to the boundary are retained. Right: The corresponding
harmonic deformation obtained by relaxing the positions (except those on the boundary) to
make each vertex lie in the “center of mass” of its (graph-theoretic) neighbors. Note that all
dangling ends — parts of the cluster attached only by one edge — collapse to a point while
the components attached by exactly two edges line up along a linear segment.

Here and henceforth we will make repeated use of this notion:

Definition 3.1. We will henceforth say that P obeys the “usual conditions” if
it satisfies the conditions (1-3) in Proposition 2.3.

These are exactly the conditions that guarantee the existence and ergodicity
of the Markov chain on the space of environments.

3.1. Minimizing Dirichlet energy

We begin with some motivational observations for general reversible Markov
chains that will explain in more detail how Fig. 3.1 was generated. Suppose a
countable set V is given along with the collection of (non-negative) conductances
(ωxy)x,y∈V subject to restrictions (1.1–1.2). Suppose in addition the irreducibil-
ity condition: for each x, y ∈ V , there is an n ≥ 0 with Pn

ω(x, y) > 0. For a finite
set A ⊂ V we then define

EA(f) :=
1

2

∑

x,y∈V

{x,y}∩A 6=∅

ωxy

[

f(y)− f(x)
]2

(3.1)

to be the Dirichlet energy in A for the potential f . The following is well known:

Lemma 3.2 (Dirichlet principle). Let A ⊂ V be a finite set with V \ A 6= ∅
and let g : V → R be a bounded function. Then the infimum

inf
{

EA(f) : fV rA = gV rA

}

(3.2)
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is achieved by the unique solution to the Dirichlet problem
{

Lωf(x) = 0, if x ∈ A,

f(x) = g(x), if x ∈ V \A. (3.3)

Proof. Pick x ∈ V and any function f . Let fx be defined by

fx(z) :=

{

f(z), if z 6= x,

Pωf(x), if z = x.
(3.4)

We claim that whenever x ∈ A, the “move” f 7→ fx demonstrably lowers the
Dirichlet energy, EA(f) ≥ EA(fx). This is seen from the identity

∑

y

ωxy

[

f(y)− f(x)
]2

=
∑

y

ωxy

[

f(y)− Pωf(x)
]2

+ πω(x)
[

f(x)− Pωf(x)
]2
, (3.5)

which is proved by optimizing the left-hand side over possible f(x) — this shows
that the minimum is achieved at Pωf(x) — and using that, for h(x) := Ax2 +
Bx+C with A > 0, if xmin is the minimizer then h(x) = h(xmin)+A(x−xmin)

2.
The explicit control of EA(f) − EA(fx) shows that, applying the averaging

f(x) 7→ Pωf(x) keeps lowering the Dirichlet energy as long as f(x) 6= Pω(f).
Furthermore,

inf
z∈V

f(z) ≤ inf
z∈V

fx(z) ≤ sup
z∈V

fx(z) ≤ sup
z∈V

f(z), (3.6)

and so any minimizing sequence of EA(f) in (3.3) is bounded. Reducing to
subsequences if needed, we extract a limit which then obeys f = Pωf on A and
thus solves the Dirichlet problem. To see that the solution is unique, note that
f = Pωf on A implies that f cannot have (strict) local extrema inside A. In
particular, we have the maximum principle:

inf
z∈V rA

g(z) ≤ min
z∈A

f(z) ≤ max
z∈A

f(z) ≤ sup
z∈V rA

g(z). (3.7)

Linearity guarantees that the difference between two solutions to (3.3) solves
(3.3) with g := 0. The maximum principle ensures that the difference must be
zero.

The above proof suggests that we could perhaps use the Dirichlet energy as
a kind of measure of distance from a harmonic function. We will explore this
very soon in a more general context. However, the argument also highlights a
difficulty associated with attempts to “harmonize” the linear function f(x) = x
in infinite volume. Indeed, the full-lattice Dirichlet energy of such an f is infinity
and so the procedure does not make sense.

This problem is not unknown from other situations and it naturally leads us
to a guiding principle of homogenization theory: Instead of trying to find the
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Fig 3.2. A graphical solution of the electrostatic problem depicted in Fig. 1.3 based on a
harmonic deformation of the underlying graph. The electrostatic potential changes linearly in
the height (more precisely, the y-coordinate) of the point. In particular, the potential at the
vertex marked by the star — originally, the origin of coordinates — is proportional to the
ratio between its distance to the top and the bottom plates.

deformation of the linear function f(x) = x that is harmonic with respect to
Lω at all locations for one given ω, we will solve the problem at one specific
location — namely the origin — but simultaneously for all ω. Technically, this
amounts to replacing the space ℓ2(πω) associated with the Markov chain (Xn)
by the space L2(Q) associated with the chain (τXk

ω). The advantage of working
on L2(Q) is that, unlike πω, the measure Q is finite.

3.2. Weyl decomposition and the corrector

To motivate the forthcoming definitions, recall that the process of substituting
Pωf(x) for f(x) applied to the function f(x) := x would replace the value x
by x+E0

τxω(X1). From the point of view of the particle it makes sense to shift
this so that the origin of coordinates will not be moved under this action and
so we may in fact want to replace x by x+E0

τxω(X1)−E0
ω(X1). The difference

E0
τxω(X1)− E0

ω(X1) is in the form of a gradient,

∇xϕ(ω) := ϕ(τxω)− ϕ(ω). (3.8)

We are thus led to minimizing the functional

ϕ 7→ E

(

∑

x

ω0,x

∣

∣x+∇xϕ(ω)
∣

∣

2
)

(3.9)
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over all, say, local functions ϕ = ϕ(ω). Here we recall that ϕ = ϕ(ω) is said to
be local if it is a bounded, continuous function of a finite number of ω0,x’s. To
see how homogenization translates finite-volume quantities to functionals over
space of environments, it is instructive to solve:

Exercise 3.3. Consider the Dirichlet energy EΛN (f) from (3.1) for the set
ΛN := [−N,N ]d ∩ Zd. Fix a local function ϕ = ϕ(ω) and set f to x + ∇ϕ
defined by (x + ∇ϕ)(z) := z + ϕ ◦ τz(ω) for z ∈ Zd. Assuming ω is a sample
from an ergodic measure P, carefully check that

lim
N→∞

1

|ΛN |EΛN (x+∇ϕ) = E

(

∑

x

ω0,x

∣

∣x+∇xϕ(ω)
∣

∣

2
)

. (3.10)

For technical reasons it will be advantageous to interpret (3.9) as a quadratic
form on vector fields. Let N denote the set of admissible jumps of the Markov
chain,

N :=
{

x ∈ Zd : P(ω0,x > 0) > 0
}

∪ {0} (3.11)

By a vector field we will then mean a (measurable) map u : Ω × N → Rd, i.e.,
a vector valued function u = u(ω, x) indexed by environments and points in N .
We will always set

u(ω, 0) := 0 (3.12)

by definition.

An example of a vector field is a potential field ∇ϕ where ∇ϕ(ω, x) :=
∇xϕ(ω). Any potential field is curl-free in the sense that it obeys the cycle
conditions. These conditions state that for any sequence x0, x1, . . . , xn := x0 of
vertices in Zd such that xi+1 − xi ∈ N for all i we have

n−1
∑

i=0

u(τxiω, xi+1 − xi) = 0. (3.13)

In light of our convention (3.12), whenever N generates all of Zd (as an additive
group), this turns out to be equivalent to

u(ω, x+ z)− u(ω, x) = u(τxω, z), whenever x, z, x+ z ∈ N , (3.14)

The vector fields that obey this property (for all ω) will be called shift covariant
(sometimes they are called stationary). Note that from (3.14) we automatically
have u(ω, x) = −u(τxω,−x).

As already alluded to, all potential fields are shift covariant. Another example
of a shift-covariant field is the position field, x(ω, z) := z. As we shall see later,
the position field and the potential fields generate the vector space of all shift-
covariant fields. The reason for singling out shift-covariant fields is that they
correspond to gradients of lattice functions. The following exercise details this
connection:
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Exercise 3.4. Assume the irreducibility condition P(supn≥1 P
n
ω(0, x) > 0) = 1,

for all x ∈ Zd. Show that for any shift covariant u there is a (P-a.s.) unique
function U = U(ω, x) with x ∈ Zd such that

U(ω, 0) = 0 (3.15)

and
U(ω, x+ z)− U(ω, x) = u(τxω, z), x ∈ Zd, z ∈ N . (3.16)

To indicate that the vector field u(ω, x) and the function U(ω, x) are related
as in (3.15–3.16), we will sometimes write u = gradU or say that U is an
extension of u to Zd.

The expression

〈v, w〉 := E

(

∑

x∈N
ω0,x v(ω, x) · w(ω, x)

)

(3.17)

defines a natural inner product on the set of vector fields; the dot in v(ω, x) ·
w(ω, x) stands for the usual (Euclidean) dot product in Rd. This inner product
defines a natural L2-norm; a minor technical problem — which has often been
overlooked in the literature — is that 〈u, u〉 = 0 does not imply that u = 0,
only that ω0,xu(ω, x) = 0 for all x ∈ N . A standard approach would be to
factor the space of vector fields by the equivalence relation u ∼ u′ whenever
〈u − u′, u − u′〉 = 0. However, this is unnecessary once we restrict attention to
shift-covariant fields (and impose a proper non-degeneracy condition). Indeed,
define the set

L2
cov :=

{

u : shift covariant, 〈u, u〉 < ∞
}

(3.18)

and set ‖u‖L2
cov

:= 〈u, u〉1/2. It is then not too hard to solve:

Exercise 3.5. Assume the irreducibility condition P(supn≥1 P
n
ω(0, x) > 0) = 1,

x ∈ Zd. If ‖u‖L2
cov

= 0 then u(ω, x) = 0 for all x ∈ N and P-a.e. ω.

Once the L2-structure is in place, we note that potential fields define a natural
closed subspace

L2
∇ := {∇ϕ : ϕ local}L2

cov (3.19)

of L2
cov. With this space comes the orthogonal decomposition

L2
cov = L2

∇ ⊕ (L2
∇)⊥. (3.20)

It turns out that the vector fields from (L2
∇)

⊥ can be quite well characterized.
To see that explicitly, define the divergence div(ωu) by the formula:

div(ωu) :=
∑

x

ω0,x

[

u(ω, x)− u(τxω,−x)] (3.21)

where the bracket simplifies to 2u(ω, x) once u is shift covariant. Thinking of
u(ω, x) as the flux from 0 to x, the first term on the right (including ω0,x)
corresponds to the total flux out of the origin and the second one to the flux
into the origin.
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Lemma 3.6. For u ∈ L2
cov, we have u ∈ (L2

∇)
⊥ if and only if div(ωu) = 0 for P-

a.e. ω. In particular, if U is a function such that u = gradU , then Lω U(ω, x) =
0 at all x and P-a.e. ω.

Proof. Pick a local function ϕ and note that

〈u,∇ϕ〉 =
∑

x

E

(

ω0,x u(ω, x) ·
[

ϕ ◦ τx(ω)− ϕ(ω)
]

)

=
∑

x

E

(

ϕ(ω)
[

(τ−xω)0,x u(τ−xω, x)− ω0,x u(ω, x)
]

)

= −E
(

ϕ(ω)div(ωu)
)

,

(3.22)

where we used u ∈ L2
cov to split the second expectation into two terms and then

relabeled x for −x. It follows that if 〈u,∇ϕ〉 = 0 for all local functions, then
div(ωu) = 0 P-a.s. and vice versa.

For u = gradU , a simple calculation shows div(ωu) = 2Lω U . With the help
of shift covariance the condition div(ωu) = 0 then forces Lω U(ω, ·) = 0.

Lemma 3.6 shows that the fields in (L2
∇)

⊥ are, after multiplication by ω,
necessarily divergence-free — and are thus sometimes referred to as solenoidal
fields. The orthogonal decomposition (3.20) is thus an analogue of the Weyl
decomposition from differential geometry. For readers familiar with basic elec-
trostatics, the function U — associated to a shift-covariant field u — can be
thought of as an electrostatic potential while ωu plays the role of an electric
current. The fact that potential difference and current are related by way of a
multiplication by ω is a demonstration of Ohm’s law of electrostatics. See Doyle
and Snell [48] and/or Sect. 6.

