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1. Introduction

This is a collection of notes based on a course that I gave at the University of
Chicago in fall, 2016 on “Loop measures and the loop-erased random walk”. This
was not intended to be a comprehensive view of the topics but instead a personal
selection of some key ideas including some recent results. This course was to
be followed by a course on the Schramm-Loewner evolution (SLE) so there
was some emphasis on the ideas that have become important in the study of
conformally invariant processes. I will first give some history of the main results
I discuss here; this can be considered a personal perspective of the developments
of (some of the) ideas. I will follow with a summary of the topics in this paper.

1.1. Some history

I started looking at the loop-erased random walk in my thesis [10] spurred by a
suggestion by my advisor, Ed Nelson. My original motivation had been to try
to understand the self-avoiding walk. Soon in the investigation, I found out two
things: the bad news was that this process was different than the self-avoiding
walk, but the good news was that it was a very interesting process with many
of the attributes of other models in critical phenomena. In particular, there was
an upper critical dimension (in this case d = 4) and (conjecturally) conformal
invariance in two dimensions. My thesis handled the easiest case d > 4. The four
dimensional case was significantly harder; I did not have the chance to discuss
this in this course even though there is some recent work on the subject [19].

The interest in loop-erased random walk increased when the relationship
between it and uniform spanning trees was discovered [23, 25]. I believe there
were several independent discoveries of this; one thing I know is that I was not
one of the people involved! I found out about it from Robin Pemantle who was
trying to construct the infinite spanning tree and forest. He was able to use my
results combined with the Aldous-Broder algorithm to show that the limit of
the uniform spanning tree was a tree for d = 4 and a forest for d > 4. I discuss
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one version of this construction (limit of wired spanning trees) in Section 4.5.
The argument here uses an algorithm found by David Wilson.

Although the loop-erased random walk was first considered for simple random
walk on the integer lattice, it immediately extends to loop-erased Markov chains.
The study of Markov chains often boils down to questions in linear algebra,
and this turns out to be true for the loop-erased walk. As we will see in these
notes, analysis of the loop-erased walk naturally leads to consider the following
quantity for a subMarkov chain on a state space A = {x1, . . . , xn}:

F (A) = GA(x1, x1)GA2(x2, x2) · · ·GAn(xn, xn),

where Aj = A \ {x1, . . . , xj−1} and G denotes the Green’s function. At first,
this quantity looks like it depends on the ordering of the vertices. I first noticed
that the quantity was the same for the reverse ordering {xn, xn−1, . . . , x1} when
I needed to show the reversibility of the distribution of the LERW in [11]. The
proof in that paper, which is not difficult and is Exercise 3 in these notes, shows
the quantity is the same for any permutation of the indices. I did not notice this
until conversations with Lon Rosen when he was working on a paper [27]. His
calculations with matrices led to a measure on self-avoiding walks that looked
like it could be the loop-erased measure; however, if that were the case we would
need invariance under permutation, so this caused me to check this out.

This fact arose again at a conference in Cortona in 1997 [26]. There are three
things I remember about that conference: first, Cortona is a very pretty town;
second, this is the first time I heard Oded Schramm discuss his ideas for what
would become the Schramm-Loewner evolution; and finally, I was told David
Wilson’s beautiful algorithm that uses loop-erased random walk to construct
a uniform spanning tree. This algorithm was certainly a surprise for me, but I
remember saying then that if it were true I could probably verify it quickly. In
this case, I was right — the key fact is the invariance of F (A) under permutations
of the indices. I published the short proof as part of a survey paper [12]; see [29]
for Wilson’s proof using “cycle popping”. I believe that Marchal [24] was the
first to identify F (A) as a determinant.

There were two major papers published in 2000 on loop-erased walk. In [7],
Rick Kenyon used a relationship between dimers and spanning trees to prove
the conjecture that the growth exponent for two-dimensional LERW is 5/4. He
also showed how to compute a chordal exponent exactly. Oded Schramm [28]
constructed what would later be proved to be the scaling limit for loop-erased
random walk; it is now called the Schramm-Loewner evolution. We will not dis-
cuss the latter in these notes. We will not do Kenyon’s proof exactly, but as
mentioned below, the proof we discuss in these notes uses an important idea
from that paper. Kenyon’s result computed both a “chordal” and a “radial” ex-
ponent. A nice identity by Fomin [5] can be used to derive the chordal exponent;
this derivation is in these notes. The radial exponent, from which the growth
exponent is deduced, is more difficult.

The current theory of loop measures started with the paper [16] where the
Brownian loop measure was constructed and used to interpret some of the com-
putations done about SLE in [14]. (It was later realized that work of Symanzik
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had much of the construction; indeed, in the whole subject of loop measures
one continually finds parts of the theory that are older than one realizes!) The
random walk version was first considered in a paper with José Trujillo Ferreras
[15] where a strong coupling was given between the random walk and Brownian
loop measures. That paper did not actually give the correct definition of the
random walk loop measure (it was not important for that paper), but we (with
contribution by John Thacker as well) soon realized that a slightly different
version was the one that corresponded to the loop-erased walk. The general
theory of discrete time loop measures for general (positive) weights was given
in Chapter 9 of [17].

At about the same time Yves Le Jan was extending [16] by developing a
theory of continuous time loop measures on discrete sample spaces (the case of
continuous time random walk appears in John Thacker’s thesis that was never
published). Le Jan used the continuous time loop soup to construct the square
of the Gaussian free field. See [20] and references therein. This is similar (but not
exactly the same) as the Dynkin isomorphism, which itself is a generalization of
ideas of Brydges, Fröhlich, and Spencer. Continuous times are needed to get a
continuous random variable. When I was trying to learn Le Jan’s work, I realized
that one could also construct the field using the discrete time loop measure and
then adding exponential random variables. This idea also appears later in Le
Jan’s work. This construction only gives the square of the field. A method to
find the sign of the field was found by Lupu and we discuss a version of this
here although not his complete construction. There is also a relationship with
currents — here we give a somewhat novel treatment but it was motivated by
the paper of Lupu and Werner [22].

Another recent improvement to the loop measure theory is the consideration
of nonpositive weights. Loop measures are very closely tied to problems of linear
algebra and much (but certainly not all) of the theory of “Markov chains” can be
extended to negative weights. There have been two recent applications of such
weights: one is an extension of Le Jan’s result to some Gaussian fields with some
negative correlations [18] and the other is a loop measure proof of the Green’s
function for two-dimensional LERW [4, 13]. The latter is an improvement of
Kenyon’s result, but it uses a key idea from his paper.

1.2. Summary of notes

Most of Section 2 sets up the notation for the notes. Much of the framework
is similar to that in [17, Chapter 9], but it is done from scratch in order to
show that nonpositive weights are allowable. When dealing with nonpositive
weights some care is needed; if the weight is integrable (that is, the weight as a
function on paths is L1 with respect to counting measure on paths), then most
of the operations for positive weights are valid. For nonintegrable weights, some
results will still hold, but some will not because many of the arguments involve
interchange of sums over paths.

Loop erasure is the topic of Section 3. Here we only consider the deterministic
transformation of loop erasure and see the measure it induces on paths. The
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expression involves the quantity F (A). The invariance of this quantity under
permutations of the indices is discussed as well as the fact that it is a determinant
of the Laplacian for the weight.

Section 4 discusses the loop-erased walk obtained for Markov chains. There
are three main cases: transient chains, where loop-erasure is done on the en-
tire path; chains on finite state spaces, where loop-erasure is done on the path
stopped when it hits the boundary; and (some) recurrent chains, for which the
LERW on infinite paths can be defined as a limit of finite state spaces. One main
example is simple random walk in two dimensions. The relationship between
the loop-erased walk and the Laplacian random walk is discussed. Wilson’s al-
gorithm to generate spanning trees is discussed in Section 4.4. The fact that
the algorithm generates uniform spanning trees on graphs works is surprising;
however, once one is told this verifying it takes little time (this is often true for
algorithms). Combining this with the interpretation of F (A) as a determinant
gives Kirchhoff’s matrix-tree theorem as an almost immediate corollary. The
next subsection shows a nice application of Wilson’s algorithm to understand
the uniform spanning tree or forest in Z

d; the algorithm is easily defined for
infinite graphs and it is not too difficult to show that this gives the same tree
or forest as that obtained by a limit of “wired” spanning trees. We only touch
on this subject: see [3] for a deeper description of such trees and forests.

The (discrete time, discrete space) loop measures are introduced in Section
5. It is easiest to define for rooted loops first, where it is just the usual mea-
sure with an extra factor. The utility of the measure comes from the number
of different ways that one can get the same measure on unrooted loops. We also
give more emphasis to another measure on rooted loops that uses an ordering
of the vertices. It is the discrete analog of a Brownian bubble measure decom-
position of the Brownian loop measure. This measure is often the most useful
for calculations and estimations. In Section 5.1, we find the other expression for
F (A) in terms of the exponential of the loop measure. In the next subsection,
we define a soup (the terminology comes from [16]) which for a positive weight is
a Poissonian realization from the loop measure. We extend the definition of the
soup for nonpositive weights by considering the distribution of the soup. Some
of the material in Sections 5.3 and 5.4 may be new. Here the “bubble soup”
(which is a union of “growing loops”) version of the loop soup is studied and
the soup is shown to be given by a negative binomial process (for the number of
“elementary” loops). A particular case of this, which was known, was that of the
loop soup at intensity one corresponding to the loops erased in the loop-erasing
procedure. This is made more explicit in Section 5.5.

Section 6 discusses the results of Le Jan and Lupu about the Gaussian field.
Some of the treatment here is new and, as in [18], applies to some negative weight
fields. It also uses the relation with currents [1, 22]. After defining the field and
giving some basic properties, we study the measure on currents generated by
the loop soup at intensity 1/2. We compute the distribution exactly in Theorem
2. The main work is a combinatorial lemma proved in Section 6.4. This is a
measure on discrete currents. We then get a continuous local time by adding
independent exponential random variables for each visit to a vertex by the
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discrete soup. Given Theorem 2 we get the joint distribution of the current and
the continuous local times and by integrating out the currents we get a new
proof of the Le Jan’s theorem. We then discuss Lupu’s way of producing the
signs for the field.

The final section deals with several questions dealing with multiple loop-
erased walks. The first is understanding the natural measure in terms of the
loop measure. We then discuss Fomin’s identity and discuss two nontrival ap-
plications. The first is the derivation of the chordal crossing exponent first cal-
culated rigorously by Kesten. The second is a start of the asymptotics of the
SLE Green’s function by Beneš, Viklund, and myself [4, 13]. We do not give a
complete proof of the latter result but we do discuss how a loop measure with
negative weight reduces the problem to several estimates about random walks.

I thank the members of the class for their comments and in particular Jeffrey
Shen for pointing out a number of misprints.

2. Definitions and notations

Loop measures and loop-erased walks were first considered for random walks
and, more generally, Markov chains. One of the first things that one learns
about Markov chains on finite state spaces is that much of the initial theory
quickly boils down to questions of linear algebra. However, the probabilistic in-
terpretation gives new insights and in some cases new techniques, e.g., coupling.

The theory of (sub)Markov chains is therefore a study of (sub)stochastic
matrices. There are times when one does not want to restrict one’s study to
matrices with nonnegative entries; indeed, many models in mathematical physics
lend very naturally to complex weights on objects. Much of the theory of loop
measures also extends to complex weights, so we will allow them in our setup.
A disadvantage of this is that we will need to start with a lot of notation and
definitions. First time readers may wish to consider the case of nonnegative
entries first when trying to learn the material.

To be a little careful, we will adopt the following terminology. If Λ is a
countable set, we will call φ : Λ → C a function or a weight. We will also call φ
a measure on Λ if either φ ≥ 0 or

‖φ‖ :=
∑
x∈Λ

|φ(x)| < ∞.

• A, ∂A finite sets, A = A∪ ∂A. We call the elements in A vertices or sites.
(There will be times that we allow infinite sets, but we assume finite unless
stated otherwise.)

• We let EA = A × A denote the set of directed edges in A. If (x, y) is a
directed edge, we call x the initial and y the terminal point of the directed
edge, respectively. Let

EA = EA ∪ (A× ∂A) ∪ (∂A×A)
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be the set of directed edges in A with at least one vertex in A. We will
write bold-face e for directed edges. We say that edge e2 follows edge e1 if
the terminal vertex of e1 is the initial vertex of e2. Note that we do allow
self-edges, i.e., edges with the same initial and terminal point.

• Let EA denote the set of (undirected) edges in A which can be viewed
as equivalence classes of EA under the equivalence (x, y) ∼ (y, x). Note
that EA includes self-edges from x to x. We define EA similarly. The word
“edge” will mean undirected edge unless otherwise specified. We write e
for undirected edges.

• A function q : EA → C is called a weight (on edges). Weights restricted to
EA are the same as square matrices indexed by A. A weight is symmetric
if q(x, y) = q(y, x) in which case it is a function on EA. It is Hermitian if
q(x, y) = q(y, x).

• We say that p is a positive weight if p(e) ≥ 0 for all e. When we use p,P
for a weight, then the assumption will be that it is a positive weight. If
we wish to consider complex weights, we will use q,Q. Of course, positive
weights are complex so results about complex weights apply to positive
weights.

• If q is a weight, we will write |Q| for the matrix [|q(x, y)|]. Note that |q| is
a positive weight.

• We will call p a Markov chain (weight) if [p(x, y)] are transition probabil-
ities of an irreducible Markov chain Xj on A. Let τ = τA = min{j : Xj ∈
∂A}; the assumptions imply that for x ∈ A, Px{τ < ∞} = 1. We write
P for the transition matrix restricted to A. It is standard that there is a
unique positive eigenvalue λ < 1 of P such that all other eigenvalues have
absolute value at most λ.

• More generally, we say that q is an integrable weight on A if the largest
positive eigenvalue of |Q| is strictly less than one.

• We say that q is a green weight, if the eigenvalues of Q are all strictly less
than one in absolute value. This is a weaker condition than integrability.

• Simple random walk

– Let A be a connected graph and A a strict subset of vertices. There
are two forms of simple random walk on the graph we will consider.
Let dx denote the degree of x and write x ∼ y if x, y are adjacent in
the graph.

∗ Type I. p(x, y) = 1/dx if x ∼ y. In this case, the invariant
probability π is proportional to dx. The chain is reversible, that
is π(x) p(x, y) = π(y) p(y, x), but is not symmetric unless all the
degrees are the same.

∗ Type II. Let n be a number greater than or equal to the largest
degree of the vertices in A, and let p(x, y) = 1/n if x ∼ y. This
is symmetric and hence the invariant probability is the uniform
distribution.

– Simple random walk in Z
d is a particular example. On the whole

plane, it is both a Type I or Type II walk. If A is a finite subset of
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Z
d and ∂A = {x ∈ Z

d : dist(x,A) = 1}, then it is often convenient
to view the simple random walk on A = A∪ ∂A as a Type II walk as
above with n = 2d.

• A path or walk in A of length n is a sequence of n + 1 vertices with
repetitions allowed

ω = [ω0, ω1, . . . , ωn], ωj ∈ A.

We allow trivial paths of length 0, ω = [ω0]. Any path of length n > 0 can
also be represented as

ω = e1 ⊕ · · · ⊕ en, ej = (ωj−1, ωj) ∈ EA.

We call ω0, ωn the initial and terminal vertices of ω, respectively. A path
of length one is the same as a directed edge. We write |ω| = n for the
length of the path.

• If ω1 = e1 ⊕ · · · ⊕ en, ω
2 = en+1 ⊕ · · · ⊕ en+m and en+1 follows en, we

define the concatenation

ω1 ⊕ ω2 = e1 ⊕ · · · ⊕ en ⊕ en+1 ⊕ · · · ⊕ en+m.

Conversely, any concatenation of n edges such that ej follows ej−1 gives
a path.

• If ω = [ω0, ω1, . . . , ωn] = e1⊕· · ·⊕en is a path we write ωR for the reversed
path

ωR = [ωn, ωn−1, . . . , ω0] = eRn ⊕ eRn−1 ⊕ · · · ⊕ eR1 .

• If x, y ∈ A, we let KA(x, y) denote the set of paths in A starting at x and
ending in y. If x = y, we include the trivial path [x]. We let

KA,x =
⋃
y∈A

KA(x, y), KA =
⋃
x∈A

KA,x =
⋃
x∈A

⋃
y∈A

KA(x, y).

• We also write KA(x, y) when one or both of x, y are in ∂A. In this case it
represents paths

ω = [ω0, . . . , ωn]

with ω0 = x, ωn = y and ωj ∈ A for 0 < j < n. If x, y ∈ ∂A, we also
require that n ≥ 2, that is, that there is at least one vertex of ω in A. We
let

KA =
⋃
x∈A

⋃
y∈A

KA(x, y), K∂A =
⋃

x∈∂A

⋃
y∈∂A

KA(x, y).

• If V ⊂ A, we write

KA(x, V ) =
⋃
y∈V

KA(x, y).

Similarly, we write KA(V, x),KA(V, V
′).
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• We call a walk in KA(x, x) a (rooted) loop rooted at x. This includes the
trivial loop [x] of length zero. We sometimes write l instead of ω for loops;
l will always refer to a (rooted) loop.

• A weight q gives a weight on paths by

q(e1 ⊕ · · · ⊕ en) = q(e1) q(e2) · · · q(en),

where paths of length zero get weight one. Note that

q(ω1 ⊕ ω2) = q(ω1) q(ω2).

• If q is positive or integrable, then q is a measure on KA. It is easy to see
that the q-measure of the set of walks of length n in KA(x, y) is the same
as the (x, y) entry of the matrix Qn.

• If q is weight and λ ∈ C, then λq is also a weight. We sometimes write qλ
for the weight on paths induced by λq, that is,

qλ(ω) = λ|ω| q(ω),

where we recall that |ω| is the length of ω. For any weight q there exist
δ > 0 such that qλ is integrable for |λ| < δ.

• For a Markov chain, the Green’s function is given by

GA(x, y) =
∞∑

n=0

Px{Xn = y;n < τ} =
∑

ω∈KA(x,y)

p(ω).

The second expression extends immediately to green complex weights.
• In matrix form

G = GA =

∞∑
n=0

Qn,

from which we get (I − Q)G = I, that is, G = (I − Q)−1. We will write
Gp

A or Gq
A if we wish to emphasize the weight that we are using. This

expression only requires the eigenvalues of Q to all have absolute value
less than one.

For integrable q, we can view sampling from q as a two-step process: first
sampling from |q| and then specifying a rotation q/|q|.

• More generally, the Green’s generating function is defined as a function of
λ,

GA(x, y;λ) =
∑

ω∈KA(x,y)

λ|ω| q(ω).

Note that
Gq

A(x, y;λ) = Gλq
A (x, y).
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• We will say that l ∈ KA(x, x) is an elementary loop if it is nontrivial
(|l| > 0) and the only visits to x occur at the beginning and terminal
vertices of l. We write L̃1

x = L̃1
x(A) for the set of elementary loops in A

with initial vertex x.
• For the Markov chain case, let Tx = min{j ≥ 1 : Sj = x} and fx =

Px{Tx < τ}. Then it is standard that

GA(x, x) =
1

1− fx
=
∑
l∈L̃1

x

p(l). (1)

This formula extends to complex weights if∑
ω∈L̃1

x

|q(ω)| < ∞, (2)

which is true, say, for integrable weights. Any l ∈ KA(x, x) of length at
least one can be written uniquely as

l = ω1 ⊕ ω2, ω1 ∈ L̃1
x, ω2 ∈ KA(x, x),

and hence
GA(x, x) = 1 + fx GA(x, x).

A little care is needed when q is not integrable. Let Vj denote the
set of loops in L̃1

x of length j. If q is green and satisfies (2), then

∞∑
j=1

∞∑
k=1

|q(Vj) qn−j(x, x)| < ∞.

Therefore,

G(x, x) =

∞∑
n=0

qn(x, x) = 1 +

∞∑
n=1

n∑
j=1

q(Vj) qn−j(x, x)

=

∞∑
j=1

q(Vj)

∞∑
n=1

qn(x, x)

= 1 + fx G(x, x).

A number of standard results for which probabilists use stopping
times can be written in terms of products of generating functions
by suitable path splitting. Such arguments are standard in combina-
torics and much mathematical physics literature. While the proba-
bilistic form is more intuitive, it is often useful to go to the generating
functions, especially when using nonpositive weights.
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• The (discrete) Laplacian is defined by

Δ = Δq
A = (Q− I) = −G−1

A .

A function h on A is called (q)-harmonic on A if Δh(x) = 0, x ∈ A.

• Analysts often use −Δ = I − Q which is a positive operator for
positive P. Indeed, we will phrase many of our results in terms of
I −Q.

• In the case of random walks on graphs, Δ is sometimes called the
random walk Laplacian. Combinatorialists often use the combinato-
rial or graph Laplacian which is −nΔ for the Laplacian for the Type
II random walk on graph. Note that this is the diagonal matrix of
degrees minus the adjacency matrix.

• The Poisson kernel for a Markov chain is defined by

HA(x, z) = Px{Xτ = z}, x ∈ A, z ∈ ∂A.

In this case, ∑
z∈∂A

HA(x, z) = p [KA(x, ∂A)] = 1, (3)

We extend the definition for complex weights q by

HA(x, z) = q [KA(x, z)] .

The analogue of the first equality in (3) holds but it is not necessarily true
that q[KA(x, ∂A)] = 1.

• The boundary Poisson kernel is defined by

H∂A(z, w) = q [KA(z, w)] , z, w ∈ ∂A.

Exercise 1. Suppose x ∈ A and z, w ∈ ∂A.

1. Show that
HA(x, z) =

∑
y∈A

GA(x, y) q(y, z).

2. Suppose that q is symmetric and KA(z, w;x) denotes the set of paths
in KA(z, w) that include the vertex x at least once. Show that

q [KA(z, w;x)] =
HA(x, z)HA(x,w)

GA(x, x)
.
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The boundary Poisson kernel goes under a number of other names
and is related to the Dirichlet to Neumann map.

3. Loop-erasure

A path ω = [ω0, . . . , ωn] is called a self-avoiding walk (SAW) if all of the vertices
are distinct. We will write η = [η0, . . . , ηm] for SAWs. We write WA(x, y) for
the set of ω ∈ KA(x, y) that are self-avoiding walks. We write WA(x, V ), etc.,
as well.

We will reserve the notation η for self-avoiding walks and use ω for general
walks that can have self-intersections.

There is a deterministic procedure called (chronological) loop-erasing that
takes every ω ∈ KA(x, y) and outputs a subpath η = LE(ω) ∈ WA(x, y). One
erases the loops in the order that they appear. This definition makes this precise.

Definition. Suppose that ω = [ω0, . . . , ωn] is a path. The (chronological) loop-
erasure η = LE(ω) is defined as follows.

• Let j0 = max{k : ωk = ω0}, and set η0 = ω0 = ωj0 .
• Recursively, if ji < n, let ji+1 = max{k : ωk = ωji+1}, and set

ηj+1 = ωji+1 = ωji+1 .

• Continue until jm = n at which point we set LE(ω) = η = [η0, η1, . . . , ηm].

Note that LE(ω) is a self-avoiding subpath of ω with the same initial and
terminal vertices.

In general, there are many self-avoiding subpaths of a path ω with the
same initial and terminal vertices. The loop-erasing procedure specifies a
particular choice.
Topologists use the word “simple” to mean with no self-intersections. Since
this conflicts with our terminology of simple random walk (which does
not produce a path with no self-intersections) we will use the term “self-
avoiding” to refer to such paths. There is a some possibility of confusion
because “self-avoiding walk” is also used to refer to a particular measure
on SAWs that is different from the ones we will consider.
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Exercise 2. Give an example of a path ω such that

LE
[
ωR
]
�= [LE(ω)]

R
.

Definition. Given an integrable weight q on A which gives a measure q on KA,
the loop-erased measure q̂ is the measure on WA defined by

q̂(η) =
∑

ω∈KA,LE(ω)=η

q(ω).

We can also consider the restriction of q̂ to WA(x, y) and note that∑
η∈WA(x,y)

q̂(η) = q [KA(x, y)] .

The next proposition gives an expression for q̂(η) in terms of q(η) and the
Green’s function.

Proposition 3.1. If η = [η0, η1, . . . , ηm] ∈ WA, then

q̂(η) = q(η)

m∏
j=0

GAj (ηj , ηj)

where Aj = A \ {η0, . . . , ηj−1}.

Proof. Suppose ω = [ω0, . . . , ωn] is such that LE(ω) = η. Define the indices
j0, j1, . . . , jm as in the definition of LE(ω). This gives a unique decomposition

ω = l0 ⊕ [η0, η1]⊕ l1 ⊕ [η1, η2]⊕ · · · ⊕ [ηm−1, ηm]⊕ lm,

where lj ∈ KAj (ηj , ηj). Conversely, any choice of lj ∈ KAj (ηj , ηj), j = 0, 1 . . . ,m
produces an ω as above with LE(ω) = η. Since

q(ω) = q(η) q(l0) q(l1) . . . q(lm),

we get

q̂(η) = q(η)

⎡
⎣ m∏
j=0

∑
lj∈KAj

(ηj ,ηj)

q(lj)

⎤
⎦ = q(η)

m∏
j=0

GAj (ηj , ηj).

The case when one or both of the endpoints of η is in ∂A is almost the same
except that there is no loop to be erased at the boundary point. We only state
the proposition.

Proposition 3.2. Suppose

η = [η0, η1, . . . , ηm] ∈ WA.
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Then

q̂(η) = q(η)

m∏
j=0

G∗
Aj

(ηj , ηj)

where Aj = A \ {η0, . . . , ηj−1} and

G∗
Aj

(ηj , ηj) =

{
GAj (ηj , ηj), ηj ∈ A,
1, ηj ∈ ∂A

.

The quantity
m∏
j=0

GAj (ηj , ηj)

appears to depend on the ordering of the vertices {η0, . . . , ηm}. Actually, as this
next proposition shows, it is independent of the order. The proof is easy (once
one decides that this is true!), and we leave it as an exercise.

Proposition 3.3. Let {x1, . . . , xn} ⊂ A and let

Fx1,...,xn(A) =

n∏
j=1

GAj (xj , xj),

where Aj = A \ {x1, . . . , xj−1}. Then if σ : {1, . . . , n} → {1, . . . , n} is a permu-
tation,

Fxσ(1),...,xσ(n)
(A) = Fx1,...,xn(A).

Exercise 3. Prove Proposition 3.3. Hint: first prove it for n = 2 and then
explain why this implies the general result.

Given the proposition, we can make the following definition.

Definition. If B = {x1, . . . , xn} ⊂ A, then

FB(A) =

n∏
j=1

GAj (xj , xj), Aj = A \ {x1, . . . , xj−1}. (4)

By convention, if B �⊂ A, we define FB(A) = FB∩A(A). Also,

F (A) = FA(A).

The proposition implies the rule

FB1∪B2(A) = FB1(A)FB2(A \B1). (5)

It also allows us to rewrite Propositions 3.1 and 3.2 as follows.

Proposition 3.4. If η = [η0, η1, . . . , ηm] ∈ WA, then

q̂(η) = q(η)Fη(A).
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In the statement of the proposition we have used η for both the path and
for the set of vertices in the path. We will do this often; hopefully, it will
not cause confusion.

In Proposition 5.2, we will give expression for FB(A) in terms of the loop
measure and the invariance under reordering will be seen from this. The next
proposition gives a formula for F (A) that is clearly invariant under permutation.

Proposition 3.5.

F (A) = detGA =
1

det(I −Q)
. (6)

Proof. If A has a single element x and q = q(x, x), then

GA(x, x) =
1

1− q
, Q = [q],

so the result is immediate.
We now proceed by induction on the number of elements of A. Assume it

is true for sets of n − 1 elements and let A = {x1, . . . , xn}, A′ = {x2, . . . , xn}.
From the formula we see that

F (A) = GA(x1, x1)F (A′).

Let v(y) = GA(y, x1) which satisfies

v(y) = δ(x1 − y) +
∑
z∈A

q(y, z) v(z).

In other words, the vector �v satisfies

(I −Q)�v = δx1

where δx1 is the vector with 1 in the first component and 0 elsewhere. Using
Cramer’s rule to solve this equation we see that

GA(x1, x1) =
det[M ]

det(I −Q)
,

where M is the matrix obtained from I−Q by changing the first column to δx1 .
By expanding along the first column, we see that

det[M ] = det(I −Q′),

where Q′ is Q restricted to the entries indexed by A′. Therefore, using the
inductive hypothesis,

F (A) = GA(x1, x1)F (A′) =
det[I −Q′]

det[I −Q]
F (A′) =

1

det[I −Q]
.

Exercise 4. Consider simple one-dimensional random walk with A = [n] :=
{1, 2, . . . , n}, ∂A = {0, n+ 1}. Compute F[m](A) for 1 ≤ m ≤ n.
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Exercise 5. Let A be the complete graph on n vertices, and A ⊂ A a set with
m < n vertices. Assuming that we are doing simple random walk on A, compute
F (A).

4. Loop-erased walk on Markov chains

For this section, we will only consider loop-erased walks arising from Markov
chain transition probabilities p. We assume that the reader knows basic facts
about Markov chains. As before, we write

Δf(x) =
∑
y∈X

p(x, y) [f(y)− f(x)]

for the Laplacian of the chain.

4.1. Loop-erased walk from transient chains

Let Sn be an irreducible transient Markov chain on a countable set X . We we
can define loop-erased random walk as a stochastic process by erasing loops
from the infinite path. Indeed, if

ω = [ω0, ω1, . . .], ωj ∈ X ,

is an infinite sequence of points such that no vertex appears an infinite number
of times, the loop-erasing algorithm in Section 3 outputs an infinite subpath
η = LE(ω). This probability measure on infinite self-avoiding paths can also be
viewed as a nonMarkovian process Ŝn starting at the same point as the chain
Sn.

We will give another description of the process by specifying for each SAW
η = [η0, η1, . . . , ηn] the probability that the LERW starts with η. If A ⊂ X is a
bounded set, let

φA(z) = Pz{Sn �∈ A for all n ≥ 0}.
It is well known that φA is the unique nonnegative function on X satisfying

φA(x) = 0, x ∈ A,

ΔφA(x) = 0, x ∈ X \A,
supx∈X φA(x) = 1.

We define the escape probability EsA(x) to be

EsA(x) = Pz{Sn �∈ A for all n ≥ 1} =

{
φA(x), x �∈ A.
ΔφA(x), x ∈ A

.

Proposition 4.1. If η = [x0, . . . , xn] is a self-avoiding walk in X starting at
x0, then

P
{
[Ŝ0, . . . Ŝn] = η

}
= p(η)Fη(X ) Esη(xn),

P
{
Ŝn+1 = z | [Ŝ0, . . . Ŝn] = η

}
=

p(xn, z)φη(z)∑
w∈X p(xn, w)φη(w)

. (7)
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The right-hand side of (7) is easily seen to be the conditional probability
that the Markov chain starting at xn takes its first step to z given that it
never returns to A.

Proof. Similarly as in the proof of Proposition 3.1, if ω = [ω0, ω1, . . .] is an
infinite path such that the loop-erasure LE(ω) starts with η, then we can write
ω uniquely as

ω = l0 ⊕ [x0, x1]⊕ l1 ⊕ [x1, x2]⊕ · · · ⊕ [xn−1, xn]⊕ ln ⊕ ω+, (8)

where lj is a loop rooted at xj contained in X \ {x0, . . . , xj−1} and ω+ is an
infinite path starting at xn that never returns to η. In this case, LE(ω) =
η ⊕ LE(ω+). The measure of possibilities for l0, . . . , ln is given by Fη(X ) and
the measure of possibilities for ω+ is Esη(xn). Given that ω+ does not return to
η, the first step of LE(ω+) is the same as the first step of ω+ and the conditional
probabilities for this step are given by (7).

The process Ŝn could have been defined using the transition probability (7).
Since φη is the solution of the Laplace’s equation Δφη = 0, the process is
sometimes called the Laplacian random walk. More generally, we can define a
process called the b-Laplacian random walk by using the transitions

P
{
Ŝn+1 = xn+1 | [Ŝ0, . . . Ŝn] = η

}
=

[p(xn, z)φη(z)]
b∑

w∈X [p(xn, w)φη(w)]b
,

where we set 0b = 0 even if b ≤ 0. For b �= 1, this process is much harder to study
and little is known about it rigorously. The case b = 0 is sometimes called the
infinitely growing self-avoiding walk (IGSAW). The IGSAW chooses randomly
among all possible vertices that will not trap the chain.

One could also have chosen the numerator to be p(xn, z)φη(z)
b and simi-

larly for the denominator. Neither case is understood. The only cases that I
know where this has been studied, p(xn, z) = p(xn, w) for all z, w for which
this probability is nonzero (such as simple random walk on a lattice), so
the two definitions would be the same.

The decomposition of ω into LE(ω) and the loops in l0, l1, l2, . . . in Proposi-
tion 4.1 extends to the infinite path. If xn = Ŝn, then the path of the Markov
chain is decomposed into

l0 ⊕ [x0, x1]⊕ l1 ⊕ [x1, x2]⊕ l2 ⊕ · · · .
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As a corollary of the proof, we get the conditional distribution of l0, l1, . . . given
its loop-erasure. We state the result. Recall that

GA(x, x) =
∑

l∈KA(x,x)

p(l).

Proposition 4.2. Given Ŝn = [x0, x1, x2, . . .] the distribution of l0, l1, . . . is
that of independent random variables taking values respectively in KXj (xj , xj).
The random variable lj has the distribution

P{lj = l} =
p(l)

GXj (xj , xj)
, l ∈ KXj (xj , xj). (9)

Here Xj = X \ {x0, . . . , xj−1}.
There is another way to view the distribution on loops in the last proposition.

For fixed j, let Sk = Sj
k denote the Markov chain starting at xj and let τj =

inf{k : Sk �∈ Xj} (this can equal infinity) and σj = max{k < τj : Sk = xj}.
Then it is easy to check that the distribution of the loop [S0, S1, . . . , Sσj ] is given
by (9). This gives us a method to obtain a path of the Markov chain by starting
with a loop-erased path (or, equivalently, a realization of the Laplacian walk
with transitions as in (7)) and adding loops with the appropriate distribution.
We omit the proof (we have done all the work already).

Proposition 4.3. Suppose we have independent Markov chains {Sx
k : x ∈ X},

each with transition matrix P, with Sx
0 = x. Create a new path as follows.

• Start with Ŝn = [Ŝ0, Ŝ1, . . .], a Laplacian random walk satisfying (7) start-
ing at x0 independent of {Sx}.

• For each j, let Xj = X \ {Ŝ0, . . . , Ŝj−1}. Choose a loop at Ŝj with distri-
bution (9) by using the method in previous paragraph. Note that the loops
{lj} are conditionally independent given Ŝn.

Then the path
l0 ⊕ [Ŝ0, Ŝ1]⊕ l1 ⊕ [Ŝ1, Ŝ2]⊕ l2 ⊕ · · ·

has the distribution of the Markov chain starting at x0.

One thing to emphasize about the last proposition is that the construction
has the following form.

• We first choose independently Ŝ and the loop-making Markov chains
{Sx

j }.
• The Markov chain S is then constructed as a deterministic function

of the realizations of these processes.

4.2. Loop-erased walk in a finite set A

Definition. Suppose A = A ∪ ∂A with ∂A nonempty and P is an irreducible
Markov chain on A. If x ∈ A, then loop-erased random walk (LERW) from
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x to ∂A is the probability measure on WA(x, ∂A) obtained by starting the
chain at x, ending at the first time that the chain leaves A, and erasing loops
chronologically.

Equivalently, using Proposition 3.2, we see that LERW is the probability
measure p̂ on WA(x, ∂A) given by

p̂(η) = p(η)Fη(A).

We can also describe this process by giving the transition probabilities for the
random process Ŝn. Let φη(y) = φη,A(y) denote the function on A satisfying

φη(y) = 0, y ∈ η,

Δφη(y) = 0, y ∈ A \ η,
φη(y) = 1, y ∈ ∂A.

As before, we let

Esη(y) = Esη,A(y) =

{
Δφη(y), y ∈ η
φη(y), y �∈ η

.

Proposition 4.4. Suppose η = [η0, . . . , ηk] ∈ WA(x,A). Then the probability
that the LERW from x to ∂A starts with η is

p(η)Fη(A) Esη(ηk).

Proof. Essentially the same as the proof of Proposition 4.1.

One can define the Laplacian b-walk on A similarly as to the transient case.

Proposition 4.5. Suppose Sn is an irreducible, transient Markov chain on a
countable state space X starting at x ∈ X and Aj is an increasing sequence of
subsets of X containing x, such that

X =

∞⋃
j=0

Aj .