A natural next question to ask now is whether there are any solenoidal fields
at all. For nearest-neighbor, constant conductances, a perfect candidate for a
solenoidal field is the position field which simply assigns x(ω, x) := x. (Indeed,
this function is discrete harmonic with respect to the homogeneous Laplacian
on Zd and so it obeys the conclusion of previous lemma.) Of course, once the
conductances are not constant, div(ωx) — which equals twice the local drift
V (ω) — is generally non-zero, but one can still hope that x has a non-trivial
projection into the subspace (L2

∇)⊥. This is all expressed in:

Proposition 3.7. Suppose P obeys the “usual conditions” and, in addition,
assume that

E

(

∑

x

ω0,x|x|2
)

< ∞. (3.23)

Then there is a function Ψ = Ψ(ω, x) defined for all x ∈ Zd with the properties:

(1) Harmonicity: LωΨ(ω, x) = 0 for all x ∈ Zd and P-a.e. ω.
(2) Shift covariance: Ψ(ω, 0) = 0 and

Ψ(ω, x+ z)−Ψ(ω, x) = Ψ(τxω, z), x, z ∈ Zd. (3.24)



330 M. Biskup

(3) Square integrability: EQE
0
ω|Ψ(ω,X1)|2 < ∞.

In addition, for any minimizing sequence ϕn of the function (3.9), we have
∇ϕn → χ(ω, x) in L2

cov where χ is the corrector that is given by

χ(ω, x) := Ψ(ω, x)− x. (3.25)

Furthermore, Ψ = Ψ(ω, x) with x restricted to N is the orthogonal projection

Ψ(ω, ·) := proj(L2
∇
)⊥x(ω, ·). (3.26)

The infimum of (3.9) over all ∇ϕ ∈ L2
∇ is exactly ‖Ψ‖2L2

cov
.

Proof. The proof could be simply started by defining Ψ via (3.26) and then
checking the stated properties based on facts from the theory of abstract Hilbert
spaces. However, it will be more instructive to prove some of the those claims
directly in the present setting.

First note that the object in (3.9) can be interpreted as

E

(

∑

x

ω0,x

∣

∣x+∇xϕ(ω)
∣

∣

2
)

= ‖x+∇ϕ‖2L2
cov

. (3.27)

The condition (3.23) then guarantees that (3.9) takes a finite value for all local
functions. Since it is also positive, we can pick a sequence ϕn for which it tends
to its infimum. The parallelogram law then yields

1

2
‖∇ϕn −∇ϕm‖2L2

cov
= ‖x+∇ϕn‖2L2

cov
+ ‖x+∇ϕm‖2L2

cov

− 2
∥

∥

∥
x+∇ϕn + ϕm

2

∥

∥

∥

2

L2
cov

. (3.28)

The first two terms on the right both tend to the infimum while the last term is
bounded by twice the infimum. It follows that ∇ϕn is Cauchy in L2

cov and so it
converges to a vector field that we denote by χ. This is the corrector in (3.25).

Since χ is a limit of gradients, it is shift-covariant and so it extends to a
unique function on Zd. Now we define Ψ := x+ χ and note that ‖Ψ‖2L2

cov
is the

infimum of (3.9). This implies that for all local functions ϕ and all ǫ,

‖Ψ+ ǫ∇ϕ‖2L2
cov

≥ ‖Ψ‖2L2
cov

(3.29)

Expanding the left-hand side and taking ǫ → 0 yields 〈Ψ,∇ϕ〉 = 0 for all local
functions, i.e., Ψ ∈ (L2

∇)
⊥. By Lemma 3.6(1), Ψ is Lω-harmonic.

Obviously, the conditions (1-3) in the above proposition can be satisfied by
Ψ := 0; it is thanks to (3.26) that this can generally be excluded. (However, we
could still have that Ψ is identically zero; see Exercise 4.3.) A question might also
arise whether the function Ψ is uniquely determined by the above properties.
Biskup and Spohn [19] showed by fairly soft arguments that this is indeed the
case. In fact, one even has a stronger statement:

L2
cov = L2

∇ ⊕
{

AΨ: A ∈ GL(R, d)
}

, (3.30)
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with AΨ(ω, x) denoting the vector whose i-th Cartesian coordinate is given
by

∑

j aij êj · Ψ(ω, x) where A = (aij). The position function and the poten-

tial fields thus generate all shift-covariant square-integrable (Rd-valued) vector
fields. (Notwithstanding, see Problem 4.18 for a very non-trivial generalization
of this question.) Quastel [117] has derived a similar result to (3.30) albeit with
the use of Poincaré inequality and spectral-gap estimates.

It should be emphasized at this point that the above constructions have
been quite standard — albeit perhaps in different context and using different
notations — in various contributions dealing with homogenization theory. An
application of these techniques to random walk in random environment was done
somewhat independently in the Western school by Varadhan, Papanicolaou and
coauthors and in the Russian school by Kozlov.

In particular, Kozlov’s well-known paper [89] contains an extended version of
the Weyl decomposition of vector fields — which he calls forms — into the sum
of a gradient field, a harmonic field and a constant field which applies even in
non-reversible situations. Apart from strong ellipticity, the main requirements
for this decomposition in [89] are:

(1) There is an measure Q which is invariant for the Markov chain on envi-
ronments and absolutely continuous with respect to P.

(2) The reciprocal value of the Radon-Nikodym derivative dQ
dP is in L1(P).

While the absolute continuity of an invariant measure is usually somewhat chal-
lenging, it is the second condition that is invariably nearly impossible to check
directly in any realistic (non-reversible) situation. We note that although Ko-
zlov’s paper is known to contain inconsistencies, it puts forward a number of
good ideas and is thus a very recommended reading for anyone with interest in
this subject.

The construction of the harmonic deformation can be performed rather seam-
lessly even in the case when πω(x) is zero at some vertices. What we need to
assume is that there is a P-a.s. unique infinite component C∞ of vertices with
πω(x) > 0 such that the conditional measure

P0(−) = P(−|0 ∈ C∞), (3.31)

with expectation denoted by E0, satisfies the following variant of the “usual
conditions”:

(1’) P0(πω(0) > 0) = 1 (which holds trivially) and E0πω(0) < ∞.
(2’) P0 is irreducible in the sense that, for every x ∈ Zd with P0(x ∈ C∞) > 0,

P0

(

ω : sup
n≥0

Pn
ω(0, x) > 0

∣

∣x ∈ C∞
)

= 1. (3.32)

(Condition (3) for measure P is not needed for now, the translation invariance
of P suffices.)
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Exercise 3.8. Suppose that C∞ and P0 are well defined and assume condi-
tions (1’) and (2’) above. Suppose also (3.23). If ϕn is any minimizing sequence
of the functional

ϕ 7→ E0

(

∑

x

ω0,x

∣

∣x+∇xϕ(ω)
∣

∣

2
)

, (3.33)

show that ∇ϕn(ω, ·) still tends to some χ(ω, ·) in L2
cov. Use this to define Ψ =

Ψ(ω, x) with x ∈ C∞ which is harmonic with respect to Lω.

The function Ψ constructed in this Exercise is the harmonic embedding of C∞
that we discussed at the beginning of this section. A construction along the
above lines can be found in the paper of Mathieu and Piatnitski [101] for the
problem of supercritical percolation cluster and in Biskup and Prescott [18] at
the current level of generality. Berger and Biskup [11] give a construction which
is based on the spectral representation method of Kipnis and Varadhan (see end
of Sect. 2.4). Another way to define the corrector might be a result of:

Exercise 3.9. Show that the limit in

lim
n→∞

[

Ex
ω(Xn)− E0

ω(Xn)
]

(3.34)

exists and equals Ψ(ω, x) for P-a.e. ω.

It would be of much interest to find a solution to this problem without a
recourse to the functional-analytic methods discussed above.

3.3. Quenched Invariance Principle on deformed graph

Let us now turn attention back to the problem of a random walk among random
conductances. A simple consequence of the above constructions is:

Corollary 3.10. Suppose P satisfies the “usual conditions” and, in addition,
(3.23) holds. Define Mn := Ψ(ω,Xn). Then for P-a.e. ω and each T > 0, the
law of

t 7→ 1√
n

(

M⌊tn⌋ + (tn− ⌊tn⌋)(M⌊tn⌋+1 −M⌊tn⌋)
)

(3.35)

induced by P 0
ω on the space C([0, T ], tends to the Brownian motion Bt with

EBt = 0 and the covariance structure determined by

1

t
E
[

(λ ·Bt)
2
]

= EQE
0
ω

[

[λ ·Ψ(ω,X1))
2
]

, λ ∈ Rd. (3.36)

Proof. By the Cramér-Wold device it suffices to prove the convergence in law
for the projection of the process onto any vector. We will denote this projection
(with some abuse of notation) also by Mn := λ · Ψ(ω,Xn). The filtration is as
before: Fn = σ(X0, . . . , Xn).
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First, the Lω-harmonicity of Ψ guarantees that Mn is a martingale so we just
need to verify the conditions (LF1-LF2) of the Martingale Functional CLT. We
will take care of both of these by considering the function

fK(ω) := E0
ω

(

|M1|21{|M1|≥K}
)

. (3.37)

Indeed, by property (3) in Proposition 3.7, fK ∈ L2(Q) for all K ≥ 0. Next, the
shift-covariance of Ψ implies Mk+1 −Mk = λ ·Ψ(τXk

ω,Xk+1 −Xk) and so, by
the Markov property,

E0
ω

(

|Mk+1 −Mk|21|Mk+1−Mk|≥K

∣

∣Fk

)

= fK(τXk
ω). (3.38)

It follows that the left-hand side of (LF1) equals

1

n

n−1
∑

k=0

fK(τXk
ω) (3.39)

for K := 0, while the left-hand side of the expression in (LF2) is bounded by
this term from above as soon as n is so large that ǫ

√
n > K.

Ergodicity of P with respect to translations ensures via (2.19) that the ex-
pression (3.39) tends to EQfK(ω) as n → ∞. This verifies (LF1) with σ2 given
by the right-hand side of (3.36), and it also proves (LF2) because, thanks to the
Dominated Convergence Theorem, we have

lim
K→∞

EQfK(ω) = 0. (3.40)

The result now follows by applying Theorem 2.11.

The above argument can be pushed through even in the case when the walk is
restricted to an infinite connected component C∞, as described above. One just
needs to carefully check that the current proof of Proposition 2.3 still applies
(details are spelled out in Berger and Biskup [11]). However, later arguments
might be seriously hampered by the fact that P0 is no longer shift invariant.
This can be circumvented by the introduction of an induced shift. Namely, for
each i = 1, . . . , d, let

θiω := τni(ω)êiω (3.41)

where
ni(ω) := inf

{

n ≥ 1: nêi ∈ C∞(ω)
}

. (3.42)

The collection of maps (θ1, . . . , θd) defines shifts which preserve P0 and, in fact,
make P0 ergodic. To see why these are well defined and the last property is true,
consider the following exercise from abstract ergodic theory:

Exercise 3.11. Let (X ,F , µ) be a probability space and let A ∈ F be such
that µ(A) > 0. Let τ : X → X be a µ-preserving bijection and suppose that µ is
ergodic with respect to τ . Let nA(x) := inf{n ≥ 1: τn(x) ∈ A} for each x ∈ X .
Do the following:

(1) Show that nA < ∞ µ-a.s.
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This permits us to define θ(x) := τnA(x)(x). Next:

(2) Show that θ(A) = A µ-a.s. and that θ preserves µA(−) := µ(−|A).
(3) Prove that µA is ergodic with respect to θ.

We will close this section with an exercise that illustrates the above abstract
setting in one situation where explicit calculations are possible.

Exercise 3.12. Suppose d = 1 and only nearest-neighbor conductances. Assume
that P is ergodic with respect to the canonical shift on Z and suppose that

E(ω0,1) < ∞ and C−1 := E

( 1

ω0,1

)

< ∞. (3.43)

Verify that

Ψ(ω, x) =























C

x−1
∑

i=0

1

ωi,i+1
, if x > 0,

−C

−1
∑

i=x

1

ωi,i+1
, if x < 0,

(3.44)

defines a function satisfying properties (1-3) in Proposition 3.7. Conclude that
the random walk (Ψ(ω,Xn))n≥0 satisfies the (quenched) invariance principle.

We remark that the one-dimensional Random Conductance Model have quite
intensely been studied, e.g., by Comets and Popov [33], Gallesco and Popov [62],
Gallesco, Gantert, Popov and Vachovskaia [61], etc. A related problem is that of
the random walk on random trees (with or without random conductances); see
e.g., Lyons, Pemantle and Peres [98], Peres and Zeitouni [114], Gantert, Müller,
Popov and Vachovskaia [63].

4. Taming the deformation

In this section our main goal is to finish the discussion of the essential steps
of the proof of the quenched invariance principle. We will do this while leaving
the most technically involved part, heat-kernel estimates, to the next section.
Most of the material discussed here is quite standard; a possible exception is
Theorem 4.7 which has not appeared in this generality before.

4.1. Remaining issues

Let us quickly review what we have accomplished so far. First, we used the
examples of the balanced environments to isolate the martingale property as
the key vehicle that will get us to the CLT (Section 2.3). Then, in the situations
which are not balanced, we introduced a new embedding of Zd — described by
the function Ψ above — that again makes the random walk into a martingale
(Proposition 3.7). On this embedding we succeeded in proving the convergence
to Brownian motion (Corollary 3.10). However, two issues remained unresolved:
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(1) The limiting Brownian motion may be degenerate to a point.
(2) The harmonic embedding may be quite distorted from the original lattice.

Although the answer to (1) is ultimately related to the answer to (2), we will
first focus on (1) as it is easier. We will start by solving Exercise 3.12.

It is easy to check that the function Ψ from (3.44) is harmonic with respect
to Lω. This follows from the calculation

LωΨ(ω, x) = ωx,x+1

[

Ψ(ω, x+ 1)−Ψ(ω, x)
]

+ ωx−1,x

[

Ψ(ω, x− 1)−Ψ(ω, x)
]

= ωx,x+1
C

ωx,x+1
+ ωx−1,x

(

− C

ωx−1,x

)

= C − C = 0.

(4.1)

The shift-covariance is a consequence of the additive form of the expressions in
(3.44) while integrability follows from

EQE
0
ωΨ(ω,X1)

2 =
1

Z
E

[

ω0,1

( C

ω0,1

)2

+ ω−1,0

( C

ω−1,0

)2
]

=
1

E(ω0,1)E(1/ω0,1)
,

(4.2)

which is finite and positive by our assumptions. Applying the arguments in the
proof of Corollary 3.10, Ψ(ω,Xn) satisfies an invariance principle with a non-
degenerate limiting Brownian motion. The remainder of the Exercise is now
embedded into:

Proposition 4.1. Suppose P obeys the “usual assumptions” and (3.23). In
addition, assume that

E
(

1/ω0,êi

)

< ∞, i = 1, . . . , d. (4.3)

Then the limiting Brownian motion in Corollary 3.10 is non-degenerate.

Proof. We need to show that the right-hand side of (3.36) is bounded below by
c|λ|2 for some c > 0 and all λ ∈ Rd. To this end we write

EQE
0
ω

[

[λ ·Ψ(ω,X1)]
2
]

= inf
ϕ

1

Z
E

(

∑

x

ω0,x

[

λ · (x+∇xϕ(ω))]
2

)

≥ 1

Z

d
∑

i=1

inf
ϕ

E

(

∑

x=±êi

ω0,x

[

λ · (x+∇xϕ(ω))]
2

)

.

(4.4)

The expectation on the extreme right now involves only edges in the i-th coor-
dinate direction and thus effectively becomes a one-dimensional problem. To
overcome a possible lack of separate ergodicity, let Ai be the σ-algebra of
τêi-invariant events and let λi := λ · êi. The second infimum in (4.4) is then
bounded below by 2λ2

iE(1/E(ω
−1
0,êi

|Ai)) which by Jensen’s inequality is at most
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2λ2
i 1/E(1/ω0,êi). It follows that

EQE
0
ω

[

[êi ·Ψ(ω,X1)]
2
]

≥ 2

E(πω(0))

d
∑

i=1

λ2
i

E(1/ω0,1)
. (4.5)

By (3.23) and (4.3) we conclude that this exceeds c|λ|2 for some c > 0.

Note that the same argument would apply whenever the set
{

x ∈ Zd : E(1/ω0,x) < ∞
}

(4.6)

generates all of Zd (as an additive group). This still does not cover the case
of supercritical percolation (which can nonetheless be covered by an alternate
argument) so we pose:

Problem 4.2. Give general (and natural) conditions under which the limiting
Brownian motion is non-degenerate. In particular, if R(x, y) denotes the effec-
tive resistivity (1.20) from x to y in environment ω, does it suffice to replace
E(1/ω0,x) < ∞ in (4.6) by ER(0, x)?

Note that we have a pointwise bound R(0, x) ≤ 1/ω0,x with R(0, 1) = 1/ω0,1

in d = 1 with nearest-neighbor conductances. This suggests also:

Exercise 4.3. Suppose d = 1 and let P be a measure on i.i.d. positive and
nearest-neighbor conductances such that E(ω0,1) < ∞ and E(1/ω0,1) = ∞. Show
that the infimum of (3.9) over local functions is zero. Conclude that we must
have χ(ω, x) = −x.

A proof of (an analogue of) Proposition 4.1 appeared in Kozlov [89] and in
de Masi, Ferrari, Goldstein and Wick [43, 44]. With a bit more effort one can
develop a variational characterization of the inverse of the limiting covariance
matrix by minimizing a (version of) Dirichlet energy over nearly linear flows
(Biskup [14]). This in principle allows one to numerically approximate the co-
variance matrix with arbitrary precision from above and below.

Approximation arguments for the diffusion constants are at the core of the
Kipnis-Varadhan approach sketched in Sect. 2.4. Caputo and Ioffe [27] studied
periodized versions of the Random Conductance Model and the convergence of
the effective diffusion coefficient to the infinite volume object; related work in a
continuum context can be found in Owhadi [111].

4.2. Sublinearity of the corrector

Having addressed non-degeneracy of the limiting Brownian motion, we are ready
to move to the second— and considerably more involved— issue. The important
thing is to realize that for our purposes it would suffice to show that

χ(ω,Xn) = Ψ(ω,Xn)−Xn = o(Xn) (4.7)

asymptotically along a typical path of the random walk. Indeed, once we know
that Ψ(ω,Xk)−Xk = o(Xk) we can use the martingale CLT to get Ψ(ω,Xk) =
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o(
√
n) for all k ≤ n which then implies that also Xk = O(

√
n). But then we

will have Ψ(ω,Xk) −Xk = o(
√
n) for all k ≤ n, which means that the change

of embedding of the graph has a vanishing effect at the diffusive scale.
A more general version of (4.7) would be to require this for all positions in

the lattice, not just those visited by the path. In d = 1, this is not hard to get:

Exercise 4.4. Suppose that P is an ergodic law on nearest-neighbor conduc-
tances in d = 1. Assume E(ω0,1) < ∞ and E(1/ω0,1) < ∞. Show that

Ψ(ω, x)− x = o(|x|), |x| → ∞, (4.8)

and prove that the corresponding random walk satisfies a quenched invariance
principle. (Compare also with Exercise 4.3.)

However, the situation in higher dimensions is quite more subtle. While the
technical details of derivations in the paper of Kipnis and Varadhan follow a
different route, their methods can be used to show:

Theorem 4.5. Under the “usual assumptions,” (3.23) and (4.3), for each ǫ > 0,

EQ P 0
ω

(

max
k≤n

|χ(ω,Xk)| > ǫ
√
n
)

−→
n→∞

0. (4.9)

This statement will imply the so called Annealed Invariance Principle, some-
times also called a functional CLT in probability. We will choose to formulate
this in a form of a coupling. Here we recall that, given two probability measures
P and P ′, their coupling is a probability measure Q on the product space whose
first, resp., second marginal is given by P , resp., P ′.

Corollary 4.6 (Annealed Invariance Principle). Given a path X = (Xn), a
time t ≥ 0 and n ∈ N let

W
(n)
t :=

1√
n

(

X⌊tn⌋ + (tn− ⌊tn⌋)(X⌊tn⌋+1 −X⌊tn⌋)
)

. (4.10)

Under the assumptions of Theorem 4.5, for P-a.e. ω, there exists a coupling Q0
ω

of the law of t 7→ W
(n)
t induced by P 0

ω and a Brownian motion t 7→ Bt with
mean zero and covariance (3.36) so that, for each T > 0 and each ǫ > 0,

EQ0
ω

(

sup
0≤t≤T

|W (n)
t −Bt| > ǫ

)

−→
n→∞

0. (4.11)

Proof. (Sketch) First let us note that both (4.9) and (4.11) hold equivalently
with expectation EQ or expectation E. (This is because Q and P are equivalent
and the quantity under expectation is bounded.) To prove (4.11), we will use the
fact, implied by the Skorohod embedding, that such a coupling exists between
the Brownian motion and the analogue of t 7→ Wt defined using the martingale

Mn := Ψ(ω,Xn). Let Z
(n)
t denote the expression on the right of (3.35). Then

we have
EQ0

ω

(

sup
0≤t≤T

|Z(n)
t −Bt| > ǫ

)

−→
n→∞

0 (4.12)



338 M. Biskup

where Q0
ω is induced by the Skorohod embedding. As to (4.11), we note that

sup
0≤t≤T

|W (n)
t − Z

(n)
t | ≤ 1√

n
max

k≤⌊Tn⌋+1

∣

∣χ(ω,Xk)
∣

∣ (4.13)

Since the event on the right does not depend on the second marginal of Q0
ω, we

thus have

EQ0
ω

(

sup
0≤t≤T

|W (n)
t − Z

(n)
t | > ǫ

)

≤ EP 0
ω

(

max
k≤⌊Tn⌋+1

∣

∣χ(ω,Xk)
∣

∣ > ǫ
√
n

)

(4.14)

which tends to zero as n → ∞ by Theorem 4.5. Combining (4.12–4.14) the
result follows.

We remark that when the supremum is dropped from (4.9), we talk about an
annealed CLT. The averaging over the invariant measure Q in Theorem 4.5 is
not a mere technical convenience as the statement is not strong enough to infer
(4.11) without the expectation over environment. It actually took nearly 20 years
after Kipnis-Varadhan’s result before this issue was first successfully addressed
and a proper quenched invariance principle proved. This was done in the work
of Sidoravicius and Sznitman [124] who realized that one can get further with
the help of the heat kernel estimates. However, Berger and Biskup [11] were
later able to avoid the use of these in their argument for the two-dimensional
supercritical percolation cluster. We will present a sketch of their argument in
a slightly more general, albeit non-percolative, setting:

Theorem 4.7. Let d = 2 and suppose P is an ergodic law on nearest-neighbor
conductances subject to the conditions E(ω0,êi) < ∞ and E(1/ω0,êi) < ∞ for
i = 1, 2. Then

lim
n→∞

1

n
max
|x|≤n

|χ(ω, x)| = 0, P-a.s. (4.15)

Our proof of Theorem 4.7 begins by a lemma that generalizes Exercise 4.4
— and that even in d = 1, when the conductances are no longer just nearest
neighbor — to all dimensions:

Lemma 4.8 (Directional sublinearity). Suppose d ≥ 1 and assume P is an
ergodic law subject to the restriction (3.23). Assume E(1/ω0,ê) < ∞ for some ê ∈
{±êi : i = 1, . . . , d}. Then

lim
n→∞

χ(ω, nê)

n
= 0, P-a.s. (4.16)

Before we set out to prove this, we note that there is a small technical subtlety
that arises from the distinction between ergodicity and directional ergodicity.
To make this distinction clearer, we invite the reader to first solve:

Exercise 4.9. Construct a law P on nearest-neighbor conductances that is
(jointly) ergodic with respect to translations — i.e., P(A) = 0 for all A with
τx(A) = A for all x ∈ Zd — but not separately ergodic in the sense that there
is a set B of environments which is invariant under translations in the first
coordinate direction and for which 0 < P(B) < 1.
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Proof of Lemma 4.8. Using shift covariance we get

χ(ω, nê) =

n−1
∑

k=0

χ(τkêω, ê) (4.17)

We would like to use the (pointwise) Ergodic Theorem and τê-invariance of P
to extract the limit

fê(ω) := lim
n→∞

χ(ω, nê)

n
(4.18)

and prove that it vanishes P-a.s. For that we will need to establish three things:

(1) E|χ(ω, ê)| < ∞.
(2) Eχ(ω, ê) = 0.
(3) fê is translation invariant.

The first two items will follow from the construction of the corrector. Recall
that we are guaranteed that ∇ϕn → χ in L2

cov — which is a kind of weighted
L2-space. Since for ϕ ∈ L∞(P),

E∇êϕ(ω) = Eϕ ◦ τê − Eϕ = 0 (4.19)

it suffices to show that χ(·, ê) ∈ L1 and ∇êϕn → χ(·, ê) in L1. (The former
actually follows from the latter, but we find this order more instructive.) And,
indeed, by the Cauchy-Schwarz inequality we get

[

E|χ(ω, ê)|
]2 ≤ E

( 1

ω0,ê

)

E

(

ω0,ê|χ(ω, ê)|2
)

≤ E

( 1

ω0,ê

)

‖χ‖2L2
cov

< ∞ (4.20)

and similarly we derive

[

E|χ(ω, ê)−∇êϕn(ω)|
]2 ≤ E

( 1

ω0,ê

)

‖χ−∇ϕn‖2L2
cov

(4.21)

which tends to zero as n → ∞ because ∇ϕ → χ in L2
cov.

Finally, in order to link the limit to the expectation, we also need to show
that fê is translation invariant. To that end pick another lattice direction ê′ and
note that, by translation covariance,

χ(τê′ω, nê) = χ(ω, nê) + χ(τnêω, ê
′)− χ(ω, ê′). (4.22)

Dividing by n, the L1-limit of the last two terms is zero and so from the above
L1-inclusions we conclude that fê(τê′ω) = fê(ω) for P-a.e. ω. Putting all pieces
together the claim follows.