Let η be a (finite) SAW in X starting at x and let p̂(η) and p̂j(η) denote the
probability that LERW starting at x to infinity and ∂Aj, respectively, start with
η. Then,

p̂(η) = lim
j→∞

p̂j(η).

Proof. For fixed η, we need only show that

lim
n→∞

Fη(A
n) = Fη(X ),

lim
n→∞

Esη,An(ηn) = Esη,X (ηn),

both of which are easily verified (Exercise 7).
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We state the analogue of Proposition 4.2 which is proved in the same way.

Proposition 4.6. Given η the distribution of l0, l1, . . . , lk−1 is that of inde-
pendent random variables taking values respectively in KAj (xj , xj). The random
variable lj has the distribution

P{lj = l} =
p(l)

GAj (xj , xj)
, l ∈ KAj (xj , xj). (10)

Here Aj = A \ {x0, . . . , xj−1}.
It is often useful to consider LERW from a boundary point to a subset of the

boundary. Suppose A, ∂A are given and z ∈ ∂A, V ⊂ ∂A\{z}. Then loop-erased
random walk from z to V in A is the measure on paths of total mass

H∂A(z, V ) :=
∑
w∈V

H∂A(z, w),

obtained from the measure p̂ restricted toWA(z, V ). This also gives a probability
measure on paths when we normalize so with total mass one. Let us consider this
probability measure. Note that if z ∈ A, then LERW from z to V is the same
as if we make z a boundary point. An important property that the probability
measure satisfies is the following:

• Domain Markov Property. Suppose z ∈ ∂A, V ⊂ ∂A \ {z}. Then the
probability measure of loop-erased random walk from z to V satisfies the
following domain Markov property : conditioned that the path starts as
η = [η0 = z, . . . , ηk], the remainder of the walk has the distribution of
LERW from ηk to V in A \ η.

There is a slight confusion in terminology that the reader must live with.
When referring to loop-erased random walk say from z to w in A where
z, w ∈ ∂A, one sometimes is referring to the measure on paths of total
mass H∂A(z, w) and sometimes to the probability measure obtained from
normalizing to total mass one. Both concepts are very important and the
ability to go back and forth between the two ideas is fruitful in analysis.

Exercise 6.

1. Verify the domain Markov property.
2. Extend it to the the following “two-sided” domain Markov property. Take

LERW from z to V in A and condition on the event that the beginning of
the path is η = [η0, . . . , ηk]; the end of the path is η′ = [η′0, . . . , η

′
j ] where

η′j ∈ V . Assume that η ∩ η′ = ∅ and that p(ηk, η
′
0) = 0. Show that the

conditional distribution of the remainder of the path is the same as LERW
from ηk to η′0 in A \ (η ∪ η′).
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Exercise 7. The following is used in the proof of Proposition 4.5. Suppose Xn

is an irreducible, transient Markov chain on a countable state space X ; An is
an increasing sequence of finite sets containing x whose union is X . Then for
all x ∈ X ,

lim
n→∞

GAn(x, x) = G(x, x),

lim
n→∞

EsA0,An(x) = EsA0(x).

Exercise 8. Using the notation of Proposition 4.6, suppose S is a random walk
starting at xj and let τ = min{k : Sk �∈ Aj}, σ = max{k < τ : Sj = xj}. Show
that the distribution of the loop [S0, S1, . . . , Sσ] is the same as (10).

4.3. Infinite LERW for recurrent Markov chains

If Xn is an irreducible, recurrent Markov chain on a countably infinite state
space X , then one cannot define LERW on X by erasing loops from the infinite
path. However, if one can prove a certain property of the chain, then one can give
a good definition. This property will hold for two-dimensional simple random
walk.

Let x0 ∈ X . Suppose An is an increasing sequence of finite subsets of X with
x0 ∈ A0 and whose union is X . Let η = [η0 = x0, . . . , ηk] be a SAW in X starting
at x0. In order to specify the distribution of the infinite LERW it suffices to give
the probability of producing η for each η. Using the previous section, we see
that we would like to define this to be

p̂(η) = lim
n→∞

p(η)Fη(An) EsAn(ηn).

Since Fη(An) = GAn(x0, x0)Fη(An \ {0}) ∼ GAn(x0, x0)Fη(X \ {x0}), we can
see that

p̂(η) = p(η)Fη(X \ {x0})
[
lim

n→∞
GAn(x0, x0) Esη,An(ηn)

]
,

assuming that the limit on the right-hand side exists.

• Property A. For every finite V ⊂ X and y ∈ V , there exists a nonnega-
tive function φV,y that vanishes on V and is harmonic (that is, ΔφV,y = 0)
on X \ V satisfying the following. Suppose An in an increasing sequence
of subsets of X whose union is X . Let φn be the function that is harmonic
on An \V ; vanishes on V ; and takes value 1 on X \ (An ∪V ). Then for all
x,

lim
n→∞

GAn(y, y)φn(x) = φV,y(x). (11)

In particular, if x ∈ V ,

lim
n→∞

GAn(y, y) EsV,An(x) = ΔφV,y(x).
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Definition. If a recurrent irreducible Markov chain satisfies Property A, then
we define the infinite LERW starting at x0 by

P
{
[Ŝ0, . . . , Ŝn] = η

}
= p(η) [Δφ(ηn)]Fη(X \ {x0}),

where φ = φη,x0 and η = [η0 = x0, η1, . . . , ηn].

We will show later the nontrivial fact that two-dimensional random walk
satisfies Property A. However, this property is not satisfied by all recurrent
chains as can be seen from the next example.

Exercise 9.

1. Show that one-dimensional simple random walk does not satisfy Property
A.

2. Show that if one takes y = 0, V = {0}, and An = {1 − n, 2 − n, . . . , n −
2, n− 1}, then the limit in (11) exists and give the limit.

3. Do the same with An = {1 − n, 2 − n, . . . , 2n − 2, 2n − 1} and show that
the limit exists but is different.

One could also define infinite LERW with respect to a particular sequence
{An} provided that the appropriate limit exists for this sequence.

Exercise 10. Suppose that Xn is an irreducible, recurrent Markov chain on
a countably infinite state space X , and An is an increasing sequence of finite
subsets of X whose union is X . Show that if x, y ∈ X ,

lim
n→∞

GAn(x, x)

GAn(y, y)
=

GX\{y}(x, x)

GX\{x}(y, y)
.

Is the recurrence assumption needed?

Exercise 11. Assume that Xn is an irreducible, recurrent Markov chain on a
countably infinite state space X that satisfies Property A. Let An be an increasing
sequence of finite subsets of X whose union is X and V a finite subset of X .

1. Show that there exists a single function φV and a positive function c(·) on
V such that for x ∈ V , φV,x = c(x)φV .

2. Show that the process is a Laplacian random walk in the sense that

P
{
Ŝn+1 = z | [Ŝ0, . . . Ŝn] = η

}
=

φη(z) p(ηn, z)∑
|w−xn|=1 φη(w) p(ηn, w)

3. Assume as given that two-dimensional simple random walk satisfies Prop-
erty A. Show that φV,x = φV,y for all x, y ∈ Z

2.

4.3.1. Random walk in Z2

Here we will show that two-dimensional simple random walk satisfies Property
A using known facts about the random walk. We will establish this property
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with y = 0 (the other cases are done similarly) and write φV,y = φV . Let
Cm = {z ∈ Z

2 : |z| < m} and if Sj denotes a simple random walk,

σm = min{j ≥ 0 : Sj �∈ Cm}.

The potential kernel (see [17, Section 4.4]) is defined by

a(x) = lim
n→∞

n∑
j=0

[P{Sj = 0} −P{Sj = x}] .

This limit exists, is nonnegative, and satisfies

a(0) = 0,

Δa(x) =

{
1, x = 0
0, x �= 0

,

a(x) =
2

π
log |x|+ c0 +O(|x|−2), x → ∞.

where c0 = (2γ + log 8)/π and γ is Euler’s constant. We set

φV (x) = a(x)−Ex [a(Sζ)] ,

where ζ = ζV = min{j ≥ 0 : Sj ∈ V }. It is known [17, Proposition 6.4.7] that

φV (x) = lim
m→∞

GCm(0, 0)Px{S[0, σm] ∩ V = ∅}.

Let An be an increasing sequence of finite subsets of Z2 containing V whose
union is Z2. Let τn = min{j : Sj �∈ An}; we need to show that

φV (x) = lim
n→∞

GAn(0, 0)P
x{S[0, τn] ∩ V = ∅},

Let m = mn be the largest integer with Cm ⊂ An.
Let us first consider the case V = {0}. Let T = inf{j > 0 : Sj = 0}. As usual

for Markov chains, we have

GAn(0, 0)
−1 = P0{T > τn}

= P0{T > σm}P0{T > τn | T > σm}
= GCm(0, 0)−1 P0{T > τn | T > σm}

Let hm(z) = HCm(0, z) denote the hitting probability of ∂Cm by a random
walk starting at the origin. Using a last exit decomposition, we can see that
P0{Sσm = z | σm < T} = hm(z). Therefore,

P0{T > τn | T > σm} =
∑

z∈∂Cm

hm(z)Pz{T > τn}.
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Using [17, Proposition 6.4.5], we see that for |x| < m/2,

Px{Sσm = z | σm < T} = hn(z)

[
1 +O

(
|x|
m

log
m

|x|

)]
,

from which we conclude that

Px{τn < T} = Px{σm < T}P0{T > τn | T > σm}
[
1 +O

(
|x|
m

log
m

|x|

)]
,

and

lim
n→∞

GAn(0, 0)P
x{τn < T} = lim

m→∞
GCm(0, 0)Px{σm < T} = a(x)

For more general V , let ζ = ζV and let φn denote the function that is har-
monic on An \ V with boundary value 0 on V and 1 on Z2 \An. Let ψn be the
corresponding function with V = {0}. Note that

φn(x) = ψn(x)−
∑
z∈V

Px{Sζ∧τn = z}ψn(z).

Therefore,

lim
n→∞

GAn(0, 0)φn(x)

= lim
n→∞

[
GAn(0, 0)ψn(x)−

∑
z∈V

Px{Sζ∧τn = z}GAn(0, 0)ψn(z)

]

= a(x)−
∑
z∈V

Px{Sζ = z} a(z) = φV (x).

4.4. Wilson’s algorithm

Suppose P is the transition matrix of an irreducible Markov chains on a finite
state space A = {x0, x1, . . . , xn} and let A = {x1, . . . , xn}. A spanning tree T
of (the complete graph) of A is a collection of n (undirected) edges such that A
with those edges is a connected graph. This implies that every point is connected
to every other point (this is what makes it spanning), and since there are only n
edges that there are no “loops” (this is what makes it a tree). Given a spanning
tree T , for each x ∈ A, there is a unique SAW η ∈ WA(x, x0) whose edges lie in
T . This gives us a directed graph (that we also label as T although it depends
on the choice of “root” x0) by orienting each edge towards the root.

The weight of T (with respect to x0) is given by

p(T ;x0) =

n∏
j=1

p(ej),

where the product is over the directed edges in the tree. We will now describe
an algorithm to choose a spanning tree with a fixed root x0.
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Definition. Given A,P, x0, Wilson’s algorithm to select a spanning tree is as
follows.

• Take a LERW in A starting at x1 to ∂A = {x0}. Include all the edges
traversed by the walk in the tree and let A2 be the set of vertices that
have not been connected to the tree yet.

and recursively,

• If Ak = ∅, then we have a tree and stop.
• Otherwise, let j be the smallest index such that xj �∈ Ak. Take a LERW

in Ak from xj to A \Ak. Add those edges to the tree and let Ak+1 be the
set of vertices that have not been connected to the tree.

Proposition 4.7. Given {x0},P, the probability that a particular spanning tree
T is chosen in Wilson’s algorithm is p(T ;x0)F (A). In particular,∑

T
p(T ;x0) =

1

F (A)
= det(I −P). (12)

Proof. Given any T we can decompose it in a unique way as follows.

• Let η1 be the path in T from x1 to x0.
• Given η1, . . . , ηk, let xj be the vertex of smallest index (if any) that is

not included in η1 ∪ · · · ∪ ηk. Let ηk+1 be the unique path from xj to
η1 ∪ · · · ∪ ηk. (If there were more than one path, then there would be a
loop in the tree.)

Given this decomposition of T into η1, . . . , ηk we can see from repeated appli-
cation of Proposition 3.4 that the probability of choosing T is

p(η1)Fη1(A) p(η2)Fη2(A \ η1) · · · p(ηk)Fηk(A \ (η1 ∪ · · · ∪ ηk−1)).

but p(η1) · · · p(ηk) = p(T ;x0) and (5) shows that

F (A) = Fη1(A)Fη2(A \ η1) · · ·Fηk(A \ (η1 ∪ · · · ∪ ηk−1)).

The second equality in (12) follows from (6).

A particularly interesting case of this result is random walk on a graph.
Suppose (G, E) is a simple, connected graph with vertices {x0, x1, . . . , xn}. Let
us do the “Type II” version of random walk on the graph. Then for each spanning
tree T of G we have

p(T ;x0) = n−n.

In particular each tree is chosen with equal probability and this probability is

n−n F (A) =
1

nn det(I −P)
=

1

det[n(I −P)]
.

Recall that n(I −P) is the graph Laplacian. We have proved an old result due
to Kirchhoff sometimes called the matrix-tree theorem.
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Corollary 4.8 (Kirchhoff). The number of spanning trees of a graph is given
by the determinant of the graph Laplacian.

Exercise 12. Explain why doing Wilson’s algorithm with a “Type I” simple
random walk on a graph generates the same distribution (that is, the uniform
distribution) on the set of spanning trees.

Exercise 13. Use Proposition 4.7 and Exercise 5 to compute the number of
spanning trees in a complete graph.

We will generalize this a little bit. Given A = A ∪ ∂A, we define the graph
obtained by wiring the boundary ∂A to be the graph with vertex set A∪ {∂A}
(that is, considering ∂A as a single vertex) and retaining all the edges with at
least one vertex in A. This gives some multiple edges between vertices in A and
∂A, but we retain the multiple edges. A wired spanning tree for A is a spanning
tree for the wired graph. Wilson’s algorithm gives a method for sampling from
the uniform distribution on wired spanning trees. We can describe the algorithm
recursively as follows.

• Choose any vertex x ∈ A and let η be LERW from x to ∂A. Let A′ = A\η.
• If A′ �= ∅, choose a uniform wired spanning tree from A′.

What we emphasize here is that we can choose any vertex at which to start the
algorithm, and after adding a SAW η to the tree, we can choose any remaining
vertex at which to continue. If we take the uniform wired spanning tree and
restrict to the edges in A, then we call the resulting object the uniform spanning
forest on A. The terminology is perhaps not best because this is not the same
thing as looking at all spanning forests of A and choosing one at random. Since
we will use this terminology we define it here.

Definition. Suppose (A,E) is a connected graph and A is a strict subset of A.

• The uniform wired spanning tree on A is a spanning tree of A ∪ {∂A}
chosen uniformly over all spanning trees of the wired graph.

• The uniform spanning forest of A is the uniform wired spanning tree of A
restricted to the edges for which both endpoints are in A,

Wilson’s algorithm applied to the simple random walk on the graph generates
a uniform wired spanning tree and hence a uniform spanning forest.

4.5. Uniform spanning tree/forest in Z
d

The uniform spanning tree in Z
d is the limit as n → ∞ of the uniform spanning

forest on the discrete ball Cn = {x ∈ Z
d : |x| < n}. If d = 1, the uniform

spanning forest of Cn is all of Cn, so we will consider only d ≥ 2. We will use
Wilson’s algorithm to give a different definition for the forest, but then we will
prove it is also the limit of the uniform spanning forests on Cn. The construction
will yield a spanning tree of Zd if d = 2, 3, 4, but will only be a forest for d ≥ 5.
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The difference between d ≤ 4 and d ≥ 5 comes for a property about loop-erased
random walk that we now discuss. If Sj is a simple random walk we write

S[0, n] = {Sj : 0 ≤ j ≤ n}.

Proposition 4.9. If S1, S2 are independent simple random walks in Z
d starting

at the origin, then

P
{
S1[0,∞) ∩ S2[0,∞) is infinite

}
=

{
1, d ≤ 4
0, d ≥ 5

,

P
{
S1[0,∞) ∩ S2[1,∞) = ∅

} { = 0, d ≤ 4
> 0, d ≥ 5

.

Exercise 14. Prove Proposition 4.9. You may want to consider first the expec-
tation of

#
[
S1[0,∞) ∩ S2[0,∞)

]
.

A little harder to prove is the following.

Proposition 4.10. If S1, S2 are independent simple random walks starting at
the origin then

P{Ŝ1[0,∞) ∩ S2[1,∞) = ∅}
{

= 0, d ≤ 4
> 0, d ≥ 5

.

We will not prove this. The critical dimension is d = 4. The probability that
two simple random walks in Z

4 starting at neighboring points go distance R
without intersecting is comparable to (logR)−1/2. The probability that one
of the walks does not intersect the loop-erasure of the other is comparable
to (logR)−1/3.

Using this proposition, we will now define the spanning tree/forest in the
three cases. In each case we will use what we will call the infinite Wilson’s
algorithm. We assume that we start with an enumeration of Zd = {x1, x2, . . . , }
and we have independent simple random walks Sj

n starting at xj . The algorithm
as we state it will depend on the particular enumeration of the lattice, but it will
follows from Theorem 1 below that the distribution of the object is independent
of the ordering.

4.5.1. Uniform spanning tree for d = 3, 4

• Start by taking S1 and erasing loops to get Ŝ1[0,∞). Include all the edges
and vertices of Ŝ1[0,∞) in the tree. We call this tree (which is not span-
ning) T̃1.
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• Recursively, if xj ∈ Tj−1, we set Tj = Tj−1. Otherwise, consider the ran-

dom walk Sj and stop it at the first time T j it reaches a vertex in T̃j−1. By
Proposition 4.10, this happens with probability one. Take the loop-erasure
LE(Sj [0, T j ]) and add those edges and vertices to the tree to form T̃j .

This algorithm does not stop in finite time, but it gives a spanning tree of the
infinite lattice Z

d. To be more precise, suppose that Cm ⊂ {x1, . . . , xk}. Then
every vertex in Cm in included in T̃k, and it is impossible to add any more edges
adjacent to a vertex in Cm. Hence for all n ≥ k,

T̃k ∩ Cm = T̃n ∩ Cm,

and hence we can set T ∩ Cm = T̃k ∩ Cm. Here we are writing T ∩ Cm for the
set of edges in T that have both vertices in Cm.