We remark that the fact that the conditions in Lemma 4.8 are the same as
in Proposition 4.1 is not a coincidence. Indeed we have:

Exercise 4.10 (Sublinearity implies nondegeneracy). Show that if (4.16) holds
for vector ê, then the component of the limiting Brownian motion — constructed,
at this point, by the Martingale Convergence Theorem — in direction of ê is
non-degenerate.
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n

o(n)

Fig 4.1. A figure illustrating the last part of the proof of Theorem 4.7 where one needs to
control the corrector on a component away from the good grid by the values on its boundary.
The existence and positivity of the densities of the good vertices along coordinate directions
ensures that the largest such component intersecting the box [−n, n]2 is o(n) in diameter. The
argument relies on the maximum principle for x 7→ Ψ(ω, x).

Our next goal is to boost the directional subadditivity — which we may
assume for both lattice directions under the conditions of Theorem 4.7 — into
a corresponding statement over a box of side n. To this end, let us say that the
origin is (K, ǫ)-good in ω if for all ê ∈ {±êi : i = 1, 2} and all n ≥ 1,

∣

∣χ(ω, nê)
∣

∣ ≤ K + ǫn. (4.23)

A point x is then called (K, ǫ)-good in ω if 0 is (K, ǫ)-good in τxω. By Lemma 4.8
we know that

P
(

0 is (K, ǫ)-good
)

−→
K→∞

1. (4.24)

It is now an exercise to show that:

Exercise 4.11. Fix ǫ > 0. Show that for each ρ ∈ (0, 1) and for P-a.e. ω there
is a number K = K(ρ, ω) < ∞ such that

(1) 0 is (K, ǫ)-good in ω.
(2) The density of (K, ǫ)-good vertices on the lines {nêi : n ∈ Z}, i = 1, 2, is

at least ρ.

These observations permit us to define a good grid as follows. Take the two
lines {nêi : n ∈ Z}, i = 1, 2, and add to them all vertices of the form n1ê1+n2ê2
with n1, n2 ∈ Z such that either n1ê1 or n2ê2 is (K, ǫ)-good. Call the resulting
(random) set of vertices GK,ǫ(ω). Then we note:
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Lemma 4.12. We have:

max
|x|∞≤n

x∈GK,ǫ(ω)

∣

∣χ(ω, x)
∣

∣ ≤ 2K + 2ǫn. (4.25)

Proof. Let x := n1ê1 + n2ê2 be a vertex in GK,ǫ(ω). This means that, e.g., n1ê1
is (K, ǫ)-good in ω. Since the origin is (K, ǫ)-good as well, we can write

∣

∣χ(ω, x)
∣

∣ ≤
∣

∣χ(ω, x)− χ(ω, n1ê1)
∣

∣+
∣

∣χ(n1ê1, x)
∣

∣

≤ K + ǫ|n2|+K + ǫ|n2|
(4.26)

But |x|∞ ≤ n implies |n1|, |n2| ≤ n and so the claim follows.

We now know how to control the corrector at the vertices of the good grid —
which can be made arbitrary dense — but we still have to worry about those in
the complement thereof. An important fact is that the connected components
of Z2 \GK,ǫ(ω) are finite and, in fact, that any such component intersecting the
box [−n, n]2 has diameter o(n). This can be justified by solving:

Exercise 4.13. Consider any shift invariant, ergodic, zero-one valued process
on Z with the densities of 0’s and 1’s both positive. Show that in almost-every
sample, the size of the largest consecutive block of 1’s intersecting the interval
[−n, n] is only o(n) as n → ∞.

We can now finish the proof of sublinearity of the corrector:

Proof of Theorem 4.7. Pick x ∈ Z2 \GK,ǫ(ω) with |x| ≤ n. Let C(x) denote the
component containing x. We claim that

∣

∣χ(ω, x)
∣

∣ ≤ diamC(x) + max
z∈∂C(x)

∣

∣χ(ω, z)
∣

∣ (4.27)

This is a consequence of Lω-harmonicity of Ψ and the maximum principle. In-
deed, define the first hitting time

T := inf{n ≥ 0: Xn 6∈ C(x)} (4.28)

of the complement of C(x). Then

Ψ(ω, x) = Ex
ω

(

Ψ(ω,XT )
)

, (4.29)

which we can rewrite as

χ(ω, x) = Ex
ω

(

XT − x
)

+ Ex
ω

(

χ(ω,XT )
)

(4.30)

But |XT − x| ≤ diamC(x) and |χ(ω,XT )| ≤ maxz∈∂C(x)

∣

∣χ(ω, z)
∣

∣ so the bound
follows.

To finish the argument, we recall that diamC(x) = o(n) and so we may as-
sume that n is so large that C(x) ⊂ [−2n, 2n]2. In that case maxz∈∂C(x)

∣

∣χ(ω, z)
∣

∣

is bounded by the maximum from Lemma 4.12 with n replaced by 2n. We get
∣

∣χ(ω, x)
∣

∣ ≤ 2K + 4ǫn+ o(n) (4.31)

thus proving the claim.
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4.3. Above two dimensions

The above reasoning can be boosted to cover all ergodic two-dimensional envi-
ronments with a finite range of jumps that satisfy the condition E(1/ω0,êi) < ∞.
However, there is an inherent problem with this approach in higher dimension;
indeed, one can still define a good grid but this grid will no longer partition Zd

into finite components. In an attempt to adapt the argument based on (4.29–
4.30), one thus has to worry about two things: How long does it take to hit the
good grid and how far will XT be from x. This can be done but (insofar) only
with the help of heat-kernel technology. We paraphrase a theorem from Biskup
and Prescott [18]:

Theorem 4.14. Fix ω such that πω(x) ∈ (0,∞) for all x and suppose χ = χ(x)
is a function and θ > 0 is a number such that the following holds:

(1) (Harmonicity) The function Ψ(x) := x+χ(x) obeys LωΨ(x) = 0 for all x.
(2) (Sublinearity on average) For every ǫ > 0,

lim
n→∞

1

nd

∑

x : |x|≤n

1{|χ(x)|≥ǫn} = 0. (4.32)

(3) (Polynomial growth)

lim
n→∞

max
|x|≤n

|χ(x)|
nθ

= 0. (4.33)

Let Y = (Yt) be the variable-speed continuous-time random walk with genera-
tor Lω and suppose that the following estimates hold:

(4) (Diffusive upper bounds) For a sequence bn = o(n2),

sup
n≥1

max
|x|≤n

sup
t≥bn

Ex
ω|Yt − x|√

t
< ∞ (4.34)

and
sup
n≥1

max
|x|≤n

sup
t≥bn

td/2P x
ω (Yt = x) < ∞. (4.35)

Then

lim
n→∞

max
|x|≤n

|χ(x)|
n

= 0. (4.36)

We remark that most of the proof of this theorem goes through even when the
variable-speed random walk is replaced by the constant-speed walk (for which
the bounds (4.34–4.35) may be easier to prove). This is because Ψ(Xt) is a
martingale for both walks. The sole point where the variable speed walk seems
to be used is formula (5.13) on page 1338 of [18].

In an earlier work (e.g., Berger and Biskup [11, Appendix A2]) the same
conclusion as given by Theorem 4.14 could be achieved — although perhaps in
a less transparent way — by using the full heat-kernel upper bounds of the form

Pn
ω(x, y) ≤

c1
nd/2

e−c2|x−y|2/n. (4.37)
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The point of reducing the heat-kernel input to the statements (4.34–4.35) is that
these are easier to verify than the actual heat-kernel upper bounds. We also note
that Sidoravicius and Sznitman [124] have used the heat-kernel bounds mainly
to control the tightness of the limiting process, while here we are using it to
control the deformations of the harmonic embedding. (Tightness follows in our
case from the Martingale Functional CLT.)

A key input in Theorem 4.14 is the sublinearity-on-average claim which we
formalize as:

Proposition 4.15 (Sublinearity on average). Suppose d ≥ 1 and assume P

is an ergodic law subject to the restriction (3.23). Assume E(1/ω0,ê) < ∞ for
all ê ∈ {±êi : i = 1, . . . , d}. Then for each δ > 0,

lim
n→∞

1

nd

∑

|x|≤n

1{|χ(x,ω)|≥δn} = 0, P-a.s. (4.38)

The proof is based on the commutative structure of Zd and a bootstrapping
of the one-dimensional sublinearity established in Lemma 4.8 by induction along
dimension. Recall the notion of a good grid GK,ǫ introduced (in d = 2) earlier.
The induction argument is contained in the following deterministic “pigeon-
hole-principle” lemma:

Lemma 4.16. Let Λn := [−n, n]d∩Zd, fix ǫ > 0 and K < ∞. For each ω there
exists a set A = A(ω) ⊂ GK,ǫ(ω) ∩ Λn with the properties

|A| ≥ (2dη − 2d + 1)|Λn| where η :=
|GK,ǫ(ω) ∩ Λn|

|Λn|
(4.39)

and

x, y ∈ A ⇒
∣

∣χ(y, ω)− χ(x, ω)
∣

∣ ≤ 2d
[

K + ǫ(2n+ 1)
]

. (4.40)

Proof.We will prove this by induction on dimension. Fix ω and for ν ∈ {1, . . . , d}
define sets Λ

(ν)
n of the form

Λ(ν)
n := Λn ∩

d
⋂

j=ν+1

{

x = (x1, . . . , xd) : xj = mj

}

(4.41)

for some m2, . . . ,md ∈ [−n, n]∩Z as follows: We define Λ
(d)
n := Λn and if Λ

(ν+1)
n

has been defined, we use Λ
(ν)
n to denote a ν-dimensional set of the above form

which contains the maximum number of good sites. Note that if η is as in the
statement, we have

|GK,ǫ(ω) ∩ Λ
(ν)
n |

|Λ(ν)
n |

≥ η (4.42)

because the ratio on the left decreases in ν.
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Next we set ην := 2νη − 2ν + 1 and note that

2ην − 1 = ην+1 and η ≥ ην . (4.43)

Assuming without loss of generality that η > 1 − 2−d — otherwise we can
take A := 0 in the statement of the lemma — we have ην > 0 for all 1 ≤ ν ≤ d.
We will prove by induction the following claim: For each ν = 1, . . . , d, there

exists a set A(ν) ⊂ GK,ǫ(ω) ∩ Λ
(ν)
n such that

|A(ν)| ≥ ην |Λ(ν)
n | (4.44)

and

x, y ∈ A(ν) ⇒
∣

∣χ(y, ω)− χ(x, ω)
∣

∣ ≤ 2ν
[

K + ǫ(2n+ 1)
]

. (4.45)

For ν = d this clearly implies the desired claim.

For ν = 1, we define A(1) := GK,ǫ(ω) ∩ Λ
(1)
n . As η1 ≤ η, this obeys (4.44).

The bound (4.45) is then a direct consequence of the definition of a good line.
Suppose now that the claim holds for ν and let us prove it for ν + 1. To this

extent, let Π denote the natural projection of Λ
(ν+1)
n onto Λ

(ν)
n and, given the

set A(ν) with the above properties, let

A(ν+1) :=
{

x ∈ GK,ǫ(ω) ∩ Λ(ν+1)
n : Π(x) ∈ A(ν)

}

. (4.46)

We now verify that this A(ν+1) obeys (4.44–4.45). As to (4.44), the same bound

for A(ν) tells us that at most (1 − ην)|Λ(ν+1)
n | sites in Λ

(ν+1)
n do not project

into A(ν). Hence

|A(ν+1)| ≥
∣

∣GK,ǫ(ω) ∩ Λ(ν+1)
n

∣

∣− (1 − ην)|Λ(ν+1)
n |

≥ (η + ην − 1)|Λ(ν+1)
n |,

(4.47)

where we used (4.42) to get the second inequality. In light of (4.43) this implies
(4.44).

To prove also (4.45), we pick two sites x, y ∈ A(ν+1) and let x̄ = Π(x) and
ȳ = Π(y). The claim for ν then implies

∣

∣χ(ȳ, ω)− χ(x̄, ω)
∣

∣ ≤ 2ν
[

K + ǫ(2n+ 1)
]

(4.48)

while the fact that x is a good site yields

∣

∣χ(x, ω)− χ(x̄, ω)
∣

∣ ≤ K + ǫ(2n+ 1) (4.49)

and similarly for the pair y and ȳ. Combining these bounds and using the triangle
inequality then implies (4.45) for x and y — with, of course, 2ν replaced by
2(ν + 1).