This distribution on spanning trees is called the uniform spanning tree on
Z
d, d = 3, 4.

4.5.2. Uniform spanning tree for d = 2

The uniform spanning tree for d = 2 is defined similarly. The only difference is
that in the first step, one takes the infinite LERW starting at x1 as discussed in
Section 4.3 and uses those edges to form T̃1. The remaining construction is the
same.

4.5.3. Uniform spanning forest for d ≥ 5

The construction will be similarly to d = 3, 4 except that the T̃k will only be
forests, that is, they will not necessarily be connected.

• Start by taking S1 and erasing loops to get Ŝ1[0,∞). Include all the edges
and vertices of Ŝ1[0,∞) in the forest T̃1.

• Recursively, if xj is a vertex in the forest T̃j−1, then we set T̃j = T̃j−1.
Otherwise, consider the random walk Sj and stop it at the first time T
it reaches a vertex in T̃j . It is possible that T = ∞. Erase loops from
Sj [0, T ] and add those edges and vertices to the tree. If T < ∞, this adds
edges to one of the components of T̃j−1. If T = ∞, this adds the complete

loop-erasure Ŝj [0,∞) and hence gives a new connected component to the
forest.

The output of this algorithm is an infinite spanning forest T f with an infinite
number of components.

Exercise 15. Show that the uniform spanning forest for d ≥ 5 has an infinite
number of components.

This was not the original definition of the uniform spanning tree/forest.
Rather, it was described as a limit of trees on finite subsets of Zd. Let Cn = {x ∈
Z
d : |x| < n} and consider the uniform spanning forest on Cn. To be precise,
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we construct the uniform spanning tree Tn on the wired graph Cn ∪ {∂Cn} and
let T f

n be the forest in Cn obtained by taking only the edges in Cn.

For every finite set A, we write A ∩ T f
n for the set of edges in T f

n with both
vertices in A. This gives a probability measure νA,n on forests in A. We can
also consider the probability measure νA obtained from intersecting the infinite
spanning tree with A.

Theorem 1. If T f denotes the uniform spanning forest (or tree) in Z
d, then

we can couple T f and {T f
n : n ≥ 1} on the same probability space, such that

with probability one for each finite set A, for all n sufficiently large

T f
n ∩A = T f ∩A.

Proof. If suffices to prove this for A = Cm, and we write Tn,m, T∞,m for T f
n ∩

Cm, T f ∩ Cm, respectively. We will do the d ≥ 3 case leaving the d = 2 case as
an exercise. Assume d ≥ 3 and choose any ordering of Zd = {x1, x2, . . .}. We
assume we have a probability space on which are defined independent simple
random walks Sj

i starting at xj . Given these random walks the spanning forest
T is output using Wilson’s algorithm above (it is a forest for d ≥ 5 and a tree
for d = 3, 4, but we can use a single notation). For each n, we construct the
uniform spanning forest on Cn on the same probability space, using Wilson’s
algorithm with the same random walks and the same ordering of the points.
The only difference is that the random walks are stopped upon reaching ∂Cn.
We recall that the distribution of this forest is independent of the ordering. If
m < n, we will write T f

∞,m, T f
n,m for the forests restricted to Cm.

We fix m. Given the realization of the random walks Sj we find N as follows.
We write T̃k for the (non-spanning) forest obtained from the infinite Wilson’s
algorithm stopped once all the vertices {x1, . . . , xk} have been added to Tk. We
write T̃k,n for the analogous forest for the walks stopped at ∂Cn.

• Choose k sufficiently large so that Cm+1 ⊂ {x1, . . . , xk}. In particular,
every vertex in Cm+1 has been added to T̃k. We partition {x1, . . . , xk} as
V1 ∪ V2 where V1 are the points xj such that Sj [0,∞) ∩ Tj−1 �= ∅. By
definition, x1 ∈ V2; if d = 3, 4, then V2 = {x1}, but V2 can be larger for
d ≥ 5.

• Choose n1 sufficiently large so that for each xj ∈ V1, The path Sj hits

T̃j−1 before reaching ∂Cn1 .
• Choose n1 < n2 < N such that each for each j ∈ V2, the random walk

Sj never returns to Cn1 after reaching ∂Cn2 and never returns to Cn2

after reaching ∂CN . Note that this implies that for every n ≥ N , the
intersection of Cn1 and the loop-erasure of Sj stopped when it reaches
∂Cn is the same as intersection of Cn1 and the loop-erasure of the infinite
path.

Then one readily checks that for n ≥ N , Tn,m = T∞,m.
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While this proof was not very difficult, it should be pointed out that no
estimates were given for the rate of convergence. Indeed, the numbers
n1, n2, N in the proof can be very large.

Given the infinite spanning tree or forest, we can also consider the intersection
of this with a discrete ball Cn. This gives a forest in Cn. For d = 2, 3, the largest
components of this forest have on order nd points. However, for d = 4, there are
of order logn components of order n4/ logn points. In other words, the uniform
spanning tree in Z4 does not look like a tree locally.

Exercise 16. Prove Theorem 1 for d = 2.

5. Loop measures and soups

5.1. Loop measure

Recall that a loop rooted at x in A is an element of KA(x, x). We will say that
l ∈ KA(x, x) is an elementary loop if it is nontrivial (|l| > 0) and the only visits
to x occur at the beginning and terminal vertices of l. We write L̃1

x = L̃1
x(A)

for the set of elementary loops in A rooted at x. Recall that if q is an integrable
weight,

fx =
∑
l∈L̃1

x

q(l), GA(x, x) =
1

1− fx
. (13)

Any nontrivial loop l ∈ KA(x, x) can be written uniquely as

l = l1 ⊕ · · · ⊕ lk, (14)

where k is a positive integer and l1, . . . , lk ∈ L̃1
x. We write L̃k

x for the set of loops
of the form (14) for a given k, and we write L̃0

x for the set containing only the
trivial loop at x. Let L̃x = L̃x(A) be the set of nontrivial loops, so that we have
partitions

KA(x, x) =

∞⋃
k=0

L̃k
x(A), L̃x(A) =

∞⋃
k=1

L̃k
x(A).

Note that q(L̃k
x) = fk

x . We will define a measure on nontrivial loops, that is, on

L̃(A) :=
⋃
x∈A

L̃x(A).

Definition. If q is a weight on A, then the (rooted) loop measure m̃ = m̃q
A is

defined on L̃(A) by
m̃(l) =

q(l)

|l| .
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The loop measure is a measure on L̃(A) and hence gives zero measure to
trivial loops. It may not be immediately clear why one would make this defini-
tion. The usefulness of it comes when we consider the corresponding measure on
unrooted loops. An unrooted loop is an oriented loop that has forgotten where
the loop starts.

Definition. An (oriented) unrooted loop � is an equivalence class of rooted
loops of positive length under the equivalence relation generated by

[l0, l1, . . . , ln] ∼ [l1, l2, . . . , ln, l1] ∼ [l2, l3, . . . , ln, l1, l2] ∼ · · · .

• Let L(A) denote the set of unrooted loops in A.
• If B ⊂ A, let L(A;B) denote the set of unrooted loops in A that include

at least one vertex in B. If B = {x} is a singleton, we also write L(A;x).

We will write � for unrooted loops and l for rooted loops. We write l ∈ � if
l is a representative of the unrooted loop �. Note that |l| and q(l) are the same
for all representatives of an unrooted loop � so we can write |�| and q(�).

For each unrooted loop, let s	 denote the number of distinct representatives
l of �. If s	 = |�| we call � irreducible; we also call a rooted loop l irreducible if
its corresponding � is irreducible. More generally, if |�| = n, s	 = s, then each
representative of � can be written as

l = l′ ⊕ · · · ⊕ l′︸ ︷︷ ︸
n/s

where l′ is an irreducible loop of length s. For example, if � is the unrooted loop
with representative [x, y, x, y, x] we have s	 = 2 and the two irreducible loops
are [x, y, x] and [y, x, y]. Note that s	 is always an integer dividing n.

For rooted loops we have two different notions: elementary and irreducible.
The words are similar but refer to different things. Elementary loops are
irreducible but irreducible loops are not necessarily elementary.
The notion of elementary loops is used only for rooted loops while irre-
ducibility is a property of an unrooted loop.

Definition. The unrooted loop measure m = mq
A is the measure on L(A) in-

duced by the rooted loop measure. More precisely, for every � ∈ L(A),

m(�) =
∑
l∈	

m̃(l) = s	
q(�)

|�| .
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Definition.

• If l is a loop and x ∈ A, we let n(l;x) be the vertex local time, that is, the
number of times that the loop visits x. To be precise, if

l = [l0, l1, . . . , ln],

then
n(l;x) = #{j : 1 ≤ j ≤ n : lj = x}.

In particular, n(l;x) = k if l ∈ L̃k
x(A).

• If � is an unrooted loop, we similarly write n(�;x).

The next proposition is important. It relates the unrooted loop measure re-
stricted to loops that visit x to a measure on loops rooted at x.

Proposition 5.1. Let m′ = m′
A,x denote the measure on L̃x = L̃x(A) that gives

measure
q(l)

n(l;x)

to each l ∈ L̃x. In other words, if V ⊂ L̃x, then

m′(V ) =

∞∑
k=1

k−1 q
[
V ∩ L̃k

x

]
.

Then the induced measure on unrooted loops is m restricted to L(A;x).
Proof. Let l be a representative of � in L̃x and let s = s	, n = |�|. Then we can
write

l = l′ ⊕ · · · ⊕ l′︸ ︷︷ ︸
n/s

,

where l′ is an irreducible loop in L̃x. The loop l′ is the concatenation of n(l′;x)
elementary loops. Note that n(l;x) = (n/s)n(l′;x), and there are n(l′;x) dis-
tinct representatives of � in L̃x.

Recall that if B = {x1, . . . , xn}, then

FB(A) =

n∏
j=1

GAj (xj , xj),

where Aj = A \ {x1, . . . , xj−1}. In Proposition 3.3 (actually in Exercise 3), it
was shown that this is independent of the ordering of the points of B. In the
next proposition we give another expression for FB(A) in terms of the unrooted
loop measure that is clearly independent of the ordering.

Proposition 5.2. Suppose that q is an integrable weight on A.

1. If x ∈ A,
exp {m [L(A;x)]} = GA(x, x).



Loop measures 59

2. If B ⊂ A, then

FB(A) = exp {m[L(A;B)]} .

3. In particular,

exp {m[L(A)]} = F (A) = detGA =
1

det[I −Q]
.

Proof.

1. By the previous lemma, the measure m restricted to L(A;x) can be ob-
tained from m′ = m′

A,x by “forgetting the root”. Using (13), we get

m [L(A;x)] =
∞∑
k=1

k−1 q
[
L̃k
x(A)

]
=

∞∑
k=1

k−1 fk
x

= − log[1− fx] = logGA(x, x).

2. If B = {x1, . . . , xn} and Aj = A \ {x1, . . . , xj−1} we partition L(A;B) as

L(A;B) = L(A;x1) ∪ L(A1;x2) ∪ · · · ∪ L(An;xn),

and use part 1 j times.
3. This is part 2 with B = A combined with (6).

The last proposition might appear surprising at first. The first equality can
be rewritten as

exp

⎧⎨
⎩ ∑

	∈L(A;x)

mq(�)

⎫⎬
⎭ =

∑
l∈KA(x,x)

q(l).

On the right-hand side we have a measure of a set of paths and on the left-hand
side we have the exponential of the measure of a set of paths. However, as the
proof shows, this relation follows from the Taylor series for the logarithm,

− log(1− q) =

∞∑
k=1

qk

k
.

As a corollary of this result, we see that a way to sample from the unrooted
loop measure m on A is to first choose an ordering A = {x1, . . . , xn} and then
sample independently from the measures on rooted loops m̃xj ,Aj where Aj =
A \ {x0, . . . , xj−1}. Viewed as a measure on unrooted loops, this is independent
of the ordering of A.

5.2. Soups

We use the word soup for the more technical term “Poissonian realization” from
a measure. If X is a set, then a multiset of X is a subset where elements can
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appear multiple times. A more precise formulation is that a multiset of X is an
element of NX , that is, a function

N : X → N,

where N(x) = j can be interpreted as saying that the element x appears j times
in the multiset. Here N = {0, 1, 2, . . .}. Let NX

fin denote the finite multisets, that
is, the N such that #(x : N(x) > 0} is finite.

Definition. If μ is a positive measure on a countable state space X , then a
soup is a collection of independent Poisson processes

N t := {Nx
t : x ∈ X},

where Nx has rate μx = μ(x).

If μ is a finite measure, then Nt ∈ N
X
fin with probability one and the distri-

bution of the soup at time t is

P{Nt = N} = e−t‖μ‖
∏
x∈X

(tμx)
N(x)

N(x)!
.

Although the product is formally an infinite product, since N ∈ NX
fin, all but a

finite number of terms equals one. We can give an alternative definition of a loop
soup in terms of the distributions. This definition will not require the measure
to be positive, but it will need to be a complex measure. In other words, if μx

denotes the measure of x, then we need

‖μ‖ :=
∑
x∈X

|μx| < ∞.

Definition. If μ is a complex measure on a countable set X , then the soup is
the collection of complex measures {νt} on N

X
fin given by

νt
[
N
]
= e−tμ(X )

∏
x∈X

(tμx)
N(x)

N(x)!
. (15)

The generalization to complex measures is straightforward but it is not clear
if there is a probabilistic intuition. Let us consider the simple case of a “Poisson
random variable with parameter λ ∈ C”. This does not make literal sense but
one can talk about its “distribution” which is the complex measure ν on N given
by

ν(k) = e−λ λk

k!
, k = 0, 1, 2, . . . .

As in the positive case, ν(N) = 1; however, the total variation is larger,

‖ν‖ =

∞∑
k=0

∣∣∣∣e−λ λk

k!

∣∣∣∣ = e|λ|−Re(λ).
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Using this calculation, we can see that νt as defined in (15) is a complex measure
on N

X
fin of total variation

‖νt‖ =
∏
x∈X

exp {t[|μx| − Re(μx)]} = exp {t(‖μ‖ − Re[μ(X )])} .

5.3. The growing loop at a point

In this subsection, we fix x ∈ A and an integrable weight q and consider loops
coming from the measure m′ = m′

A,x as in Proposition 5.1. We first consider
the case of positive weights p ≥ 0. Recall that the measure m′ is given by

m′(l1 ⊕ · · · ⊕ lk) = k−1 p(l1) · · · p(lk), lj ∈ L̃1 := L̃1
x(A).

Sampling from m′ can be done in a two-step method,

• Choose k ∈ N from the measure

ν(k) =
1

k
fk where f = fx =

∑
l∈L̃1

p(l),

• Given k, choose l1, . . . , lk independently from the probability measure p/f
on L̃1.

At time t, the soup outputs a (possible empty) multiset of loops in L̃x. If we
concatenate them in the order they appear, we get a single loop in KA(x, x),
which we denote by l(t). We can also write l(t) as a concatenation of elementary
loops. If no loops have appeared in the soup, then the concatenated loop is
defined to be the trivial loop [x].

Definition. The process l(t) is the growing loop (in A at x induced by p) at
time t.

The growing loop at time t is a concatenation of loops in L̃x(A); if we only
view the loop l(t) we cannot determine how it was formed in the soup.

The growing loop can also be defined as the continuous time Markov chain
with state space KA(x, x) which starts with the trivial loop and whose transi-
tion rate of going from l̃ to l̃ ⊕ l is m′(l). The next proposition computes the
distribution of the loop l(t).

Proposition 5.3.

• The distribution of the growing loop at x at time t, is

μt(l) =
1

GA(x, x)t
Γ(k + t)

k! Γ(t)
p(l) l ∈ L̃k

x(A).
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• In particular, the distribution at time t = 1 is given by

μ1(l) =
p(l)

GA(x, x)
l ∈ L̃k

x(A).

The expression involving the Gamma function is also written as the general
binomial coefficient defined by(

k + t− 1

k

)
:=

(k + t− 1) (k + t− 2) · · · (k + t− k)

k!
=

Γ(k + t)

k! Γ(t)
.

We choose to use the Gamma function form because we will occasionally
use properties of the Gamma function.

Proof. We can decompose the growing loop at time t into a number of elemen-
tary loops lj ∈ L̃1. Let Kt be the number of elementary loops in l(t). Given Kt,
the elementary loops l1, . . . , lk are chosen independently from the measure p/f .

To compute μt we first consider the distribution on N for the number of
elementary loops at t. Given the number of such loops, the actual loops are
chosen independently from p/f . In other words, the distribution μt at time t
can be written as

μt[l
1 ⊕ · · · ⊕ lk] = P{Kt = k} p(l1) · · · p(lk)

fk
, l1, . . . , lk ∈ L̃1.

The processKt is sometimes called the negative binomial process with parameter
f . It can also be viewed as the Lévy process with Lévy measure fk/k, which
can be written as a compound Poisson process

Kt = Y1 + · · ·+ YNt ,

where Nt is a Poisson process with parameter m′(L̃) = − log(1 − f), and
Y1, Y2, . . . are independent random variables with distribution

P{Yj = k} =
1

− log(1− f)

fk

k
.

The distribution of Kt is given by (see remark below)

P{Kt = r} =
Γ(r + t)

r! Γ(t)
fr (1− f)t =

(
r + t− 1

r

)
fr (1− f)t. (16)

Therefore if l = l1 ⊕ · · · ⊕ lk with lj ∈ L̃1,

μt(l) =

[
Γ(k + t)

k! Γ(t)
fk (1− f)t

]
p(l1) · · · p(lk)

fk
=

Γ(k + t)

k! Γ(t)
(1− f)t p(l).

Recalling that (1− f) = 1/GA(x, x), we get the result.
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Here we discuss some facts about the negative binomial process Kt with
parameter p ∈ (0, 1). At time 1, K1 will have a geometric distribution with
parameter p,

P{K1 = k} = pk(1− p), k = 0, 1, 2, . . . ,

and hence

E
[
eisK1

]
=

∞∑
k=0

eiks pk (1− p) =
1− p

1− peis
.

Since Kt is a Lévy process, we see that the characteristic function of Kt

must be [
1− p

1− peis

]t
.