Lemma 4.16 now implies that the corrector is sublinear on average:
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Proof of Proposition 4.15. Suppose without loss of generality that δ < 8−d, fix
ǫ < 1

32dδ and note that we can choose K so large that P(0 ∈ GK,ǫ) ≥ 1 − δ/2.
By the Spatial Ergodic Theorem and ergodicity of P we thus have

|GK,ǫ(ω) ∩ Λn|
|Λn|

≥ 1− δ (4.50)

once n ≥ n0 for some a.s. finite n0 = n0(ω). We will assume that n0 is so large
that also

δn > 16d
[

K + ǫ(2n+ 1)
]

(4.51)

holds for all n ≥ n0.
By Lemma 4.16, for each n ≥ n0 there exists An = An(ω) ⊂ Λn with

|An| ≥ (1 − 2dδ)|Λn| (4.52)

and (4.40) valid for all x, y ∈ An. As δ < 8−d, we have |An| ≥ (1−4−d)|Λn| while
|Λ2n \A2n| ≤ 4−d|Λ2n| = 2−d|Λn|. In particular, An ∩A2n 6= ∅ for each n ≥ n0.
Let k0 be the smallest integer such that 2k0 ≥ n0 and let us pick a site xk ∈
A2k ∩ A2k+1 for each k ≥ k0. The bounds (4.40) and (4.51) then give us

∣

∣χ(xk, ω)− χ(xk0
, ω)

∣

∣ ≤
k−1
∑

ℓ=k0

∣

∣χ(xℓ+1, ω)− χ(xℓ, ω)
∣

∣ <
δ

8

k−1
∑

ℓ=0

2ℓ+1 ≤ δ2k−2

(4.53)
Choosing k1 = k1(ω) ≥ k0 so that |χ(xk0

, ω)| < δ2k1−2, this and (4.40) imply

x ∈ A2k ⇒
∣

∣χ(x, ω)
∣

∣ < δ2k, k ≥ k1. (4.54)

But this means that for n ∈ {2k : k ≥ k1},
∑

|x|≤n

1{|χ(x,ω)|≥δn} ≤ |Λn \An| ≤ δ2d|Λn|. (4.55)

As δ was arbitrary, this proves (4.38) for n increasing along powers of two. A
moment’s thought now reveals that the same then holds for the unrestricted
limit as well.

As for Theorem 4.14, we refer the reader to Biskup and Prescott [18]. It should
be emphasized that, although the assumptions to all the above are those of the
annealed invariance principle, we in addition require the validity of the diffusive
bounds (4.34–4.35). These are by no means guaranteed for a general ergodic P,
so the problem whether the annealed and quenched invariance principle hold
simultaneously remains open.

We close this subsection with a simple exercise concerning the invariance
principle for the variable-speed continuous-time version of our random walk.

Exercise 4.17. Suppose the “usual assumptions” and assume that (Xn) obeys
the Quenched Invariance Principle with the limiting Brownian motion having
covariance (3.36). Show that the variable-speed continuous time walk Xt obeys
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a Quenched Invariance Principle with the limiting Brownian motion having co-
variance

E
[

(λ · Bt)
2
]

= E

(

∑

x

ω0,x

[

λ ·Ψ(ω, x)
]2
)

. (4.56)

Note that the quantity on the right-hand side is closely related to the infimum
of (3.9), which was used to define the corrector. The appearance of expectation E

instead of EQ is due to the fact that P is invariant for the point of view of the
particle induced by the VSRW. As to the constant-speed walk, here the quenched
invariance principle follows from the discrete-time case by a strong asymptotic
concentration of a sum of i.i.d. exponential times.

4.4. Known results and open problems

The following sums up the principal steps in the progress towards proving
quenched invariance principle in the class of Random Conductance Models:

• Strongly elliptic, ergodic P: proved by Sidoravicus and Sznitman [124].
• Nearest-neighbor, i.i.d. conductances in d ≥ 2 subject to the conditions :

E(ω0,ê) < ∞ and P(ωe > 0) > pc(d) (4.57)

where pc(d) is the bond-percolation threshold. Here the quenched CLT has
been proved in a sequence of papers by Sidoravicus and Sznitman [124],
Berger and Biskup [11], Mathieu and Piatnitski [101], Mathieu [100], Biskup
and Prescott [18], Barlow and Deuschel [7] with all approaches synthesized
together by Andres, Barlow, Deuschel and Hambly [3].

• Nearest-neighbor, ergodic P with in d = 1, 2 with

E(ω0,ê) < ∞ and E(1/ω0,ê) < ∞ (4.58)

The d = 2 case is proved in these notes; the d = 1 is the content of
Exercises 3.12 and 4.4 and goes back at least to Kawazu and Kesten [84].

We remark that that the condition E(ω0,e) < ∞ is essentially necessary; indeed
Barlow and Černý [6] (d ≥ 3) and Černý [30] (d = 2) proved that for i.i.d.
nearest neighbor conductances with α-stable upper tail, α < 1, the law of Xnt

is under proper scaling described by BWt , where Bt is a Brownian motion and
Wt is the inverse of an independent stable subordinator with index α. In other
words, the paths are still Brownian but the heavy edges introduce a non-trivial
trapping effects thus rendering the time parametrization non-linear and, in fact,
stochastic. We remark that in physics, the limiting process is referred by as the
fractional kinetics process.

An important open problem concerns the rate of convergence and quantifi-
cation of errors in martingale approximations. Although optimal results are
probably far from reach, interesting ideas have been developed and quantitative
results derived by Mourrat [106] and Gloria and Mourrat [66]. The aforemen-
tioned work of Gloria and Otto [67] gives integrability estimates on the corrector
in d ≥ 3 under strong ellipticity.
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The Random Conductance Model has been also studied over other base-
graphs than just Zd. For instance, Caputo, Faggionato and Prescott [26] have
investigated the random walks over various point processes in Rd. Independent
studies for random walks on Voronoi/Delaunay triangulations have been an-
nounced by Buckley [24]. Ferrari, Grisi and Groisman [58] have constructed the
harmonic coordinates on such triangulations by means of an interacting particle
system; namely, a harness process, which is basically a full-space stochastic ver-
sion of the algorithm described for the finite boxes in Sect. 3.1. The methods of
Kipnis and Varadhan can be applied even to some deterministic quasiperiodic
structures; see, e.g., Telcs [128] who recently established an annealed invariance
principle for the simple random walk on Penrose tilings.

Although we are able to control the corrector to the level required for the
quenched invariance principle, the object itself remains rather mysterious and
many open questions remain. For instance, regardless of what has been said at
the end of Section 3.2, the following problem remains of great interest both from
the perspective of probability and analysis:

Problem 4.18. Is it true that a.e. realization of random conductances satisfying
the “usual conditions” admits no non-constant, sublinear harmonic functions?

Recently, Benjamini, Duminil-Copin, Kozma and Yadin [9] have shown that
that on the supercritical percolation cluster in Zd, the space of linear harmonic
functions is exactly d+1-dimensional. In particular, a typical supercritical per-
colation cluster supports no non-constant sublinear harmonic functions. We ex-
pect this to hold for all i.i.d. nearest-neighbor Random Conductance Models;
for general environments the problem remains open.

Another open question concerns the scaling limit of the corrector:

Problem 4.19. Assume i.i.d. nearest-neighbor, uniformly elliptic Random Con-
ductance Model. Show that the corrector scales to a Gaussian Free Field. More
precisely, for any function f : Rd → R which is smooth and of compact support
and satisfies

∫

f(x)dx = 0, the law of

χǫ(f) := ǫ1+d/2

∫

χ
(

ω, ⌊x⌋
)

f(ǫx)dx (4.59)

scales, as ǫ ↓ 0, to a Gaussian with mean zero and variance proportional to
(f,−∆−1f)L2(Rd).

Progress in the uniformly elliptic case has been achieved in recent work of
Gloria and Otto [67] who have been able to prove that the corrector is in Lq(P)
for all q < ∞, and thus a tight random variable, in all dimensions d ≥ 3. This
settled an open problem from [11].

Another, perhaps somewhat related, question is that of the very definition of
the corrector. Indeed, the corrector is defined almost surely for every ergodic law
on environments P. However, as different ergodic laws are singular with respect
to one another, it is not clear how to mesh the various correctors together. And
yet it seems this should be possible:



348 M. Biskup

Problem 4.20 (Universal corrector). Consider the set of nearest-neighbor envi-

ronments Ω := [a, b]B(Z
d) where 0 < a < b < ∞. Define a function χ : Ω×Zd →

Rd such that, for every ergodic law P on Ω, it agrees with the corrector corre-
sponding to measure P.

We remark that this would be solved if one could find a sequence of local
functions ϕn such that ∇ϕn → χ almost surely for every P. Note that, although
may find functions ϕn for which the convergence takes place in L2

cov for any
given P, almost sure convergence requires reduction to subsequences which may
be strongly P-dependent.

The understanding of the Markov chain permits one to consider more compli-
cated questions. One such question concerns the typical number of points visited
by the random walk in a given time. This was recently addressed by Rau[118].
Another question is the Law of Iterated Logarithm; this was established by
Duminil-Copin [50]. Next is the question of the behavior of the random walk
on very thin percolation clusters. This can be studied directly in the case when
p = pc where, technically speaking, the percolation cluster does not exist but
one can still enforce it by conditioning. For the resulting incipient infinite clus-
ter (IIC) in sufficiently high dimensions, Nachmias and Kozma [108] proved
the Alexander-Orbach conjecture in all dimensions d ≥ 7 — modulo caveats
regarding the existing level of lace-expansion technology. This conjecture, due
to Alexander and Orbach [2], states that, on IIC,

P2n
ω (0, 0) ≍ n−4/3, n → ∞. (4.60)

Notably, this is expected to be false in low spatial dimensions. Related to this
would be the decay of the diffusive constant for the simple random walk on the
supercritical cluster for parameter p, as p ↓ pc. Here we pose:

Problem 4.21. Suppose d ≥ 7 and let D(p) denote the limiting variance of the
simple random walk on the supercritical percolation cluster on Zd for parame-
ter p > pc(d). Show that

D(p) ≍ (p− pc)
2, p ↓ pc. (4.61)

This problem is closely related to the existence of effective conductivity which
was studied in, e.g., Grimmett and Kesten [74], Chayes and Chayes [31] and
Kesten’s monograph [85] on percolation. See also Sect. 6. A rather convincing
argument can be obtained for this by analyzing the formula (3.36) and making
plausible assumptions on the structural properties of the percolation cluster.
Resorting to the electrostatic interpretation, the electric current should be car-
ried only by the backbone of the cluster — which, in the limit p ↓ pc, becomes a
“net” of fractal curves. The exponent in (4.61) then comes from realizing that
in d ≥ 7, these fractals have Hausdorff dimension 2 (although the relation is not
so straightforward as a simple equality of these numbers). This intuition seems
be confirmed by observations made in the physics literature, see, e.g., Schrøder
and Dyre [120]. A main puzzle that remains is whether, and how exactly should
the exponent 2 in (4.61) be related to the exponent 4/3 in (4.60).
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We remark that the amount of physics literature written on this and related
subject is absolutely overwhelming; just see the articles citing the review by
Dyre and Schrøder [52].

Another very interesting class of applications of the above techniques is the
random walk in dynamical (albeit still reversible) random environments. We will
not go into details here, but let us just say that much of Kipnis-Varadhan theory
carries to this case and so annealed limit theorems are available. However, the
understanding of quenched invariance principles is far less evolved. Much can be
said when the dynamics of the environment is Markovian and there is enough
mixing; one can then get enough control via regeneration arguments. However,
even here it is far from clear how to formulate convenient, and very general,
conditions under which invariance principles can be obtained.

From the perspective of this text, one specific class of dynamical random
environments is of special interest. Consider a function V : R → R which is
twice continuously differentiable and define a collection of coupled diffusions
(φx(t))x∈Zd via

dφx(t) =
∑

y : |y−x|=1

V ′(φy(t)− φx(t)
)

dt+
√
2 dBt(x), (4.62)

where Bt(x) are independent standard Brownian motions. As it turns out, any
gradient Gibbs measure for the potential V is stationary under this dynamics.
Assuming that V is convex, and thus V ′′ ≥ 0, we can now define a random
walk X = (Xt) which at time t at position Xt = x takes a jump to a neighbor y
at rate V ′′(φy(t)− φx(t)).

An attractive feature of this setting is that it permits us to analyze gradient
models with convex interactions. For instance, we have the following formula

Covµ
(

φ0, φx) = EµE
0,φ

(

∫ ∞

0

1{Xt=x}dt
)

(4.63)

for the covariance of the (static) field in two locations with respect to a gradient
Gibbs measure µ by means of the expected number of visit to x by the above
random walk started at 0 — we expect this to be finite only in d ≥ 3 but other
formulas exists in d = 1, 2. Obviously, this generalizes the well-known formula
from the Gaussian case which is distinguished by the fact that the random walk
is not coupled to the evolution of the fields.

The formula (4.63) is one instance of the Helffer-Sjostrand random walk repre-
sentation of correlation functions for the gradient model. These have been indis-
pensable in the study of gradient models with convex interactions (e.g., Naddaf
and Spencer [107], Giacomin, Olla and Spohn [65], Funaki [55], etc).

5. Heat-kernel decay and failures thereof

As discussed at length in the previous section, our current strategy of the proof
of the quenched invariance principle seems to generally require the use of rather
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precise estimates on the probability that the Markov chain moves from x to y
in n steps. We emphasize that this is conceptually flawed because we seem to
need a local-CLT type of result to finish a plain CLT. Notwithstanding, the
study of the heat kernel is interesting in its own right. We will only review the
techniques that are ultimately relevant for the applications at hand and refer
to, e.g., the upcoming textbook by Kumagai [90] for a more in-depth treatment
of that well-developed area.

5.1. Some general observations

To set the vocabulary straight, let us first remark that by the heat kernel one
usually means the quantity

qn(x, y) :=
Pn
ω(x, y)

πω(y)
. (5.1)

As one can expect, Pω(x, ·) will for large n approach (a multiple of) the station-
ary measure πω. So qn, being in fact the Radon-Nikodym derivative of Pn

ω(x, ·)
with respect to πω, is a very natural object to consider. Note that reversibility
implies qn(x, y) = qn(y, x).

Theorem 4.14 required in (4.35) that the return probability generally decays
as n−d/2. It turns out that, should the CLT hold, we cannot hope for a faster
decay than this:

Lemma 5.1. Suppose (Xn) is satisfies a CLT with non-degenerate diffusion
constant σ2. Assume that π⋆ := supx πω(x) < ∞. Then there is c = c(d, σ2, π⋆) >
0 such that for n sufficiently large,

P2n
ω (0, 0) ≥ c

nd/2
πω(0). (5.2)

Proof. We use reversibility and simple estimates to get

P2n
ω (0, 0) =

∑

x

Pn
ω(0, x)P

n
ω(x, 0)

=
∑

x

Pn
ω(0, x)

2 πω(0)

πω(x)

≥ πω(0)

π⋆

∑

|x|≤√
n

Pn
ω(0, x)

2

(5.3)

The sum on the right-hand can be further bounded using the Cauchy-Schwarz
inequality:

P2n
ω (0, 0) ≥ πω(0)

π⋆

P 0
ω(|Xn| ≤

√
n)2

|{x : |x| ≤ √
n}| (5.4)

But the CLT ensures that P 0
ω(|Xn| ≤

√
n) ≥ 1

2P (|Bt| ≤ 1/σ) for n large, where
Bt is the standard d-dimensional Brownian motion, and |{x : |x| ≤ √

n}| ≤
c′nd/2 for some c′ = c′(d) < ∞.
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We remark that a general method of getting such (including “near-diagonal”)
lower bounds in elliptic random environments has been put forward by Nash [109]
and Fabes and Stroock [57].

For reasons discussed earlier, the main technical problem is to find natural
conditions on the Markov chain so that an n−d/2 upper bound can be guar-
anteed. This problem has been studied for over half a century, starting from
proofs of regularity of elliptic PDEs with irregular coefficients (De Giorgi [40],
Nash [109], Aronson [4]) and validity and consequences of Faber-Krahn, Sobolev
and Nash inequalities for diffusions on manifolds and Markov chains (e.g.,
Varopoulos [130], Carlen, Kusoka and Stroock [28]). A method to get off-diagonal
bounds — i.e., for qn(x, y) with x 6= y — has been put forward by Davies [39]
based on the Carne-Varopoulos bound (Carne [29], Varopoulos [129]).

In the course of time it has been realized that there is a close connection
between the desired upper bound and the geometric properties of the underly-
ing state-space. The key property to check is the validity of the isoperimetric
inequality (Cheeger [32]) or, more generally, the character of the isopertimetric
profile (Grigoryan [70]). This connection was later transferred to the context
of (discrete-space) Markov chains by Lawer and Sokal [94] and Jerrum and
Sinclair [82] (invoking isoperimetric inquality) and, later, by Lovász and Kan-
nan [97] and Morris and Peres [99] (based on isoperimetric profile).

We will not try to delve deeper into the details of historical developments of
the subject; instead, the reader should consult the many texts that have been
written on this (e.g., by Coulhon and Grigor’yan [36], Davies [38], Kumagai [90],
Montenegro and Tetali [105], Varopoulos [131], Varopoulos, Saloff-Coste and
Coulhon [131], Woess [135], etc). For us the key fact is that with many Markov
chains we may associate a natural graph structure — simply put an edge between
any two states in the state spaces that have a positive transition probability of
a jump from one to the other. This permits us to connect the mixing properties
of the chain with facts about geometry of this graph.

To illustrate this on an example, consider a graph that consists of two bulky
components connected only by a few edges. Clearly, it will take quite a long
time to exit one component and discover the other. Naturally, one is thus lead
to comparing the size of a set with the size of its boundary which is expressed
very well in terms of aforementioned isoperimetric inequalities.

In what follows we will rely on a result from a recent work by Morris and
Peres [99] which we find particularly attractive for its probabilistic flavor. Con-
sider a countable state Markov chain with state space V , transition kernel P
and a stationary reversible measure π. For a finite set A ⊂ V , we will measure
the boundary via

Q(A,Ac) :=
∑

x∈A
y∈Ac

π(x)P(x, y) (5.5)

and the volume via

π(A) :=
∑

x∈A

π(x). (5.6)
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Define the function

φ(r) := inf

{

Q(A,Ac)

π(A)
: π(A) ≤ r

}

(5.7)

that expresses the size of the least possible surface-to-volume ratio for all sets
with volume less than r. We can call this function the isoperimetric profile. Its
computation is often facilitated by the following fact:

Exercise 5.2. Show that in (5.7) we can restrict to A that are connected — in
the sense that for every x, y ∈ A there is a time n with Pn(x, y) > 0.

We now quote verbatim Theorem 2 of [99]:

Theorem 5.3. Suppose that P(x, x) ≥ γ for some γ ∈ (0, 1/2). For all ǫ > 0,
all x, y ∈ V and all n satisfying

n ≥ 1 +
(1− γ

γ

)2
∫ 4/ǫ

4[π(x)∧π(y)]

dr

rφ(r)2
(5.8)

we have
Pn(x, y) ≤ ǫπ(y). (5.9)

The restriction to uniformly positive holding probability, P(x, x) ≥ γ, is a
technical nuisance in applications that often requires analyzing a modified chain
that has this property.

5.2. Heat kernel on supercritical percolation cluster

It is quite instructive to check how Theorem 5.3 implies the usual bound for the
simple random walk and/or elliptic nearest-neighbor environments. However, we
will instead do something far less trivial; namely, we will show how this theorem
applies in the case of the random walk on the supercritical percolation cluster.

Theorem 5.4. Suppose d ≥ 2 and p > pc(d). There is a constant c = c(d, p) <
∞ and a random variable n0 = n0(ω) such that for almost every sample of the
bond-percolation cluster C∞ containing the origin, we have

P2n
ω (0, 0) ≤ c

nd/2
, n ≥ n0. (5.10)

For a finite set A ⊂ C∞(ω), let ∂ωA denote the set of open edges in ω with
exactly one endpoint in A. A simple observation yields

Q(A,Ac)

π(A)
≥ 1

2d

|∂ωA|
|A| (5.11)

If ω := 1 for all edges, then ∂ωA = ∂A. In such circumstances, one has the
isoperimetric inequality of the form: There is a constant c = c(d) > 0, such that

|∂A| ≥ c|A| d−1

d , A ⊂ Zd finite. (5.12)
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This inequality cannot hold on C∞ because the infinite component contains
arbitrarily long one dimensional (and other) pieces. However, we can have this
for connected sets that are not too small compared to their distance to the origin:

Lemma 5.5. For all d ≥ 2 and p > pc(d), there are positive and finite constants
c1 = c1(d, p) and c2 = c2(d, p) and an a.s. finite random variable R0 = R0(ω)
such that for each R ≥ R0 and each ω-connected A satisfying

A ⊂ C∞ ∩ [−R,R]d and |A| ≥ (c1 logR)
d

d−1 (5.13)

we have
|∂ωA| ≥ c2|A|

d−1

d . (5.14)

There have been a number of proofs of this and/or related results, see e.g.
Benjamini and Mossel [10], Heicklen and Hoffman [78], Mathieu and Remy [102],
Barlow [5], Berger-Biskup-Hoffman-Kozma [12], Pete [115]. We will not prove
this claim here for all p > pc(d) as the proof uses non-trivial facts from perco-
lation theory. However, for p very close to 1 there is a much simpler argument
due to Benjamini and Mossel:

Exercise 5.6. Show that once p is sufficiently close to one, there is a con-
stant c1 ∈ (0,∞) and a random variable R0 = R0(ω) < ∞ such that for all
R ≥ R0,

A ⊂ [−R,R]d ∩ Zd and |A| ≥ (c1 logR)
d

d−1 imply |∂ωA| ≥ 1

2
|∂A|. (5.15)

Note that from here we will immediately have (5.14) via (5.12). In order to
see how (5.14) feeds into Theorem 5.3, note that the Markov chain by time 2n
will not leave the box [−2n, 2n]. Thus set R := 2n+ 1, pick θ ∈ (0, 1/2) and for
A ∈ [−R,R]d ∩ Zd connected let us estimate the ratio in the definition of φ(r)
by c|A|−1/d when |A| ≥ Rθ and by cR−θ when |A| ≤ Rθ. (In the second step
we used that |∂ωA| ≥ 1.) It follows that

φ(r) ≥ c
(

r−1/d ∧R−θ
)

(5.16)

Plugging this into (5.8), the integral is at most cR2θ logR + cǫ−2/d. This will
be less than n for ǫ := cn−d/2. The inequality (5.10) then follows by applying
Theorem 5.3.

A natural consequence of Theorem 5.4 is the result that was first proved by
Grimmett, Kesten and Zhang [75] by rather different methods (see also Prob-
lem 1.16):

Corollary 5.7. The simple random walk on (a.e. realization of) the super-
critical percolation cluster is recurrent in dimension d = 2 and transient in
dimensions d ≥ 3.

Proof. As explained in Sect. 1.3, it suffices to resolve the d = 3 case, but we
can cover all d’s just as well. From Lemma 5.1 and Theorem 5.4 we know that
P0
ω(0, 0) ≍ n−d/2. This is summable in dimensions d ≥ 3 and non-summable in

d = 1, 2. The summability is then equivalent to the finiteness of the full-lattice
Green’s function which via (1.41) is then equivalent to transience.
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5.3. Anomalous decay

From the perspective of nearest-neighbor random walks on Zd, the case of the
supercritical percolation is a prototype of a non-elliptic situation. However, when
we think of this walk as the simple random walk on the graph C∞, it is as elliptic
as the one can ever hope for. Indeed, any edge in the graph C∞ has conductance
one and the ellipticity contrast — the difference between a maximal and minimal
possible value of the conductance over each edge — is zero. The difficulties in
the understanding of this walk on C∞ is thus not the lack of ellipticity but the
intricacies of its random geometry.

From this point of view it is natural to ask what happens when ellipticity
gets violated in a robust way. This naturally leads to consideration of i.i.d.
nearest-neighbor environments where the law of the individual conductances
is unbounded either from zero or from infinity (or both). The point is that
both situations can lead to trapping effects although each of them for a slightly
different reason. We will henceforth focus on the former case and refer to Barlow
and Deuschel [7] for the latter.

Suppose, from now on, that the ω’s are nearest-neighbor, i.i.d. with P(0 <
ωb ≤ 1) = 1 and

essinf(ωb) = 0. (5.17)

Our assumption implies that P(ωb ∈ ·) has no atom at zero. Thus all nearest-
neighbor jumps on Zd are allowed for the random walk, but some of them may
be very unlikely.

It is easy to check that for i.i.d. distribution with these properties, the
isoperimetry methods sketched above yield a vacuous conclusion. The situa-
tion becomes even more suspicious after an inspection of the work of Fontes
and Mathieu [59] in which they design a family of models — not with i.i.d.
conductances but close enough — in which the expected diagonal heat kernels,
EP2n

ω (0, 0), decay arbitrarily slowly with n. Of course, this could be just a result
of taking an average over the environment (remember that we are talking about
events whose probabilities decay to zero) so one is naturally intrigued by what
the typical (quenched) decay of P2n

ω (0, 0) might be.
It will not be too surprising that in d = 1 the trapping can be quite severe

even for typical ω. Indeed, the following is an interesting exercise:

Exercise 5.8. Suppose d = 1 and nearest-neighbor, i.i.d. conductances with
values in (0, 1]. For each sequence λn → ∞ construct a law P such that

P2n
ω (0, 0) ≥ 1

λn
(5.18)

for n large, along a deterministic subsequence nk → ∞.