To check that (16) gives the distribution for Kt, we compute the charac-
teristic function. Using the binomial expansion (for positive, real t), we see
that

(1− p)−t =

∞∑
k=0

Γ(k + t)

k! Γ(t)
pk,

which shows that

νt(k) :=
Γ(k + t)

k! Γ(t)
pk (1− p)t,

is a probability distribution on N. Moreover, if Kt has distribution νt,

E
[
eisKt

]
=

∞∑
k=0

Γ(k + t)

k! Γ(t)
pk (1− p)t eiks =

[
1− p

1− peis

]t
.

Exercise 17. Let f ∈ (0, 1) and let μt denote the probability distribution on N

given by

μt(k) = P{Kt = k} =
Γ(k + t)

k! Γ(t)
fk (1− f)t.

Show that for each k,

lim
t↓0

t−1 μt(k) =
1

− log(1− f)

fk

k
.

We can extend the last result to show a general principle

• The distribution of the loops erased in a LERW is the same as that of the
appropriate soup at time t = 1.

Corollary 5.4. Suppose ω ∈ KA(x, y) and l denotes the loop erased at x in the
definition of LE(ω). Then the distribution of l is the same as the distribution
of the growing loop at time t = 1.
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Proof. This follows immediately by comparison with Proposition 4.6.

The growing loop distribution is also defined for complex integrable weights q
although some of the probabilistic intuition disappears. Let f = fx be as before
although now f can be complex. Integrability implies that |f | < 1, so we can
define the negative binomial distributions

νt(k) =
Γ(r + t)

r! Γ(t)
fr (1− f)t.

Since |f | < 1, this gives a complex measure on N with

νt(N) =

∞∑
j=0

Γ(r + t)

r! Γ(t)
fr (1− f)t = 1.

We can then define

μt(l) =
1

GA(x, x)t
Γ(k + t)

k! Γ(t)
q(l) l ∈ L̃k

x(A), (17)

and we can check that μt is a complex measure on L̃x(A) with μt[L̃x(A)] = 1. If q
is green but not integrable, the formula (17) defines a function on [0,∞)×L̃k

x(A)
although μt is not necessarily a measure.

As in the case of positive weights, we can view the measure μk for inte-
grable q in two steps: first, choose k according to (the complex measure)
νt and then, given k, choose independent l1, . . . , lk from the measure q/f .

This latter measure gives measure one to L̃1
x, although it is not a proba-

bility measure since it is not a positive measure.

Exercise 18. Let z be in the open unit disk of the complex plane and

q(t, r) =
Γ(r + t)

r! Γ(t)
zr (1− z)t, r = 0, 1, 2, . . .

Verify directly that q(t, r) is the solution of the system

∂t q(t, r) = log(1− z) q(t, r) +

r∑
k=1

q(t, r − k)
zk

k
.

with initial condition

q(0, r) =

{
1, r = 0,
0, r ≥ 1.

You may wish to derive or look up properties of the logarithmic derivative of the
Gamma function,

ψ(x) =
Γ′(x)

Γ(x)
.
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5.4. Random walk bubble soup

We continue the discussion of the previous subsection to define what we call the
(random walk) bubble soup. We start with a finite set A and an ordering of the
points A = {x1, . . . , xn}. As before, we write Aj = A \ {x1, . . . , xj−1}.
Definition. The (random walk) bubble soup (for the ordering x1, . . . , xn) is an
increasing collection of multisets from L̃(A) obtained by taking the union of the
independent soups from m′

xj ,Aj
.

The colorful terminology “bubble soup” come from the relation between
this discrete construction and a construction of the Brownian loop soup
in terms of (boundary) “bubbles”.

By concatenation we can also view the bubble soup as an n-tuple of growing
loops l(t) = (l1(t), . . . , ln(t)), where lj(t) is the loop growing at xj in Aj . These
loops grow independently (although, of course, their distribution depends on the
ordering of A). More generally, if B = {x1, . . . , xk} ⊂ A is an ordered subset of
A, we can define the bubble soup restricted to L̃(A;B) as a collection of growing
loops l(t) = (l1(t), . . . , lk(t)). The following is an immediate consequence of
Proposition 5.3 and the relation

detG =

n∏
i=1

GAi(xi, xi).

Proposition 5.5. The distribution of the bubble soup at time t is given by

μt(l) =
q(l)

[detG]t

[
n∏

i=1

Γ(ji + t)

ji! Γ(t)

]
,

where l = (l1, . . . , ln); q(l) = q(l1) · · · q(ln); and ji is the number of elementary
loops in li, that is, li ∈ L̃ji

xi
(Ai). In particular,

μ1(l) =
q(l)

detG
,

μ1/2(l) =
q(l)√
detG

[
n∏

i=1

Γ(ji +
1
2 )

ji!
√
π

]
. (18)

Note that we can write

μt(l) = c(t, l)
q(l)

[detG]t
,
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where c(t, l) is a combinatorial term, independent of q,

c(t, l) =

n∏
i=1

Γ(ji + t)

ji! Γ(t)
.

Proposition 5.6. Suppose p comes from a Markov chain. Suppose x ∈ A, and
the loop-erased walk from x to ∂A is

η = [η0 = x0, x1, . . . , xn, ηn+1].

Then given that the loop-erasure is η, the distribution of the loops erased is the
same as the growing loops restricted to η using the ordering {x0, . . . , xn].

We can state this a different way.

Proposition 5.7. Suppose p is coming from a Markov chain and x0 ∈ A.

• Let η = [η0, η1, . . . , ηn] be LERW from x0 to ∂A. That is, η is chosen from
the probability distribution on WA(x0, ∂A),

p̂(η) = p(η)Fη(A).

• Given η, take a realization of the bubble soup using the ordering {η0, . . . ,
ηn−1}. Let l(1) = [l0, . . . , ln−1] be the loops that intersect η at time t = 1.

Then the path

ω = l0 ⊕ [η0, η1]⊕ l1 ⊕ [η1, η2]⊕ l2 ⊕ · · · ⊕ ln−1 ⊕ [ηn−1, ηn]

has the distribution of the Markov chain started at 0 ending at ∂A. In other
words, for each ω ∈ KA(x0, ∂A), the probability that this algorithm outputs ω is
p(ω).

5.5. Random walk loop soup

Definition. The (random walk) loop soup is a soup from the measure m on
unrooted loops � ∈ LA.

If q is a positive measure, then the soup can be viewed as an independent
collection of Poisson processes {X	

t : � ∈ LA}, where X	 has parameter m(�). If
q is complex, the soup is defined only as the collection of complex measures νt
on NLA . The definition of the unrooted loop soup does not require an ordering
of the points on A.

However, if a realization of the loop soup is given along with an ordering of the
vertices A = {x1, . . . , xn} we can get a soup on rooted loops with a little more
randomness. Indeed, suppose that an ordering of the vertices A = {x1, . . . , xn}
is given. If � ∈ LA, we choose a rooted representative of � as follows:

• Find the smallest j such that the vertex xj is in �.
• Consider all l ∈ � that are rooted at xj and select one (uniformly).
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This gives a collection of rooted loops. At any time t we can construct a loop in
KA(x, x) by concatenating all the loops in KA(x, x) that have been output by
time t, doing the concatenation in the order that the loops arrive.

Proposition 5.8. The random walk loop soup considered as a collection of
growing loops as above has the same distribution as the bubble loop soup.

Proof. This is not difficult to show given the fact that the measure m′
A,x, con-

sidered as a measure on unrooted loops Lx(A), is the same as m restricted to
Lx(A).

Proposition 5.9. Suppose p is coming from a Markov chain and x0 ∈ A.

• Let η = [η0, η1, . . . , ηn] be LERW from x0 to ∂A. That is, η is chosen from
the probability distribution on WA(x0, ∂A),

p̂(η) = p(η)Fη(A).

• Let {X	
t : � ∈ L(A)} denote an independent realization of the random walk

loop soup. Let us view the realization at time t = 1 as a finite sequence of
loops

[�1, �2, . . . , �M ]

where the loops are ordered according to the time they were added to the
soup.

• Take a subsequence of these loops, which we also denote by [�1, �2, . . . , �M ],
by considering only those loops that intersect η.

• For each �k let j be the smallest index such that ηj ∈ �k. Choose a rooted

representative l̃k of �k rooted at ηj. If there are several representatives
choose uniformly among all possibilities. Define loops lj , j = 0, . . . , n − 1
to be the loop rooted at ηj obtained by concatenating (in the order they

appear in the soup) all the loops l̃k that are rooted at ηj.

Then the path

ω = l0 ⊕ [η0, η1]⊕ l1 ⊕ [η1, η2]⊕ l2 ⊕ · · · ln−1 ⊕ [ηn−1, ηn]

has the distribution of the Markov chain started at 0 ending at ∂A. In other
words, for each ω ∈ KA(x0, ∂A), the probability that this algorithm outputs ω is
p(ω).

6. Relation to Gaussian field

There is a strong relationship between the loop soup at time t = 1/2 and
a Gaussian field that we will discuss here. We will consider only integrable,
Hermitian weights q, that is q(x, y) = q(y, x). If q is real, then this implies
that q is symmetric. This implies that for every path ω, q(ωR) = q(ω). Every
Hermitian weight can be written as

q(x, y) = p(x, y) exp{iΘ(x, y)},
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where p is positive and symmetric and Θ is anti-symmetric, Θ(x, y) = −Θ(y, x).
If q is an integrable Hermitian weight on A, then

fx =
∑

l∈L̃1
x(A)

q(l) ∈ R,

since q(l) + q(lR) ∈ R, and hence

GA(x, x) =
1

1− fx
∈
(
1

2
,∞
)
. (19)

Proposition 6.1. If q is an integrable, Hermitian weight on q, then the Green’s
matrix G is a positive definite Hermitian matrix.

Proof. Since I − Q is Hermitian, it is clear that G = (I − Q)−1 is Hermitian.
It suffices to prove that I − Q is positive definite. Since I − Q is Hermitian,
Sylvester’s criterion states that it suffices to show that for each V ⊂ A, that
det(I − QV ) > 0 where QV denotes Q restricted to the rows and columns
associated to V . If V = {x1, . . . , xk}, then (6) gives

1

det(I −QV )
= GV (x1, x1)GV1(x2, x2) · · · GVk

(xk, xk),

where Vj = V \ {x1, . . . , xj−1}. This is positive by (19).

6.1. Weights on undirected edges

Definition.

• A (real, signed) weight on undirected edges EA is a function θ : EA → R.
• If θ is a weight on EA, then there is a symmetric weight q = qθ on directed

edges given by

q(x, y) =

{
θxy/2, x �= y
θxx, x = y

. (20)

.
• Conversely, if q is a symmetric weight on EA, we define θ by

θe = θe,q =

{
q(x, y) + q(y, x) = 2q(x, y), x �= y
q(x, x), x = y.

(21)

• We say that θ is integrable or green if the corresponding q is integrable or
green, respectively.

• If f : A → C, we also write f for the function f : EA → C by fe = f(x) f(y)
where e connects x and y.

Clearly it suffices to give either θ or q, and we will specify symmetric weights
either way. Whenever we use θ it will be a function on undirected edges and q
is a function on directed edges. They will always be related by (20) and (21).
If we give θ, we will write just q for qθ. In particular, if θ is integrable, we can
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discuss the Laplacian Δ = Q−I and the Green’s function G = (I−Q)−1 where
Q = [q(x, y)]x,y∈A. We will write

D = det(I −Q) =
1

detG
.

6.2. Gaussian free field

Definition. Given a (strictly) positive definite symmetric real matrix Γ indexed
by a finite set A, the centered Gaussian field (with Dirichlet boundary condi-
tions) is a centered multivariate normal random vector {Zx : x ∈ A} indexed
by A with covariance matrix Γ.

The density of Zx is given by

f(x) =
1

(2π)#(A)/2
√
det Γ

exp

{
−1

2
〈f,Γ−1f〉

}
,

where 〈·〉 denotes the dot product

〈f,Γ−1f〉 =
∑

x,y∈A

f(x) Γ−1(x, y) f(y).

We will consider the case Γ = G,Γ−1 = I −Q = −Δ where q is a green weight.
Then we have

−〈f,Γ−1f〉 = −
∑
x∈A

f(x)2+
∑
x∈A

∑
y∈A

q(x, y) f(x) f(y) = −
∑
x∈A

f(x)2+
∑
e∈EA

θe fe.

Here θe is as defined in (21). From this we see that the Gaussian distribution
with covariance G has Radon-Nikodym derivative with respect to independent
standard Gaussians of

(detG)−1/2 exp

{
1

2

∑
e∈EA

θe fe

}
.

Definition. The Gaussian field generated by a green weight θ on EA is a random
vector {Zx : x ∈ A} indexed by A whose density is

φ(z̄)
√
D exp

{
1

2

∑
e∈EA

θe ze

}
. (22)

where φ = φA is the density of a standard normal random variable indexed
by A. This is the same as the centered Gaussian field with covariance matrix
Γ = (I −Q)−1.
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We will consider a two step process for sampling from the Gaussian field.
We first sample from the square of the field, and then we try to assign the
signs. Recall that if N is a standard normal random variable, then N2 has a
χ2-distribution with one degree of freedom. In particular, if T = N2/2, then T
has density (πt)−1/2 e−t. The next proposition gives the analogous computation
for the Gaussian field weighted by θ.

Proposition 6.2. Suppose {Zx : x ∈ A} is the Gaussian field generated by an
integrable weight θ on EA and let Tx = Z2

x/2. Then {Tx : x ∈ A} has density

[∏
x∈A

√
π tx

]−1

exp

{
−
∑
x∈A

tx

}
Φ (23)

where

Φ = Φq =
√
DE

[
exp

{∑
e∈EA

θeJe
√
te

}]
.

Here {Jx, x ∈ A} are independent random variables with P{Jx = 1} = P{Jx =
−1} = 1/2.

In other words, Φ is the Radon-Nikodym derivative of {Tx} with respect
to the density obtained for standard normals (θ ≡ 0).

Proof. This is obtained by change of variables being a little careful because the
relation z̄ → t̄ is not one-to-one. Let n = #(A), and let Jx = sgn(zx), yx = |zx|,
so that zx = Jx yx. Then we can write the density (22) as

φ(ȳ)
√
D exp

{
1

2

∑
e∈EA

θe Je ye

}
.

We now do the change of variables tx = z2x/2 = y2x/2, dtx = yx dyx =
√
2tx dyx

to see that for a fixed value of J̄ , the density of T̄ restricted to z̄ with the signs
of J̄ is[∏

x∈A

1√
π tx

]
exp

{
−
∑
x∈A

tx

}
√
D

[
2−n exp

{∑
e∈EA

θe Je
√
te

}]
. (24)

If we now sum over the 2n possible values for J̄ , we get the result.

Note that (24) gives the conditional distribution of the signs of the field given
the square of the field.
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Corollary 6.3. Suppose {Zx : x ∈ A} is the Gaussian field generated by a
green weight θ on EA and let Tx = Z2

x/2, Jx = sgn(Zx). Then the conditional
distribution on {Jx} given {Tx} is proportional to

exp

{∑
e∈EA

θeJe
√
te

}
.

6.3. The measure on undirected currents

We will write E = EA for the set of undirected edges. For each e ∈ E , x ∈ A, we
let ne(x) be the number of times the edge touches x. More precisely, ne(x) = 2 if
e is a self-loop at x; ne(x) = 1 if e connects x to a different vertex; and ne(x) = 0
otherwise. If k̄ = (ke : e ∈ E) ∈ N

E , then k̄ generates a local time on vertices by

nx = nx(k̄) =
1

2

∑
e∈E

ke ne(x). (25)

Note that ∑
x∈A

nx =
∑
e∈E

ke.

We say that k̄ is an (undirected) current if n(x) is an integer for each x. Equiv-
alently, k̄ is a current if for each x ∈ A, the number of edges in k̄ that go from
x to a different vertex is even. Let C = CA denote the set of undirected currents
in A.

Given a weight θ on E , there is a corresponding symmetric weight q on EA

given by (20). The loop soup for an integrable weight q viewed at time t induces
a measure on NE that is supported on C. (This process is not reversible without
adding randomness — one cannot determine the realization of the loop soup
solely from the realization of the current.) At time t = 1/2, this has a particular
nice form. If k̄ ∈ C we define

θ(k̄) =
∏
e∈E

θke
e .

Theorem 2. If θ is an integrable weight on E and μ = μ1/2 denotes the distri-
bution at time t = 1/2 of the corresponding loop soup considered as a measure
on C, then for each k̄ ∈ C,

μ(k̄) =
√
D

[∏
x∈A

Γ(nx + 1
2 )√

π

] [∏
e∈E

1

ke!

]
θ(k̄).

Here nx = nx(k̄) is the vertex local time as in (25).

Proof. The proof will use a combinatorial identity that will be proved in Section
6.4. Here we will show how to reduce it to this identity. We write q for the
corresponding weight on directed edges as in (20). We choose an ordering of



72 G. F. Lawler

A = {x1, . . . , xn} and consider the growing loop (bubble) representation of the
soup as in Section 5.3. Let l = (l1, . . . , ln) be the output of the growing loop at
time t = 1/2. Let π denote the function that sends each l to the corresponding
current k̄; note that π is not one-to-one. By (18) the measure on l of the soup is

√
D

[
n∏

i=1

Γ(ji +
1
2 )

ji!
√
π

]
q(l).

If π(l) = k̄, then

q(l) = 2−S(k̄) θ(k̄),

where S(k̄) =
∑

e∈E0 ke, and E0 denote the edges in E that are not self-edges.
Therefore, the induced distribution on C gives measure

θ(k̄)
√
D

2S(k̄)

∑
π(l)=k̄

[
n∏

i=1

Γ(ji +
1
2 )

ji!
√
π

]
(26)

to k̄. So we need to show that

∑
π(l)=k̄

[
n∏

i=1

Γ(ji +
1
2 )

ji!

]
= 2S(k̄)

[∏
x∈A

Γ(nx +
1

2
)

] [∏
e∈E

1

ke!

]
.

This is done in Theorem 3. We note that since (26) also represents the measure of
the current k from the (unordered) loop measure, that the sum on the left-hand
side is indpendent of the ordering of the vertices.

In the last proof, π is used both for a function on loops and for the number
3.14 · · · . This will also be true in Section 6.4. We hope that this is not
confusing.