A moment’s thought — and a right idea — then shows that interesting new
behavior may actually occur even in high-enough dimensions. Consider the fol-
lowing example from the paper of Berger, Biskup, Hoffman and Kozma [12]:
Fix a sequence λn → ∞ and define a trap of order n to be the configuration in
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Fig 5.1. A trap capable of capturing the walk for times of order n. Here an edge of conductance
1 is separated by edges of conductance 1/n from a path of edges of conductance 1 to the origin.
Once the walk enters the trap, incurring a cost 1/n of probability, it will stay bouncing back
and forth for time of order n with a uniformly positive probability. The exit at a particular
time costs again 1/n.

Fig. 5.1 and suppose that the distance of this trap to the origin is ℓn. If such a
trap occurs, we can estimate P2n

ω (0, 0) as follows. The cost of getting to vertex x
from the origin is exponential in the distance, i.e., eO(ℓn). Entering the trap at
the next step costs order 1/n of probability. The walk can then be made to stay
there for the time 2n minus twice the distance to the trap; this costs only eO(1)

of probability. Exiting the trap at the required time costs one more 1/n and the
trip back to the origin eO(ℓn). In total, we thus have

P2n
ω (0, 0) ≥ eO(ℓn)

1

n
eO(1) 1

n
eO(ℓn) =

eO(ℓn)

n2
(5.19)

Now one just beefs up the lower tail of P so that, along a deterministic subse-
quence nk → ∞, we have ℓn = o(logλn). We have a proof of:

Theorem 5.9. Suppose d ≥ 5. For each λn → ∞ there exists an i.i.d. conduc-
tance law P satisfying P(0 < ωb ≤ 1) = 1, a deterministic sequence nk → ∞ and
a P-a.s. positive random variable C = C(ω) > 0 such that for each n ∈ {nk},

P2n
ω (0, 0) ≥ C(ω)

n2λn
. (5.20)

Notice that the above argument yields a similar bound in all dimensions
d ≥ 2, but this bound has no significant value in dimensions d = 2, 3, 4 as (by
the CLT proved by Mathieu [100] and, independently, Biskup and Prescott [18])
P2n
ω (0, 0) decays at least as n−d/2; cf Lemma 5.1. But in d ≥ 5 this shows that

the heat kernel may decay more slowly than n−d/2 and, in particular, there is
no way that a diffusive heat kernel upper bounds would generally hold.

An interesting question is whether (5.20) is the worst one can do. The answer
turns out to be, more or less, in the affirmative:
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Theorem 5.10. For any nearest-neighbor, i.i.d. conductance law P with P(0 <
ω0,ê ≤ 1) = 1 there is a random variable C = C(ω) < ∞ such that

P2n
ω (0, 0) ≤ C(ω)











n−d/2, d = 2, 3,

n−2 logn, d = 4,

n−2, d ≥ 5.

(5.21)

In addition, we have

lim
n→∞

n2P2n
ω (0, 0) = 0, P-a.s. in d ≥ 5. (5.22)

and

lim
n→∞

n2

logn
P2n
ω (0, 0) = 0, P-a.s. in d = 4. (5.23)

All except (5.23) in this result is due to Berger, Biskup, Hoffman and Kozma
[12]; the property (5.23) was derived only recently in Biskup, Louidor, Rozinov
and Vandenberg-Rodes [16]. The latter group has also shown that, in many cases
where the heat kernel decays subdiffusively, the trapping phenomenon described
in the example above actually occurs: the path spends n−o(n) of time in a very
small spatial region.

Notice that (5.20) and (5.22) nicely complement each other: anything up to,
but no worse than, o(n−2) decay can occur in d ≥ 5. A question remains whether
the logn factor in d = 4 is an artifact of the proof or a real phenomenon. This was
solved recently by Biskup and Boukhadra [15] who constructed an environment,
for each sequence λn → ∞, such that

P2n
ω (0, 0) ≥ logn

n2λn
, (5.24)

eventually, along a deterministic subsequence nk → ∞. The construction is quite
involved because in d = 4 the trapping occurs more or less equally likely over a
whole range of exponentially-growing spatial scales (hence the logn factor).

5.4. Conclusions

The upshot of the above results and derivations is that with the random con-
ductance models we are finding ourselves in a somewhat unusual situation when
the path distribution satisfies a non-degenerate functional CLT and yet the heat
kernel decays anomalously; i.e., we have a CLT without local CLT. Although this
may contradict intuition, there is nothing wrong about this: a CLT is a state-
ment about the bulk of the distribution and a local-CLT is a statement about
the tails. There is no particular reason why these should match one another.

6. Applications

In this section we will try to address some aspects of the applications that
were introduced in the first section of these notes. Specifically, we will discuss
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homogenization of discrete parabolic (random) problems, scaling limit of asso-
ciated Green’s functions, convergence of random Gaussian gradient models to
Gaussian Free Field and, finally, applications to electrostatics.

6.1. Some homogenization theory

The phrase ”homogenization theory” usually refers to a diverse set of methods
and ideas that address one of the fundamental problems of material science: the
computation of macroscopic material constants and characteristics (e.g., heat
or electric conductivity, resistivity, etc) from the microscopic properties. One of
the typical mathematical issues resolved by homogenization theory concerns dif-
ferential equations: Although the microscopic quantities evolve according to an
differential equation with rapidly varying coefficients, properly rescaled macro-
scopic versions thereof are governed by equations with smooth coefficients.

We will not go into the subject and history of homogenization theory in any
further detail; these can be found in the literature, e.g., the monograph by Jikov,
Kozlov and Oleinik [83]. Instead, we will attempt to demonstrate the conclusions
on an example of heat conduction.

Suppose that some material of a rapidly varying internal microscopic internal
structure — described at the lattice level of spacing ǫ by a configuration of
conductances ω — is put in a macroscopic temperature profile at time 0. At the
lattice level, the evolution of the temperature profile with time is described by
the Cauchy problem











∂

∂t
u(t, x) = Lωu(t, x), t ≥ 0, x ∈ Zd,

u(0, x) = f(x), x ∈ Zd,

(6.1)

where Lω is the operator (1.13) (acting only on the x coordinate) that repre-
sents the microscopic diffusive properties of the material and f is the initial
temperature profile. Our first question concerns the existence and uniqueness of
the solution. We note the classical fact:

Lemma 6.1. Suppose ω is a sample from an ergodic measure P with Eπω(0) <
∞. Let Xt denote the variable-speed continuous-time Markov chain on Zd with
generator Lω. Pick f : Zd → R bounded. Then

u(t, x) := Ex
ω

(

f(Xt)
)

(6.2)

is the unique solution to (6.1) which is bounded in both t and x.

Proof. By Exercise 2.8 and the general theory expounded in, e.g., Liggett [95],
the conditions on ω guarantee that a stochastic solution to the backward Ko-
mogorov equations (1.14–1.15) exits and the semigroup for the VSRW is well
defined. The fact that (6.2) is a solution is then a consequence of a direct cal-
culation. Indeed, we have

u(t, x) =
∑

z∈Zd

Rt
ω(x, z)f(z). (6.3)
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and the boundedness of f and finiteness of πω permit us to exchange the sum
over z with the time-derivative and Lω. Hence, u satisfies (6.1).

The remaining issue is thus a proof of uniqueness among bounded solutions.
Let ũ(t, x) be such a solution and, for 0 ≤ s ≤ t, consider the random variable

Ms := ũ(t− s,Xs) (6.4)

and let Fs := σ(Xr : 0 ≤ r ≤ t). Then {Ms,Fs}0≤s≤t is a martingale. Indeed,
by the Markov property, on the event {Xs = z} we have

Ex
ω(Ms+δ −Ms|Fs) = Ez

ωũ(t− s− δ,Xδ)− ũ(t− s, z)

= Ez
ω

[

ũ(t− s− δ,Xδ)− ũ(t− s− δ, z)
]

+
[

ũ(t− s− δ, z)− ũ(t− s, z)
]

.

(6.5)

This yields

lim
δ↓0

1

δ

[

Ex
ω(Ms+δ −Ms|Fs)

]

= Lωũ(t− s, z)− ∂

∂t
ũ(t− s, z) = 0. (6.6)

almost surely for every s. Integrating over final intervals and applying the
Bounded Convergence Theorem proves that {Ms,Fs}0≤s≤t is a martingale. (At
s = t we apply continuity from the left.)

The Optional Stopping Theorem then yields

Ex
ωM0 = Ex

ωMt (6.7)

which reads

ũ(t, x) = Ex
ω ũ(t, 0) = Ex

ωf(Xt) = u(t, x). (6.8)

The uniqueness is proved as well.

Exercise 6.2. Construct a configuration of nearest-neighbor conductances on Z

for which there is a non-zero solution to (6.1) with u(0, ·) := 0.

Our next goal is to describe the asymptotic of the solution for the situation
when f is a macroscopic profile over a lattice of spacing ǫ. Fix a function f : Rd →
R in L1,loc(dx) and let u(ǫ)(t, x) denote the unique bounded solution to (6.1)
with initial data

u(0, x) :=

∫

[0,1]d
dz f(ǫx+ ǫz), x ∈ Zd. (6.9)

Under diffusive scaling of space and time, we get the quantity

uǫ(t, x) := u(ǫ)
(

tǫ−2, ⌊xǫ−1⌋
)

, t ≥ 0, x ∈ Rd. (6.10)

Theorem 6.3. Suppose f : Rd → R obeys ‖f‖2L2(Rd) + ‖∇f‖2L2(Rd) < ∞ and

let P be a law on the conductances satisfying the “usual conditions,” (3.23) and
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(4.3). Let Q denote the generator of the (annealed) limiting Brownian motion
and let ū be the solution to the Cauchy problem











∂

∂t
ū(t, x) = Qū(t, x), t ≥ 0, x ∈ Rd,

ū(0, x) = f(x), x ∈ Rd.

(6.11)

Then for each t ≥ 0,

uǫ(t, ·) −→
ǫ↓0

ū(t, ·) in L2(dx) ⊗ L2(P). (6.12)

Proof. Let Bt be the Brownian motion with generator Q. Then

ū(t, x) = E0
(

f(x+Bt)
)

. (6.13)

Similarly, resolving the above scaling relations yields

uǫ(t, x) := E⌊xǫ−1⌋
ω

(

∫

[0,1]d
dz f(ǫXtǫ−2 + ǫz)

)

. (6.14)

By translation-invariance of P and the Cauchy-Schwarz inequality,

E

∫

R

∣

∣uǫ(t, x)− ū(t, x)
∣

∣

2
dx

≤
∫

[0,1]d
dz

∫

E

(

∣

∣E0
ωf(xǫ(z) + ǫXtǫ−2)− E0f(x+Bt)

∣

∣

2
)

dx, (6.15)

where xǫ(z) := ǫ⌊xǫ−1⌋+ ǫz.
Our first step is to replace xǫ(z) by x in the argument of the first f on the

right-hand side. The difference tends to zero when ǫ ↓ 0 because we have

∫

∣

∣E0
ωf(xǫ(z) + ǫXtǫ−2)− E0

ωf(x+ ǫXtǫ−2)
∣

∣

2
dx ≤ 4ǫ2‖∇f‖2L2(Rd). (6.16)

To control the remaining difference, we note that, by the Annealed CLT (in
analogy with Corollary 4.6) there exists a coupling Q0

ω of the random walk
Xtǫ−2 and the Brownian motion Bt such that, for any δ > 0 and any t > 0,

aǫ(δ) := EQ0
ω

(

|ǫXtǫ−2 −Bt| > δ
)

−→
ǫ↓0

0. (6.17)

Picking an arbitrary δ > 0, the bound

EEQ0
ω

∫

∣

∣f(x+ ǫXtǫ−2)− f(x+Bt)
∣

∣

2
dx

≤ 4aǫ(δ)‖f‖2L2(Rd) + δ2‖∇f‖2L2(Rd) (6.18)
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then shows that the expectation on the left tend to zero as ǫ ↓ 0 (followed by
δ ↓ 0). The proof is then finished by noting that

E

∫

(

∣

∣E0
ωf(x+ ǫXtǫ−2)− E0f(x+Bt)

∣

∣

2
)

dx ≤ LHS of (6.18), (6.19)

as implied by using Cauchy-Schwarz one last time.

Theorem 6.3 exemplifies a statement in homogenization theory. Indeed, a
solution to the parabolic problem with rapidly varying coefficients does behave,
at a large scale, as a solution to a parabolic problem with constant coefficients.
As is seen from Exercise 4.17, the coefficients in the equation, namely, the entries
in the symmetric, positive semi-definite matrix (qij) in

Qf(x) =

d
∑

i,j=1

qij
∂2f

∂xi∂xi
(6.20)

are given by

qij := E

(

∑

x

ω0,x

(

êi ·Ψ(ω, x)
)(

êj ·Ψ(ω, x)
)

)

, (6.21)

where Ψ(ω, x) is the harmonic coordinate discussed at length in Section 3. Notice
that these are characterized by a variational problem

d
∑

i,j=1

λiλjqij = inf
ϕ

E

(

∑

x

ω0,x

(

λ · x+∇xϕ(ω)
)2
)

(6.22)

where λ = (λ1, . . . , λd) ∈ Rd and where ϕ : Ω → R runs over all local functions.
This is the same variational problem that defines the corrector. This is the de-
sired formula that at least in principle allows us to compute material coefficients
from its microscopic properties.