6.4. A graph identity

Here we prove a combinatorial fact that is a little more general than we need
for Theorem 2. We will change the notation slightly although there is over-
lap with our previous notation. Let G = (A,E) be a finite but not necessar-
ily simple graph. The edges E are undirected, but we allow self-edges and
multiple edges; let E0 be the set of edges that are not self-edges. We write
A = {x1, . . . , xn}, Aj = A \ {x1, . . . , xj−1} and we let ω̄ = (ω1, . . . , ωn) be an
ordered n-tuple of loops where ωj is a loop in Aj rooted at xj . To be more
precise, a loop rooted at xj in Aj is a sequence of points

ωj = [ωj
0 = xj , . . . , ω

j
m = xj ], ωj

i ∈ Aj



Loop measures 73

as well as a sequence of undirected edges

ωj = e1 ⊕ · · · ⊕ en,

such that the endpoints of ei are ω
j
i−1 and ωj

i . As before, we write ne(x) = 2, 1, 0,
if e is a self-edge at x; is in E0 and has x as a vertex; and does not touch x,
respectively. A current k̄ = {ke, e ∈ E} is an element of NE with the property
that the number of edges going out of each vertex is even. To be precise, if

nx = nx(k̄) =
1

2

∑
e∈E

ke ne(x),

then nx is an integer for each x. For each ω̄ there is a corresponding current,
which we denote by π(ω), obtained by counting the total number of traversals
of each edge. We write Nj = Nj(ωj) for the number of elementary loops in ωj ,
that is,

Nj = #{i ≥ 1 : ωj
i = xj}.

We also let
S(k̄) =

∑
e∈E0

ke.

Theorem 3. If (A,E) is a graph, then for every k̄ ∈ C,

2−S(k̄)
∑

ω̄, π(ω̄)=k̄

n∏
j=1

Γ(Nj +
1
2 )

Nj !
=

[∏
x∈A

Γ

(
nx +

1

2

)] [∏
e∈E

1

ke!

]
. (27)

We will do this by induction by treating various cases. We will use the fact
from the last section that

∑
ω̄, π(ω̄)=k̄

n∏
j=1

Γ(Nj +
1
2 )

Nj !

is independent of the ordering of the vertices.

6.4.1. Trivial case: A = {x}, E = ∅

In this case there is only one current and one possible walk ω. Then N1 =
0, nx = 0 and both sides of (27) equal Γ( 12 ) =

√
π.

6.4.2. Adding a self-edge

Suppose that (27) holds for a graph G = (A,E) with A = {x1, . . . , xn} and
consider a new graph G̃ = (A, Ẽ) by adding one self-edge ẽ at x1. We write C, C̃
for the currents for G and G̃ respectively. We write k̃ ∈ C̃ as k̃ = (k̄, k) where
k̄ ∈ C and k = kẽ. Let us write nx, ñx for the corresponding quantities in G, G̃,
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respectively. We also write L and L̃ for the corresponding collections of ordered
pairs ω̄.

Let U, V denote the left and right-hand sides of (27), respectively, for G and
k̄, and let Ũ , Ṽ be the corresponding quantities for G̃ and k̃ = (k̄, k). We will
show that U = V implies that Ũ = Ṽ .

Let r = nx1 and hence ñx1 = r + kẽ = r + k. Note that ñxj = nxj for j ≥ 2

and S(k̃) = S(k̄). In particular,

Ṽ =
Γ(r + k + 1

2 )

Γ(r + 1
2 ) k!

V. (28)

If ω̄ = (ω1, . . . , ωn) ∈ L with π(ω̄) = k̄ we have N1 = nx1 = r. (this uses
the fact that x1 is the first vertex in the ordering). To obtain an ω̄′ ∈ L̃ with
π(ω̄′) = k̃ we replace ω1 with ω̃1 which is constructed by placing the edge e k
times into ω1. The number of ways to add the edge e in k times is(

N1 + k

k

)
=

(r + k)!

r! k!
.

Note that Ñ1 = N1 + k. Using S(k̃) = S(k̄), we see that

Ũ =
(r + k)!

r! k!

Γ(r + k + 1
2 )

Γ(r + 1
2 )

r!

(r + k)!
U =

1

k!

Γ(r + k + 1
2 )

Γ(r + 1
2 )

U (29)

Comparing (28) and (29), we see that Ũ = Ṽ .

6.4.3. Edge duplicating

Suppose that (27) holds for a given graph G = (A,E) and we take an edge e ∈ E
and add another edge e1 with the same endpoints. If e is a self-edge, this is the
same as adding a self-edge and we can use the previous argument; hence, we
will assume that e connects distinct vertices. Let G̃ = (A, Ẽ) with Ẽ = E∪{e1}.
We write C, C̃,L, L̃ for the corresponding quantities as before. If k̃ ∈ C̃, then we
can obtain a current k̄ ∈ C by letting

k̄e = k̃e + k̃e1 .

and letting k̄ agree with k̃ on E \{e}. Suppose that ke = k. Then there are k+1
possible k̃ that give k̄. We write k̃j ∈ C̃ for the current that agrees with k̄ on
E \ {e} and has k̃je = j, k̃je1 = k − j,

Let us fix k̄ as above and let U, V be the left and right hand sides of (27)
for G and k̄. We will choose an ordering A = {x1, . . . , xn} for which x1 is an
endpoint of e. For j = 0, 1, . . . , k, let Ũj , Ṽj be the left and right-hand sides of

(27) for G̃ and k̃j . Note that ñxi = nxi and Ni = Ñi for i = 1, . . . , n. We will
show that if U = V , then Ũj = Ṽj for each j.
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First note that

Ṽj =

(
k

j

)
V.

If ω̄ ∈ L is a walk with π(ω) = k̄, then N1 = k and we traverse e k times. In
L̃ for each of these traversals we can either keep e or we can replace e with e1.
There are (

k

j

)
ways in which we can retain e for j times and change to e1 at k − j times.
Therefore

Ũj =

(
k

j

)
U.

6.4.4. Converting a self-edge

Suppose that G = (A,E) is a graph with A = {x1, . . . , xn} for which (27) holds.
Suppose that e ∈ E is a self-edge at x1. Let G̃ = (Ã, Ẽ) be a new graph obtained
by converting the self-edge to an edge to a new vertex, that is,

Ã = {x1, . . . , xn, y}

and Ẽ = [E \ {e}] ∪ {e′} where e′ connects x1 and y. We write C, C̃,L, L̃ for
the corresponding quantities as before. We will show that (27) holds for G̃. Let
k̃ ∈ C̃ and let 2k = k̃y. Note that k̃y must be even since y has no other edges
adjacent to it. Let k̄ be the current in C that agrees with k̄ on E \ {e} and has
k̄e = k. We will show that if (27) holds for G and k̄, then it also holds for G̃ and
k̃. As before let U, V be the left and right-hand sides of (27) for G, k̄ and Ũ , Ṽ
the corresponding quantities for G̃, k̃.

Note that nx agrees with ñx on A with ñy = k. Also, S(k̃) = S(k̄)+ 2k. This
and a standard identity for the Gamma function give

Ṽ =
k!

(2k)!
Γ(k +

1

2
)V =

√
π

22k
V. (30)

Comparing U and Ũ is not difficult. There is a one-to-one correspondence be-
tween walks ω1 that visit e k times and walks ω̃1 that visit e′ 2k times. We just
replace each occurrence of e with e′ ⊕ e′. Therefore,

∑
ω̄∈L, π(ω̄)=k̄

n+1∏
j=1

Γ(Nj +
1
2 )

Nj !
=

√
π

∑
ω̃∈L̃, π(ω̃)=k̃

n∏
j=1

Γ(Nj +
1
2 )

Nj !
.

Here we setting Nn+1 = 0 as the value corresponding to the new vertex y.
Therefore,

Ũ =
2S(k̄)

2S(k̃)

√
π U = 2−2k

√
π U. (31)

Comparing (30) and (31) gives Ũ = Ṽ .
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6.4.5. Merging vertices

Suppose that G = (A,E) is a graph where A = {x1, x2, . . . , xn, y1, y2, . . . , ys}
with s ≤ n such that there there are edges ej , 1 ≤ j ≤ s connecting xj , yj ; and
for 1 ≤ i < j ≤ s, edges eij connecting xi, xj . We also assume that there are
no more edges adjacent to y1, . . . , ys but there may be more edges connecting
x1, . . . , xn.

Our new graph G̃ will combine y1, y2, . . . , ys into a single vertex that we call y.
We keep the edges e1, e2, . . . , es (that now connect xj and y) and we remove the
edges eij . The remaining edges of E (all of which connect points in x1, . . . , xn)

are also in Ẽ. We write C, C̃,L, L̃ as before.
We choose the orderings of A = {x1, . . . , xn, y1, . . . , ys} and Ã = {x1, . . . ,

xn, y}. There is a one-to-one relationship between the ω ∈ L and ω̃ ∈ L̃ by
replacing each traversal of the edge eij starting at xi with ei ⊕ ej and each
traversal of eij starting at xj with ej ⊕ ei.

Suppose ω̄ ∈ L giving the current k̄ such that

nyj = aj , kej = 2aj , keij = bij ,

and let

Bi =
∑
j �=i

bij , B =
1

2

∑
i

Bi, K = B +
∑

aj .

Then ω̄ induces ω̃ ∈ L̃ and k̃ ∈ C̃ with

k̃ej = kj := 2aj +Bj , (32)

S(k̃) = S(k̄) +B, ny = K.

If there are any edges e that are not of the form ej or eij , then k̄e = k̃e. This

correspondence k̄ �→ k̃ is not one-to-one. Let us write U(k̄), V (k̄) for the left and
right-hand sides of (27) for (G, k̄) and Ũ , Ṽ for the corresponding quantities for
(G̃, k̃). We will show that if U(k̄) = V (k̄) for each k̄, then Ũ = Ṽ .

Note that

Ũ =
∑ 2S(k̃)

2S(k̄)
(
√
π)1−s U(k̄)

=
∑ 1

2B (
√
π)s−1

U(k̄)

=
∑ 1

2B (
√
π)s−1

V (k̄)

= Ṽ
∑ 2B K! [k1! · · · ks!]

(2K)! a1! · · · as!
∏

ij bij !
,

where in each case the sum is over all aj , bij satisfying (32). The result Ũ = Ṽ
follows from the following combinatorial lemma.



Loop measures 77

Lemma 6.4. Suppose K is a positive integer and k1, . . . , kn are positive integers
with k1 + · · ·+ kn = 2K. Then,

∑ 2B K!

a1! · · · an!
∏

ij bij !
=

(2K)!

k1! k2! · · · kn!
. (33)

where
B =

∑
1≤i<j≤n

bij ,

and the sum is over all nonnegative integers a1, . . . , an and {bij : 1 ≤ i < j ≤ n}
with

kj = 2aj +
∑
i �=j

bij . (34)

In the last formula, we write bji = bij if j > i.

Proof. The right-hand side of (33) is the number of sequences (m1, . . . ,m2K)
with mi ∈ {1, . . . , n} such that integer j appears exactly kj times. We can write
each such sequence as a sequence of K ordered pairs

(m1,m2), (m3,m4), . . . , (m2K−1,m2K).

Let aj denote the number of these pairs that equal (j, j) and if i < j, let bij
denote the number of these that equal (i, j) or (j, i). Then the condition that
the integer j appears exactly j times in the first sequence translates to (34) for
the sequence of ordered pairs. The factor 2B takes into consideration the fact
that (i, j) or (j, i) are counted by the bij .

6.4.6. General case

We proceed by induction on the number of vertices. Suppose the result is true
for all graphs of n vertices. If G = (A,E) is a simple (no self-edges or multiple
edges) graph of n+ 1 vertices, write A = A′ ∪ {y} where A = {x1, . . . , xn} and
E = E′∪Ey where Ey is the set of edges that include y. By induction the result
holds for E′ and we can obtain E from E′ by first adding edges to vertices {yj}
for each j for which there is an edge in E connecting xj and y and then merging
the vertices to get the graph G. This handles simple graphs of n + 1 vertices,
but then we can add multiple edges and self-edges as above.

6.5. Square of the Gaussian free field

If θ is an integrable weight on E = EA with corresponding directed weight q, we
can consider the loop soup associated to q. Here we consider this only as measure
on currents {ke : e ∈ A} ∈ C and hence also on vertex local times {nx : x ∈ A}.
We will use this measure plus some extra randomness to construct the square
of the Gaussian field with weight θ.
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Let us first consider θ ≡ 0 for which the measure on currents is supported on
the trivial current. In this case, the field {Zx : x ∈ A} should be the standard
Gaussian and hence {Z2

x : x ∈ A} are independent χ2 random variables with
one degree of freedom. Equivalently, we can say that if Rx = Z2

x/2, then R̄ =
{Rx : x ∈ A} are independent Gamma random variables with parameters 1

2 and
1, that is, each with density

1√
πt

e−t.

More generally, given a realization of the current k̄ and hence of the vertex
local times {nx}, at each vertex x we put the sum of nx independent exponential
random variables of rate 1. In other words, we will consider a random vector
Ȳ = {Yx : x ∈ A} such that Yx are independent (given k̄) with a Gamma
density with parameters nx and 1. If T̄ = R̄ + Ȳ , then (given k̄), {Tx} are
independent Gamma random variables with parameters nx + 1

2 and 1, that is,
the joint density for T̄ is[∏

x∈A

t
nx− 1

2
x

Γ(nx + 1
2 )

]
exp

{
−
∑
x∈A

tx

}
.

This can also be written as[∏
x∈A

Γ(nx +
1

2
)

]−1 [∏
x∈A

t−1/2
x

] [∏
e∈E

tke/2
e

]
exp

{
−
∑
x∈A

tx

}
.

If we combine this with Theorem 2, we get the following.

Proposition 6.5. Suppose θ is an integrable weight on a set A with n elements.
Let k̄ denote an undirected current and let μ = μ1/2 denote the measure on k̄
induced by the loop soup at time 1/2. Let T̄ = R̄ + Ȳ as above. Then the joint
density on (k̄, t̄) is given by

√
D

πn/2

[∏
e∈E

(θe
√
te)

ke

ke!

] [∏
x∈A

t−1/2
x

]
exp

{
−
∑
x∈A

tx

}
. (35)

If ρ̄ = {ρe : e ∈ E} ∈ C
E and k̄ ∈ N

E , we set

Ψ(k̄, ρ̄) =
∏
e∈E

ρke
e

ke!
.

We can write the density (35) as

√
D

πn/2
Ψ(k̄, ρ̄)

[∏
x∈A

t−1/2
x

]
exp

{
−
∑
x∈A

tx

}
, ρe = θe

√
te.
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Let ĝ denote the marginal density on t̄ which can be given by summing over all
possibilities for k̄,

ĝ(t̄) :=

√
D

πn/2 [
∏

x∈A

√
tx]

⎡
⎣∑
k̃∈C

Ψ(k̄, ρ̄)

⎤
⎦ exp

{
−
∑
x∈A

tx

}
. (36)

We will now show the relationship between the distribution of t̄ and the square
of the Gaussian free field which was first found by Le Jan (see [20] and references
therein). We will use the following lemma (see, e.g., [1, Section 2.1]).

Lemma 6.6. Suppose {Jx : x ∈ A} are independent ±1 coin flips, and for
e ∈ E, let Je = JxJy if x, y are the endpoints of e. For any ρ̄ ∈ C

E,

E

[
exp

{∑
e∈E

Je ρe

}]
=
∑
k̄∈C

Ψ(k̄, ρ̄). (37)

Proof. If k̄ ∈ N
E , we let nx = nx(k̄) be as before. Then we can expand

exp {Jx Jy ρe} =
∑∞

ke=0

Jke
x Jke

y ρke
e

ke!
.

exp
{∑

e∈E Je ρe
}
=
∑

k̄∈EN

[∏
x∈A J

2nx(k̄)
x

]
Ψ(k̄, ρ̄),

E
[
exp
{∑

e∈E Je ρe
}]

=
∑

k̄∈EN

[∏
x∈A E(J

2nx(k̄)
x )

]
Ψ(k̄, ρ̄).

If 2nx(k̄) is odd for some x ∈ A, we get E(J
2nx(k̄)
x ) = 0. Otherwise, E(J

2nx(k̄)
x ) =

1 for all x. This gives the lemma.

The formula (35) is valid in the non-integrable case although it is not the
density for the measure. However, the calculations of this section are valid.
In particular, for fixed t̄, the conditional measure on k̄ is a measure and
(37) shows that the total mass is positive.

Theorem 4. Under the assumptions above, the marginal density for t̄ = {tx}
is the same as that of {Z2

x/2} where Z̄ is the centered multivariate normal
distribution indexed by A with covariance matrix G.

Proof. In (23) we showed that the density of (Z2
x/2) is

g(t̄) =

√
D

πn/2 [
∏

x∈A

√
tx ]

exp

{
−
∑
x∈A

tx

}
E

[
exp

{∑
e∈E

Je ρe

}]
.

where {Jx, x ∈ A} are independent ±1 coin flips; Je = JxJy if e connects x and
y; and ρe = θe

√
te. By using (37), we get (36).



80 G. F. Lawler

The form of the joint density also gives us the conditional density for the
currents k̄ given t̄.

Proposition 6.7. Given t̄, the conditional distribution for the currents k̄ is
proportional to

Ψ(k̄, ρ̄) =
∏
e∈E

ρke
e

ke!
, ρe =

√
te θe. (38)

The form (38) may look like the distribution of independent Poisson ran-
dom variables {ke : e ∈ E} where ke has intensity ρe. However, this dis-
tribution is restricted to k̄ ∈ C. The distribution is that of independent
Poisson distribution conditioned that the k̄ is a current.

6.6. Finding the signs

Given t̄ = {tx : x ∈ A}, the values of the field are given by

Zx = Jx
√
2tx,

where Jx = ±1 is the sign of Zx. A way to specify the signs J̄ is to give the
“positive set” V = {x ∈ A : Jx = 1}.

For a positive weight, we can give an algorithm due to Lupu [21] to get the
Gaussian field with signs from a realization of the loop soup combined with
some extra randomness.

• Obtain a sample (k̄, t̄) of currents and times as above. This gives the edge
weights ρe.

• Open any edge e with ke ≥ 1.
• For each edge e, make e open with probability 1 − exp{−ρe}. An edge e

is open if it has been opened for either of the two reasons. We say two
vertices are connected if there is a path between them using open edges.

• For each connected cluster U , take an independent random variable JU =
±1 with equal probability.

• For x ∈ U , set Zx = JU
√
2tx.

Theorem 5. The distribution of Z̄ = (Zx) is that of a centered multivariate
random variable indexed by A with covariance matrix G.

Proof. We do it on induction on the cardinality of A. It is clearly true for a
one-point set. Assume that it is true for all sets of cardinality at most n − 1
and suppose that #(A) = n. Let V ⊂ A with 1 ≤ #(V ) ≤ n − 1. Let RV =
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{z̄ ∈ R
A : zx > 0, x ∈ V and zx < 0, x ∈ A \ V }. We will write elements of

RV as z̄ = (z̄+,−z̄−) where z̄+ ∈ (0,∞)V , z̄− ∈ (0,∞)A\V . We will consider
the density of Z̄ restricted to RV . Let GV , GA\V denote the Green’s function
restricted to the edges in V,A \ V , respectively, and let

DV =
1

detGV
, DA\V =

1

detGA\V
. (39)

We write E∗ = E∗(V,A) for the set of edges in EA that have one vertex in V
and one vertex in A \ V .

• In order for the algorithm to output z̄ ∈ RV it is necessary that every
edge in E∗ is closed. This requires it to be closed using both criteria.

– To be closed using the first criterion, the loop soup must not contain
any loop in L, the set of unrooted loops that intersect both V and
A \ V . We know that

D = exp

⎧⎨
⎩−

∑
	∈L(A)

m(�)

⎫⎬
⎭ = DV DA\V e−m(L)

where m denotes the unrooted loop measure. Therefore, the proba-
bility that no such loop is chosen in the soup of intensity 1/2 is

e−m(L)/2 =

√
D

DV DA\V
.

– Given the realization of t̄, the probability that no loop is open using
the second criterion is

exp

{
−
∑
e∈E∗

ρe

}
.

• Given that the loop soup contains no loop in L, the algorithm acts inde-
pendently on V and A \ V . By the induction hypothesis, the density of
the output of the algorithm, restricted to RV , is given by

fV (z̄+) fA\V (−z̄−) e
−m(L)/2 exp

{
−
∑
e∈E∗

ρe

}
.

Using (22) and (39), we see that this is the same as fA((z̄+,−z̄−)).
• This argument computes the density fA(z̄) for any z̄ ∈ RV such that V is

not ∅ or A. However, symmetry shows that fA(z̄) = fA(−z̄) for z̄ ∈ RA,
and since the total integral of the density must equal one, we get the result
for V = ∅ and V = A as well.
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The algorithm to get the signs appears to be ad hoc. In fact, Lupu found
the algorithm for the continuous time walk by considering connected clus-
ters for a loop soup on a different graph obtained by doing one-dimensional
Brownian motions on a “cable system” or “metric graph”. We will not de-
scribe this here, but see [21] for details.

Example. Suppose A = {x, y}, assume that θxx = θyy = 0, and let a = q2 =
[θxy/2]

2. There is only one elementary loop at x, l = [x, y, x] with q(l) = q2. In
particular, the loop measure mq = m−q.

G(x, x) = G(y, y) =
1

1− a
,

G(x, y) = q G(y, y) =
q

1− a

detG =
1

(1− a)2
− a

(1− a)2
=

1

1− a
.

The distribution of nx at time t = 1/2 for the growing loop at x is

ν(k) =
Γ(k + 1

2 )

k! Γ( 12 )
ak (1− a)1/2.

The joint density of (Nx, Tx) is

Γ(k + 1
2 )

k! Γ(t)
ak (1− a)1/2

1

Γ(k + 1
2 )

tk−
1
2 e−t.

Summing over k we get the density of (Tx) is

e−t
√
1− a√
tπ

∞∑
k=0

(at)k

k!
=

√
1− a√
tπ

e−(1−a)t,

which is the density of Z2/2 where Z is a centered normal with variance 1/(1−a).
To get normal random variables with covariance matrix G, we can let U, V

be independent N(0, 1) and let

Zx =
U√
1− a

, Zy =
q√
1− a

Zx +

√
1− a√
1− a

V.

Note that the joint distribution of (Z2
x, Z

2
y) in this case is independent of the

sign of q. However the distribution of (Zx, Zy) does depend on the sign.
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7. Measures on multiple walks

7.1. An example: nearest neighbor, symmetric walks on Z
2

Before doing the general theory, we will consider simple random walk in Z
2. We

will make use of some planarity properties as well as conformal invariance in the
scaling limit. For now we set up some notation. We will use complex notation,
Z2 = Z+ iZ; in particular, we write just k for the point k+0 · i. We will write p
for the usual random walk weight, pe = 1/4 for every nearest neighbor directed
edge. Equivalently, in the notation of Section 6, we can set θe = 1/2 for each
undirected, nearest neighbor edge. We will consider random walk restricted to
finite, connected open sets A often stopped at the boundary ∂A.

• Associated to every finite A there is a domain DA ⊂ C obtained by re-
placing each lattice point with a square of side length one centered at the
point. To be more precise, we let

S =

{
r + is ∈ C : |r|, |s| ≤ 1

2

}
,

and we define DA to be the interior of⋃
z∈A

[z + S] .

The boundary of DA is a union of unit segments that are edges in the dual
lattice Z

2 + ( 12 + i
2 ).

• We set

w0 =
1

2
− i

4
∈ DA.

The (downward) zipper at w0 is the vertical line in C starting at w0 and
going downward until it first reaches ∂DA. If p is a positive, symmetric,
nearest neighbor integrable weight on A, we define the corresponding zip-
per measure q by saying that qe = Je pe where Je = −1 if e crosses the
zipper and Je = 1 otherwise. Equivalently, let k be the smallest positive
integer, such that either −ki or 1 − ki is not in A. Then, Je = −1 if e
connects −ji and 1− ji with 0 < j < k and Je = 1 otherwise.

• We say that connected A is simply connected if Z2 \A is also a connected
subgraph of Z2; this is equivalent to saying that DA is a simply connected
domain.

• We let A be the set of finite subsets of Z+ iZ containing 0 and 1, and we
set Asc be the collection of such sets that are simply connected.

• Here is a topological fact. Suppose A ∈ Asc and {a, b} are distinct bound-
ary edges. Then we can order (a, b) such that the following is true.

– Any η ∈ WA(a, b) using the directed edge
−→
01 crosses the zipper an

even number of times. In particular, q(η) = p(η).

– Any η ∈ WA(a, b) using the directed edge
−→
10 crosses the zipper an

odd number of times. In particular, q(η) = −p(η).
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We will call this the positive ordering of {a, b} (with respect to this zipper).
• We let OA be the set of unrooted loops in A that intersect the zipper an

odd number of times. Note that if A ∈ Asc,

mq(�) = −mp(�), � ∈ OA,

mq(�) = mp(�), � ∈ LA \ OA.

• If A ∈ Asc, let f : DA → D := {z ∈ C : |z| < 1} be the unique conformal
transformation with f(0) = 0, f(a) = 1 and define θ by f(b) = e2iθ. The
existence and uniqueness of the map follows from the Riemann mapping
theorem. We set

rA = rA(0) = |f ′(0)|−1, SA,a,b = SA(0; a, b) = sin θ.

Using the Koebe 1/4-theorem from complex analysis we can see that

rA
4

≤ dist(0, ∂DA) ≤ rA. (40)

We have made an arbitrary choice of the zipper. We could take any curve
such that in the scaling limit it gives a simple curve from the origin to
the boundary. It makes the discussion a little easier by making a specific
choice. It is important that the zipper comes up all the way to

−→
01.

We have defined a collection of sets that contain the ordered edge
−→
01. This

is an arbitrary choice. If we are interested in sets containing the nearest
neighbor edge −→zw where w = z + e2iθ, we can take A ∈ A, translate by z,
and then rotate by θ.

If D ⊂ C is a bounded domain containing the origin, we can make a lattice
approximation to D. To be specific, for each positive integer n, we let AD,n

be the connected component containing the origin of all z ∈ Z + iZ such that
S + z ⊂ nD. We then set Dn = n−1 DAD,n

. We get the following properties.

• Dn ⊂ D.
• For every z ∈ ∂Dn, dist(z, ∂D) ≤

√
2/n.

• If D is simply connected, then Dn is simply connected.
• If ζ ∈ D, then for all n sufficiently large, ζ ∈ Dn.

7.2. Pairs of loop-erased walks

If q is a weight on A, and hence a measure on KA, we extend this to a measure
on ordered pairs of paths using product measure. The next definition makes this
precise.
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Definition.

• If x = (x1, . . . , xk),y = (y1, . . . , yk) are 2k points in A, we let KA(x,y) be
the set of ordered k-tuples

ω = (ω1, . . . , ωk), ωj ∈ KA(xj , yj).

• The measure q on KA(x,y) is the product measure

q(ω) = q(ω1) · · · q(ωk).

• We write HA(x,y) for the total mass which is given by the product

HA(x,y) =
k∏

j=1

HA(xj , yj).

There are several reasonable choices for extensions of the loop-erased measure
ĤA(x, y), but the following has proved to be the most useful.

Definition.

• If x = (x1, . . . , xk),y = (y1, . . . , yk) are 2k distinct points in A, let
WA(x,y) denote the set of ordered k-tuples of SAWs

η = (η1, . . . , ηk), ηj ∈ WA(xj , yj),

that are mutually avoiding

ηi ∩ ηj = ∅, 1 ≤ i < j ≤ k.

• The loop-erased measure q̂ is defined on WA(x,y) by

q̂(η) = q(η)Fη(A),

where logFη(A) = logFη1∪···∪ηk(A) is the loop measure of loops in A that
intersect at least one of the SAWs η1, . . . , ηk.

• More generally, the measure is defined on WA(x1, y1) × · · · × WA(xk, yk)
by

q̂(η) = 1{η ∈ WA(x,y)} q(η)Fη(A).

• We write ĤA(x,y) for the total mass of the measure

ĤA(x,y) =
∑

η∈WA(x,y)

q̂(η).

• If σ is a permutation of {1, . . . , k} and x = (x1, . . . , xk) we write xσ =
(xσ(1), . . . , xσ(k)). Note that

HA(x
σ,yσ) = HA(x,y), ĤA(x

σ,yσ) = ĤA(x,y).

(It is important that we use the same permutation σ to permute the
coordinates of x and y.)
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In particular, q̂ is defined on WA(x,y) neither as the product measure nor
as the product measure restricted to mutually avoiding paths. The definition
allows the points to be interior or boundary points. It will be easier to consider
only the case of boundary points and the next proposition, which is really no
more than an immediate observation which we do not prove, shows that one
can change an interior point to a boundary point and we need only multiply the
entire measure by a loop term.

Proposition 7.1. If x = (x1, . . . , xk),y = (y1, . . . , yk) are 2k distinct points in
A, then for all η ∈ WA(x,y)

q̂(η) = q(η)FB(A)Fη(A \B),

where B = {x1, . . . , xk, y1, . . . , yk}. In particular,

ĤA(x,y) = FB(A)ĤA\B(x,y).

From the definition, we immediately get the Radon-Nikodym derivative with
respect to product measure.

Proposition 7.2.

• If η ∈ WA(x,y), then

q̂(η)

q̂(η1) q̂(η2) · · · q̂(ηk)

= 1{η ∈ WA(x,y)} exp

⎧⎨
⎩m[L(A;η)]−

k∑
j=1

m[L(A; ηj)]

⎫⎬
⎭ .

In particular, if k = 2, then

q̂(η) = q̂(η1) q̂(η2) exp
{
−m[L(A; η1) ∩ L(A; η2)]

}
.

• The marginal density on η1 is absolutely continuous with respect to q̂ on
WA(x1, y1) with Radon-Nikodym derivative

ĤA\η1(x′,y′)

where x′ = (x2, . . . , xk),y
′ = (y2, . . . , yk).

•
ĤA(x,y) =

∑
ω∈V

q(ω), (41)

where V denotes the set of ω = (ω1, . . . , ωk) ∈ KA(x,y) such that for
j = 2, . . . , k,

ωj ∩
[
LE(ω1) ∪ · · · ∪ LE(ωj−1)

]
= ∅.
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We could have used (41) as a definition of ĤA(x,y) but it is not obvious

from this definition that ĤA(x
σ,yσ) = ĤA(x,y) for permutations σ.

The next proposition shows that we can give the probability that a loop-
erased walk uses a particular edge in terms of the total mass of pairs of walks
(the past and the future as viewed by the edge).

Proposition 7.3. Suppose x1, y1, x2, y2 are distinct points in A with x2, y1 ∈ A.
Let V denote the set of SAWs in WA(x1, y2) that include the directed edge
e = −−→y1x2. Then

q̂(V ) = qe Fe(A) ĤA′(x,y),

where A′ = A \ {x2, y1}.
Proof. If η ∈ V we write η = η1 ⊕ e ⊕ η2; let η = (η1, η2); and note that
q(η) = q(η) q(e). The loops that intersect η can be partitioned into those that
visit {x1, y2} and those that do not giving

Fη(A) = Fe(A)Fη(A
′),

and hence
q̂(η) = q(e)Fe(A) q(η)Fη(A

′).

We now sum over all possible η.

Proposition 7.4 (Fomin’s identity, two paths). Suppose x1, x2, y1, y2 are dis-
tinct points in ∂A, and let σ denote the nontrivial permutation of {1, 2}. Then

ĤA(x,y)− ĤA(x,y
σ) = HA(x,y)−HA(x,y

σ). (42)

Proof. Let V denote the set of ω = (ω1, ω2) ∈ KA(x,y) such that LE(ω1)∩ω2 �=
∅ and let Vσ be the corresponding set in KA(x,y

σ). We will give a bijection
π : V → Vσ such that for each ω, q(ω) = q(π(ω)). Let η = LE(ω1). If ω ∈ V ,
let r be the smallest index such that ηr ∈ ω2; let k be the largest index such
that ω2

k = ηr; and let j be the largest index such that ω1
j = ηr. We write

ωi = ωi,− ⊕ ωi,+, where

ω1,− = [ω1
0 , . . . , ω

1
j ], ω2,− = [ω1

0 , . . . , ω
2
k].

We then define π(ω) by

(ω1,− ⊕ ω2,+, ω2,− ⊕ ω1,+).

It can readily be checked that this gives the necessary bijection.
The bijection shows that the terms on the right-hand side of (42) corre-

sponding to V and Vσ cancel. The equality of the remaining terms is seen by
(41).
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The two-path result is a special case of a more general theorem. For a proof
of the following see [17, Proposition 9.6.2].

Proposition 7.5 (Fomin’s identity). Suppose x1, x2, . . . , xk, y1, y2, . . . , yk are
distinct points in ∂A. Then∑

(−1)sgn(σ) ĤA(x,y
σ) = det [HA(xi, yj)]1≤i,j≤k

where the sum is over all permutations of {1, . . . , k}.
We could alternatively write the right-hand side of the above equation as∑

(−1)sgn(σ) HA(x,y
σ).

Corollary 7.6. Suppose A ∈ Asc and x1, x2, . . . , xk, yk, yk−1, . . . , y1 are distinct
points in order on ∂A. Then,

ĤA(x,y) = det [HA(xi, yj)]1≤i,j≤k

where the sum is over all permutations of {1, . . . , k}.
Proof. We know that ĤA(x,y

σ) = 0 for nontrivial permutations σ.

If x1, x2, . . . , xn, y1, y2, . . . , yn are distinct points on ∂A, then there may
be several permutations σ for which ĤA(x,y

σ) �= 0. However, one can
determine the value of the loop-erased quantities in terms of random walk
determinants. We give the idea here; see [8] and [6] for more details.
We will consider pairings of [2n] = {1, 2, . . . , 2n}. A planar pairing P is
a partition into n sets of cardinality 2 such that nonintersecting curves
can be drawn in the upper half plane H connecting the points. We write
x↔y if x and y are paired. There is a one-to-one correspondence be-
tween planar pairings and “Dyck paths”; this is combinatorial terminology
for one-dimensional random walk bridges that stay nonnegative, that is,
functions f : {0, 1, . . . , 2n} → {0, 1, 2, . . .} with f(0) = f(2n) = 0 and
f(j + 1)− f(j) = ±1 for each j. The correspondence is given by

fP(k) = #{j ≤ k : j is paired with a point > k}.

This defines a partial order on planar partitions: P 	 P ′ if fP ≤ fP′ .
Given a planar pairing, let x = xP denote the vector of left endpoints
in increasing order and y = yP = (y1, . . . , yn) where xj↔yj . If σ is a
permutation of [n], we write Pσ for the (not necessarily planar) pairing
given by xj↔yσ(j). Fomin’s identity implies that

det [H(x,y)] =
∑
σ

(−1)σĤ(x,yσ). (43)

Note that we can restrict the sum on the right-hand side to permutations
σ such that Pσ is a planar pairing since Ĥ(x,yσ) = 0 for the others.
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The key observation, that we leave as an exercise, is that if Pσ is a planar
pairing, then P 	 Pσ. We can then write (43) as

det [H(P)] =
∑
P′

MP,P′ Ĥ(P ′),

where MP,P′ ∈ {0,±1}, MP,P = 1 and MP,P′ = 0 unless P 	 P. There-
fore, if we order the pairings consistently with 	, M is an upper triangular
matrix with nonzero diagonal terms and we can invert giving

Ĥ = M−1[detH].

• If X is any function on KA(x, y) we write 〈X〉q for the integral or “expec-
tation value”

〈X〉q = 〈X;A, x, y〉q =
∑

ω∈KA(x,y)

X(ω) q(ω).

• If ω is a path and e is a directed edge, we let Ye(ω) be the number of
times that ω traverses the directed edge e. We also set Y −

e (ω) = YeR(ω)
be the number of traverses of the reversed edge, and note that Ye − Y −

e

represents the number of “signed” traverses of e.
• Note that if q is symmetric and z ∈ A, then

〈Ye − Y −
e ;A, z, z〉q = 0

since the terms with l and lR cancel.
• We write Iz(ω), Ie(ω), Ie(ω) for the indicator function that the loop erasure

LE(ω) contains the vertex z, the undirected edge e, and the directed edge
e, respectively.

Proposition 7.7. Suppose q is a symmetric integrable weight on A, x, y ∈ ∂A,
and e = −→zw ∈ EA. Then

〈Ye − Y −
e ;A, x, y〉q = qe Fe(A) [HA′(x, z)HA′(y, w)−HA′(x,w)HA′(y, z)] ,

where A′ = A \ {z, w}.

Proof. Let Y = Ye, Y
− = Y −

e , X = Y − Y −. If ω does not visit both z and w,
then Y (ω) = Y −(ω) = 0; hence we will only consider ω that visit both z and w.
Let ξ, τ be the first and last indices j with ωj = z and ξ′, τ ′ the corresponding
quantities for w.