6.2. Green’s functions and gradient fields

The arguments in the previous section can be cast in a more symmetric form
provided we are willing to invoke some functional analysis. Given an opera-
tor O on ℓ2(Zd) with coefficients O(x, y) := 〈δx,Oδy〉, we can interpret it as an
operator on L2(Rd) by way of

〈 f,Og〉L2(Rd) :=

∫

Rd×Rd

O
(

⌊x⌋, ⌊y⌋
)

f(x)g(y) dxdy. (6.23)

For any f ∈ L2(Rd) define

fǫ(x) := ǫd/2+1f(xǫ). (6.24)

In this notation, the statement of Theorem 6.3 implies:
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Corollary 6.4. For any smooth functions f, g : Rd → R of compact support,

ǫ−2
〈

gǫ, e
tǫ−2Lωfǫ

〉

L2(Rd)
−→
ǫ↓0

〈 g, etQf〉L2(Rd), in L2(P). (6.25)

Proof. Just note that, in the notation of Theorem 6.3, ǫ−2〈 gǫ, etǫ
−2Lωfǫ〉 =

〈g, uǫ(t, ·)〉 while 〈 g, etQf〉 = 〈g, ū(t, ·)〉. These tend to each other as uǫ(t, ·) →
ū(t, ·) in L2(dx)⊗ L2(P).

Corollary 6.4 supplies the core idea underlying the proof of our next result:

Theorem 6.5. Consider any ergodic law P on nearest-neighbor elliptic conduc-
tances and pick any f, g : Rd → R that are smooth and of compact support. In
d = 1, 2 assume in addition that the integral of f and g over Rd equals zero.
Then

〈

gǫ, (−Lω)
−1fǫ

〉

L2(Rd)
−→
ǫ↓0

〈

g, (−Q)−1f
〉

L2(Rd)
, in L2(P). (6.26)

Proof. (Sketch) We only sketch the main ideas; details for this setting can be
found in the work of Biskup and Spohn [19]. All inner products will be those
in L2(Rd) so we will not make this notationally explicit.

First let us note that both inner products are well defined. Indeed, −Lω is
self-adjoint and positive semi-definite with empty kernel (in ℓ2(Zd)). Moreover,
it is invertible on all functions of finite support in Zd subject to — in dimensions
d = 1, 2 — the condition of a vanishing total sum. Uniform ellipticity gives us
the following inequality between norms:

〈

f, (−Lω)
−1f

〉

≤ ‖f‖22 + c
〈

f, (−∆)−1f
〉

, (6.27)

where ∆ is a continuum Laplacian and where the passage from discrete to
continuum Laplacian is due to [19, Lemma 2.2]. As is not hard to check, replac-
ing f by fǫ on the left and using that ‖fǫ‖2 = ǫ2‖f‖2 while 〈 f, (−∆)−1fǫ〉 =
〈 f, (−∆)−1f〉, the bound still holds all ǫ ≤ 1. The family in (6.26) is thus
uniformly bounded.

By the polarization identity, it suffices to prove the claim for g := f . To this
end we notice the following representation

〈

fǫ, (−Lω)
−1fǫ

〉

=

∫ ∞

0

〈

fǫ, e
tLωfǫ〉dt,

=

∫ ∞

0

ǫ−2
〈

fǫ, e
tǫ−2Lωfǫ〉dt,

(6.28)

where we scaled t by ǫ−2 in the second line. By Corollary 6.4, the integrand on
the right-hand side tends to 〈 f, etQf〉 so, ignoring the important issue whether
we are able to interchange the limit and the integral, we should have

〈

fǫ, (−Lω)
−1fǫ

〉

−→
ǫ↓0

∫ ∞

0

〈 f, etQg〉dt. (6.29)
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The right hand side is again bounded by the fact that Q is uniformly elliptic,
and it equals the term 〈 f, (−Q)−1f〉.

The key technical point of the proof is thus the control of the tails of the
integral in (6.28). This is a non-trivial problem where we will have to invoke,
once again, heat-kernel estimates. This is easier in dimensions d ≥ 3 where it
suffices to invoke the result of Delmotte [41]:

Pt
ω(x, y) ≤

c

td/2
, x, y ∈ Zd, t ≥ 0, (6.30)

with some constant c ∈ (0,∞), uniformly in ω — subject to the strong-ellipticity
condition. For f ∈ L1(dx) this yields

ǫ−2
〈

fǫ, e
tǫ−2Lωfǫ〉 ≤ ‖f‖21

c

td/2
. (6.31)

This is uniformly integrable in all dimensions d ≥ 3.
In dimension d = 1, 2 one needs a corresponding bound on the gradient of

the heat kernel. Such bounds were proved in the annealed setting by Delmotte
and Deuschel [42]. See Corollary 4.3 in [19] for details.

The above conclusions permit a statement on the random Gaussian field
introduced in Problem 1.22. Indeed, let (φx) be a sample from the Gaussian
measure with zero mean and covariance (−Lκ)

−1, for a collection of nearest-
neighbor elliptic conductances κ. Recall the notation φǫ(f) from (1.42). Then
we have:

Corollary 6.6. Suppose f is smooth with compact support and (in d = 1, 2) of
zero total integral. As ǫ ↓ 0, the law of φǫ(f) tends to that of a Gaussian with
mean zero and limiting variance

Var
(

φǫ(f)
)

−→
ǫ↓0

〈

f, (−Q)−1f
〉

L2(Rd)
(6.32)

in P-probability, where Q is the generator of the limiting Brownian motion.

Proof. As φǫ is Gaussian, it suffices to prove the convergence of the variances,
i.e., (6.32). This is (6.26) in disguise.

The key point is that since the limit is non-random, the same will be true
even if the law of the φ’s is further averaged over κ. This permits the main
conclusion of the paper of Biskup and Spohn [19] which repharse as follows:

Theorem 6.7 (Scaling to GFF). Suppose V is as in (1.44) with ̺ compactly
supported in (0,∞). Let µ be a gradient Gibbs measure for the potential V which
we assume to be ergodic with respect to the translations of Zd and to have zero
tilt. Then for every f ∈ Dom((−∆)−1/2), the law of φǫ(f) tends to a Gaussian
with mean zero and covariance

σ2
f :=

〈

f, (−Q)−1f
〉

L2(Rd)
, (6.33)

where Q−1 is the inverse of the operator (6.20).
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Proof. (Sketch) Conditional on the κ’s, the law of the φ’s is Gaussian. Hence

Eµ(e
iφǫ(f)

)

= Eµ(Eµ(e
iφǫ(f)|κ)

)

= Eµ

(

eiEµ(φǫ(f)|κ)− 1
2
Var(φǫ(f)|κ)).

(6.34)

The above tells us that Var(φǫ(f)|κ) → σ2
f in probability, but we cannot use it

unless we can simultaneously deal with the conditional mean Eµ(φǫ(f)|κ). The
most substantive part of the result is the following representation: Suppose µ
has tilt t. Then

Eµ(φx − φy |κ) = t ·
[

Ψ(κ, x)−Ψ(κ, y)
]

, (6.35)

where Ψ is the harmonic coordinate. This proves that the conditional mean is
identically zero when t = 0. Then (6.34) gives

Eµ(e
iφǫ(f)

)

−→
ǫ↓0

e−
1
2
σ2
f . (6.36)

Since this holds for all multiples of f as well, Levy’s characterization of conver-
gence in law implies the desired claim.

We note that the above Gaussian field with random (ergodic) covariance
structure has been (probably first introduced and) studied by Caputo and
Ioffe [27, Section 4.5]. Their motivation was to provide a link between the deriva-
tive of the exponential rate function for changing the tilt of the field — the so
called surface tension — and the diffusivity of the corresponding random walk
among random conductances. For the above Gaussian case, this link is veri-
fied by a direct calculation, but for general uniformly-convex interactions — for
which one still has a random-walk representation (Naddaf and Spencer [107],
Giacomin, Olla and Spohn [65]) — it remains conjectural despite serious effort.

6.3. Random electric networks

Theorem 6.5 can be understood as an application of homogenization theory to
electrostatic equilibrium. Indeed, given an assignment of charge ρ(x) at vertex x,
we wish to find an electrostatic potential ϕω : Z

d → R satisfying the Poisson
equation

Lωϕω(x) = ρ(x), x ∈ Zd, (6.37)

with the normalization ϕω(0) = 0. As to the existence of solutions, we have:

Lemma 6.8. Suppose ρ ∈ Dom((−Lω)
−1/

2) which is equivalent to

sup
ǫ>0

〈

ρ, (ǫ − Lω)
−1ρ

〉

ℓ2(Zd)
< ∞. (6.38)

Then {ϕ : E(ϕ) < ∞} contains exactly one function ϕω satisfying (6.37) and
ϕω(0) = 0. Moreover, we have

inf
{

E(ϕ) + 〈ϕ, ρ〉 : E(ϕ) < ∞
}

= −1

2
sup
ǫ>0

〈

ρ, (ǫ− Lω)
−1ρ

〉

ℓ2(Zd)
(6.39)
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and every minimizing sequence ϕ(n) on the left has the property that E(ϕ(n) −
ϕω) → 0. In particular, the infimum is achieved by ϕω.

Proof. (Sketch) The containment ρ ∈ Dom((−Lω)
−1/

2) guarantees that the
supremum in (6.39) equals 〈ρ, (−Lω)

−1ρ〉ℓ2(Zd). A completion of square yields

E(ϕ) + 〈ϕ, ρ〉 = E
(

ϕ− (−Lω)
−1/2ρ

)

− 1

2

〈

ρ, (−Lω)
−1ρ

〉

ℓ2(Zd)
(6.40)

which by the fact that the Dirichlet energy is non-negative implies that ≥ holds
in (6.39). Let thus ϕ(n) be a minimizing sequence. The parallelogram law (see
(3.28)) then immediately gives that E(ϕ(n)−ϕ(m)) → 0 as m,n → ∞. Moreover,
E(ϕ(n)) must remain bounded because if we had E(ϕ(n)) → ∞, then 〈ϕ(n), ρ〉
would tend to −∞ at the same rate as E(ϕ(n)) tends to +∞. But this is not
possible as, by ρ ∈ Dom((−Lω)

−1/
2) and Cauchy-Schwarz, |〈ϕ(n), ρ〉| grows at

most as the square root of E(ϕ(n)).
Passing to m → ∞ we thus construct a minimizer ϕω on Zd with E(ϕω) < ∞.

By adding small perturbations, we find that ϕω solves (6.37). The identity (6.40)
and the fact that E(ϕ) = 0 only for constants then shows that ϕω with a
prescribed value at one lattice site is unique.

Having dismissed the questions of existence and uniqueness, let us now in-
vestigate what happens when we scale the lattice to have spacing ǫ and scale
the charge density to maintain a fixed macroscopic profile. As we will see, the
following is just a rewrite of results proved earlier:

Theorem 6.9. Suppose ω is a sample from an ergodic measure on elliptic
nearest-neighbor conductances and let Q denote generator of the (annealed) lim-
iting Brownian motion for this environment. Suppose f : Rd → R is smooth and
of compact support with

∫

f(x)dx = 0 and let

ρǫ(x) :=

∫

[0,1]d
f(ǫx+ ǫz) dz. (6.41)

Define
ϕ(ǫ)
ω (x) := ǫ2(L−1

ω ρǫ)(⌊x/ǫ⌋), x ∈ Rd. (6.42)

Then ϕ
(ǫ)
ω → ϕ̄ weakly in L2(dx) in P-probability, where ϕ̄ is the solution to the

Poisson equation
Qϕ̄(x) = f(x), x ∈ Rd. (6.43)

(This is well defined as f ∈ Dom((−Q)−1).

Proof. Let g : Rd → R. Then

〈

g, ϕ(ǫ)
ω

〉

L2(Rd)
=

∑

x∈Zd

∫

[0,1]d
dz ǫd g(ǫx+ ǫz)ϕ(ǫ)(ǫx) (6.44)

where we used that ϕ(ǫ)(ǫx + ǫz) = ϕ(ǫ)(ǫx) for all x ∈ Zd and all z ∈ [0, 1)d.
Invoking the definition of ρǫ and some elementary rewrites, we then get

〈

g, ϕ(ǫ)
ω

〉

L2(Rd)
=

〈

gǫ, (Lω)
−1fǫ

〉

L2(Rd)
. (6.45)



Random Conductance Model 365

By Theorem 6.5, the right-hand side tends to 〈g,Q−1f〉L2(Rd) in L2(P) — and

thus in probability. It follows that ϕ
(ǫ)
ω → Q−1f weakly in L2(dx).
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