Suppose ξ < ξ′, τ ′ < τ . In this case we can write ω = [ω0 = x, . . . , ωn = y]
uniquely as ω = ω− ⊕ l ⊕ ω+ where

ω− = [ω0, . . . , ωξ], l = [ωξ, . . . , ωτ ], ω+ = [ωτ , . . . , ωn = y]. (44)
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We can also consider ω̃ = ω− ⊕ lR ⊕ ω+. Since ωτ+1 �= w, X(ω) = X(l) =
−X(lR) = −X(ω̃). Since q is symmetric, q(ω) = q(ω̃). Hence∑

ξ<ξ′,τ ′<τ

q(ω)X(ω) = 0,

A similar argument shows that∑
ξ′<ξ,τ<τ ′

q(ω)X(ω) = 0.

Suppose ξ < ξ′, τ < τ ′, and decompose ω as in (44). Note that X(ω) =
X(l) + 1{ωτ+1 = w}. By comparing l and lR as in the previous paragraph, we
see that ∑

ξ<ξ′,τ<τ ′

q(ω)X(ω) =
∑

ξ<ξ′,τ<τ ′

q(ω) 1{ωτ+1 = w}.

If ωτ+1 = w, we can write

ω = ω− ⊕ l ⊕ e⊕ l′ ⊕ ω̃+, l′ = [ωτ+1, . . . , ωτ ′ ], ω̃+ = [ωτ ′ , . . . , ωn].

By construction we see that ω− ∈ KA′(z, z), l ∈ KA(z, z), l
′ ∈ KA\{z}(w,w), and

ω̃+ ∈ KA′(w, y). Therefore,∑
ξ<ξ′,τ<τ ′

q(ω) 1{ωτ+1 = w} = HA′(x, z)HA′(y, w) qe GA(z, z)GA\{z}(w,w)

= HA′(x, z)HA′(y, w) qe Fe(A).

A similar argument shows that∑
ξ′<ξ,τ ′<τ

q(ω)X(ω) = −HA′(x,w)HA′(y, z) qe Fe(A).

Proposition 7.8. Suppose q is a symmetric integrable weight on A, x, y ∈ ∂A,
and e = −→zw ∈ EA. Then

〈Ye − Y −
e ;A, x, y〉q = 〈Ie − IeR ;A, x, y〉q.

Proof. Let X = Ye − Y −
e . Let ω ∈ KA(x, y) and let η = LE(ω) = [x0 =

x, x1, . . . , xn = y]. Then we can write

ω = [x, x1]⊕ l1 ⊕ [x1, x2]⊕ l2 ⊕ · · · ⊕ [xn−2, xn−1]⊕ ln−1 ⊕ [xn−1, y],

where lj ∈ KA\{x0,...,xj−1}(xj , xj). By construction, we can see that

X(ω) = Ie(ω)− IeR(ω) +

n−1∑
j=1

X(lj).
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Using the fact that the terms with lj and (lj)R cancel as in the previous proof,
we see that ∑

ω∈KA(x,y)

q(ω)

n−1∑
j=1

X(lj) = 0.

Therefore, ∑
ω∈KA(x,y)

X(ω) q(ω) =
∑

ω∈KA(x,y)

[Ie(ω)− IeR(ω)] q(ω).

The next proposition gives the probability that a two-dimensional loop-erased
random walk uses an undirected edge in terms of two quantities: the measure of
the set of loops with odd winding number and boundary Poisson kernels with
respect to the signed zipper measure.

Proposition 7.9. Suppose A ∈ Asc; x, y ∈ ∂A are positively ordered with
respect to the zipper; p is simple random walk with corresponding zipper weight
q; and η ∈ WA(x, y) is a nearest neighbor SAW that contains the directed edge

e =
−→
01. Then

q̂(η) = p̂(η) exp {−2mp(OA)} ,

where OA is the set of unordered loops � ∈ LA that cross the zipper an odd
number of times.

In particular, if e denotes the undirected edge associated to e,

〈Ie;A, x, y〉p = exp {2mp(OA)} 〈Ie − IeR ;A, x, y〉q
= exp {2mp(OA)} qe F

q
e (A)Δ

q
A′(x, y; 0, 1),

where A′ = A \ {0, 1} and

Δq
A′(x, y; 0, 1) = Hq

A′(x, 0)H
q
A′(y, 1)−Hq

A′(x, 1)H
q
A′(y, 0).

Proof. We know that

p̂(η) = p(η) exp

⎧⎨
⎩ ∑

	∈LA;	∩η �=∅
mp(�)

⎫⎬
⎭ ,

q̂(η) = q(η) exp

⎧⎨
⎩ ∑

	∈LA;	∩η �=∅
mq(�)

⎫⎬
⎭ .

Since x, y are positively ordered, we have p(η) = q(η). Also mq(�) = −mp(�) if
� ∈ OA and otherwise mq(�) = mp(�). For topological reasons, we see that if
� ∈ OA and if η contains {0, 1}, then �∩ η �= ∅. This gives the first equality, and
by summing over η we see that

〈Ie;A, x, y〉p = exp {2mp(OA)} 〈Ie;A, x, y〉q. (45)
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For the second, we give a similar argument for SAWs η that contain
−→
10. The

argument is the same except that q(η) = −p(η) and hence

q̂(η) = −p̂(η) exp {−2mp(OA)} ,

〈IeR ;A, x, y〉p = − exp {2mp(OA)} 〈IeR ;A, x, y〉q. (46)

Adding (45) and (46) and using Ie = Ie + IeR gives the penultimate equality,
and the last follows from Propositions 7.7 and 7.8.

7.3. A crossing exponent in Z
2

We will calculate a boundary exponent for loop-erased random walk. We will
first consider the k = 2 case. if N, r are nonnegative integers, we set

AN,r = {x+ iy ∈ Z+ iZ : 0 < x < rN, 0 < y < πN} .

We will be considering the case with r fixed and N → ∞, in which caseN−1AN,r

is an approximation of the rectangle

Dr = {x+ iy ∈ C : 0 < x < r, 0 < y < π}.

Let 0 < y1 < y2 < π and let

zj = iyj , wj = iyj + r, zj,N = i�yjN�, wj,N = �rN�+ i�yjN�.

zN = (z1,N , z2,N ), wN = (w1,N , w2,N ),

Let us first fix r and let N → ∞. Fomin’s identity (see Corollary 7.6) implies
that

ĤAN,r
(zN ,wN ) = HAN,r

(zN ,wN )−HAN,r
(zN ,wσ

N ),

where σ denotes the transposition on {1, 2}.
In the limit, random walk approaches Brownian motion. For simple random

walk and domains that are parallel to the coordinate axes, the convergence is
very quick. Indeed, it can be shown that

lim
N→∞

N2 HAN,r
(zj,N , wk,N ) = h∂Dr (iyj , r + iyk).

Here we use h to denote the boundary Poisson kernel for Brownian motion. More
precisely, the Poisson kernel h(ζ) := hDr (ζ, r+ iyk) is the harmonic function on
Dr with boundary value the delta function at r + iyk,and h∂Dr (iyj , r + iyk) =
∂xh(iyj). Therefore,

lim
N→∞

ĤAN,r
(zN ,wN )

HAN,r
(zN ,wN )

=
h∂Dr (z1, w1)h∂Dr (z2, w2)− h∂Dr (z1, w2)h∂Dr (z2, w1)

h∂Dr (z1, w1)h∂Dr (z2, w2)
. (47)

We will now take the asymptotics of the right-hand side as r → ∞.
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The boundary Poisson kernel for Brownian motion can be computed exactly
using separation of variables (see, e.g., [2, Section 11.3]):

hDr (x+ iy, r + iỹ) =
2

π

∞∑
j=1

sin(jy) sin(jỹ)
sinh(jx)

sinh(jr)
,

h∂Dr (iy, r + iỹ) =
2

π

∞∑
j=1

sin(jy) sin(jỹ)
j

sinh(jr)
.

In particular, as r → ∞,

h∂Dr (iy, r + iỹ) ∼
∞∑
j=1

sin(jy) sin(jỹ) j e−jr ∼ 2

π
e−r sin y sin ỹ, ,

and hence the denominator of the right-hand side of (47) is asymptotic to(
2

π

)2

e−2r sin2 y1 sin2 y2.

If we plug in the asymptotics for h∂Dr into the numerator we see that the e−2r

term cancels, and the numerator is asymptotic to (2/π)2 c e−3r where

c = c(y1, y2) = 2 sin2 y1 sin2(2y2) + 2 sin2 y2 sin2(2y1)

−4 sin y1 sin y2 sin(2y1) sin(2y2).

In particular, the ratio is asymptotic to c(y1, y2) e
−r. A similar argument works

for k paths, and we leave the calculation as an exercise.

Exercise 19. Suppose that 0 < y1 < y2 < . . . < yn < π. Show that there exists
c = c(y1, . . . , yn) > 0 such that as r → ∞,

det [h∂Dr(iyj , r + iyk)] ∼ c (2/π)n e−
n(n+1)r

2 ,

and hence

det [h∂Dr (iyj , r + iyk)] ∼ c (2/π)n e−
n(n+1)r

2

n∏
j=1

h∂Dr(iyj , r + iyj)

∼ c [sin2 y1 · · · sin2 yn] e−
n(n−1)r

2 .

The exponent n(n+1)
2

is a (chordal) crossing exponent for loop-erased ran-
dom walk. It can also be computed directly as a crossing exponent for
its continuous counterpart the chordal Schramm-Loewner evolution with
parameter κ = 2. There are corresponding crossing exponents for all κ.
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We let N → ∞ and then r → ∞ to make the calculation easier. In fact,
one can use a finite Fourier series, which is really just a diagonalization
of a matrix, to find the discrete Poisson kernel exactly in terms of a finite
sum that is dominated by the initial terms. See, e.g., [17, Chapter 8]. This
allows us to take N, r to infinity at the same time as long as r does not go
too much faster than N .

7.4. Green’s function for loop-erased random walk in Z
2

We will now give a very sharp estimate for the probability that loop-erased ran-
dom walk goes through a particular edge. Recall the definitions of Asc, rA, SA,a,b

from Section 7.1.

Theorem 6. There exist c′, u > 0 such that if A ∈ Asc and a, b ∈ ∂eA, then
the probability that a loop-erased random walk from a to b uses the directed edge−→
01 equals

c′ r
−3/4
A

[
S3
A,a,b +O(r−u

A )
]
. (48)

The error term O(·) is bounded uniformly over all A, a, b. Let us be more

precise. The probability that a loop-erased random walk uses edge e =
−→
01 is

P (e, A, a, b) =
〈Ie;A, a, b〉
HA(a, b)

.

where we have left implicit the simple random walk weight p. Then we can
restate the theorem as saying there exists C < ∞ such that∣∣∣logP (e, A, a, b)− log(c′ r

3/4
A S3

A,a,b)
∣∣∣ ≤ C

ruA S3
A,a,b

.

In particular, if SA,a,b ≥ r
−u/6
A ,∣∣∣logP − log(c′ r

3/4
A S3

A,a,b)
∣∣∣ ≤ C

r
u/2
A

.

We prefer to use the simpler form (48).
Let us write A′ = A \ {0, 1}, q for the zipper measure, and

ΔHq
A(a, b) = |Hq

A′(a, 0)H
q
A′(b, 1)−Hq

A′(a, 1)H
q
A′(b, 0)|.

Using Proposition 7.9, we see that

P (e, A, a, b) =
F q
e (A)

4
exp {2mp(OA)}

ΔHq
A(a, b)

HA(a, b)
.
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The result will follow from three estimates: there exist c1, c3, u > 0, c2 ∈ R such
that

F q
e (A) = c1 +O(r

−1/2
A ), (49)

mp(OA) =
1

8
log rA + c2 +O(r−u

A ), (50)

ΔHq
A(a, b)

Hp
A(a, b)

= c3 S
3
A,a,b +O(r−u

A ). (51)

The relation (49) follows from F q
e (A) = GA(0, 0; q)GA\{0}(1, 1; q) and the

following proposition.

Proposition 7.10. There exists c0, c
′
0 > 0, u > 0 such that

GA(0, 0; q) = c0 +O(r
−1/2
A ), GA\{0}(1, 1; q) = c′0 +O(r

−1/2
A ).

Proof. We will do the first estimate; the second can be done similarly. Let LA =
L̃1
0(A) denote the set of elementary loops in A rooted at 0 and let L = LZ2 be

the set of elementary loops in Z
2 rooted at 0. Recall that

fA =
∑
l∈LA

q(l),

and let
f =

∑
l∈L

q(l).

Since ∑
l∈L

|q(l)| = 1,

and there are both positive and negative terms, we can see that −1 < f < 1. It

suffices to show that fA = f +O(r
−1/2
A ), that is, there exists c such that∣∣∣∣∣∣

∑
l∈L\LA

q(l)

∣∣∣∣∣∣ ≤ c r
−1/2
A .

Although we can estimate the absolute value of the sum by the sum of the
absolute values, the latter sum does not decay fast enough for us. We will have
to take advantage of some cancellations in the sum.

Let K = {x+ iy ∈ Z+ iZ : |x|, |y| < rA/10}. Using (40) we see that K ⊂ A.
In particular any loop in L \ LA can be decomposed as

l = ω− ⊕ ω+,

where ω− is l stopped at the first visit to ∂K. We can further decompose the
walk as

l = ω1 ⊕ ω2 ⊕ ω+,
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where ω1 is ω− stopped at the last visit to {0, 1} before reaching ∂K. We now
do a third decomposition.

Let L0 denote the set of loops in L \ LA as in the previous paragraph such
that the last vertex of ω1 is zero. Let L′

0 be the set of loops in L0 such that
ω2 ∩ {2, . . . , k} �= ∅, where k = �rA/10�. If l ∈ L′

0, we write

ω2 = ω3 ⊕ ω4,

where ω3 is ω2 stopped at the first visit to {2, . . . , k}. Let l̃ = ω1⊕ ω̃3⊕ω4⊕ω+

where ω̃3 is the reflection of ω3 about the real axis — that is, the real jumps of
ω̃3 are the real jumps of ω3 but the imaginary jumps of ω̃3 are the negative of
the imaginary jumps of ω3. Since ω3 does not use the edge {0, 1}, we can see
that q(ω̃3) = −q(ω3) and hence

q(l̃) = −q(l).

This gives ∑
l∈L′

0

q(l) = 0.

The measure of ω2 such that ω2 ∩ {2, . . . , k} = ∅ is O(k−1/2) (see [17, Section
5.3]). We therefore get ∣∣∣∣∣∑

l∈L0

q(l)

∣∣∣∣∣ ≤ ∑
l∈L0\L′

0

|q(l)| ≤ c

k1/2
.

If L1 is the set of loops as in the previous paragraph such that the last vertex
of ω1 is 1, we do a similar argument using {−k,−k + 1, . . . ,−2} to show that∣∣∣∣∣∑

l∈L1

q(l)

∣∣∣∣∣ ≤ ∑
l∈L0\L′

1

|q(l)| ≤ c

k1/2
.

7.5. The estimate (50)

We will study the loop measure of OA, the set loops that cross the zipper an
odd number of times. We will first consider the case

A = Cn := Cen = {z ∈ Z
2 : |z| < en},

and let On = OCn . If we restrict to the sets Cn, the estimate (50) can be written
as

m(On) =
n

8
+ c0 +O(e−un),

which follows immediately, if we can establish

m(On \ On−1) =
1

8
+O(e−un).
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To establish this we consider the scaling loop of the random walk loop mea-
sure, the Brownian loop measure. The definition is similar to that for random
walk. We will start with a measure on rooted loops by giving the analog of
m̃ from Section 5.1. A (rooted) loop γ : [0, tγ ] → C is a continuous function
with γ(0) = γ(tγ). One important probability measure on loops is the Brownian
bridge measure νb defined as the measure on Brownian paths Bt, 0 ≤ t ≤ 1 con-
ditioned so that B0 = B1 = 0. (This is conditioning on an event of probability
zero so some care needs to be taken, but it is well known how to make sense of
this; indeed, there are numerous equivalent constructions.)

If we want to specify a loop γ, we can write a triple (z, tγ , γ̃) where z is the
root, tγ is the time duration, and γ̃ is a loop rooted at 0 of time duration one
(obtained from γ by translation and Brownian scaling). The rooted Brownian
loop measure can be defined as the measure on triples given by

(Area)×
(

1

2πt2
dt

)
× νb.

The factor 1/2πt2 should be read as (1/2πt) · (1/t). The factor 1/2πt is the
“probability that Brownian motion is at the origin at time t”; more precisely, it
is the density at time t evaluated at z = 0. The factor 1/t is the analog of the
1/|l| factor in the definition of m̃.

This gives the Brownian loop measure in all of C. For loops in a domain D we
restrict the measure to such loops. This is an infinite, σ-finite measure, because
the measure of small loops blows up. However, if D is a bounded domain, and
ε > 0, the measure of loops in D of diameter at least ε is finite (it goes to infinity
as ε ↓ 0).

The amazing and useful fact about the Brownian loop measure is that it
is conformally invariant, at least if viewed as a measure on unrooted loops
(these are defined in the obvious way). In other words, if D is a domain and
f : D → f(D) is a conformal transformation then the image of the loop measure
in D under f is the same as the loop measure on f(D). (One does need to worry
about the parametrization — there is a time change which is the same as that
for the usual conformal invariance of Brownian motion.) In particular, if we
consider the measure of loops in the disk of radius en that are not contained in
the disk of radius en−1 but that have odd winding number about 0, then this
value is independent of n. Indeed, it can be computed (we will not do it here)
and the answer is 1/8.

Although we will not give the details, we will describe how to show that the
random walk loop measure converges to the Brownian measure We will couple
the rooted random walk loop measure, giving measure (2n)−1 4−2n to each loop
of length 2n with the corresponding Brownian loop measure. We will use the
fact that for one dimension walks, the probability of being at the origin at time
n is

pn :=
1√
πn

[
1− 1

8n
+O(n−2)

]
,
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and by a well known trick gives for two dimensional random walk

P{S2n = 0} = p2n =
1

πn

[
1− 1

4n
+O(n−2)

]
.

Note that if

qn =

∫ n+ 5
8

n− 3
8

dt

2πt2
, q′n :=

1

2n
P{S2n = 0},

then
|qn − q′n| ≤ c1 n

−4.

For each (z, n) we let (Kz,n,K
′
z,n) be coupled Poisson random variables with

parameters qn, q
′
n, respectively, coupled so that P{Kz,n �= K ′

z,n} ≤ |qn − q′n|.
We let (Kz,n,K

′
z,n), z ∈ Z

2, n ≥ 1 be independent. We also have a coupling of
Brownian bridge Bt, 0 ≤ t ≤ n and random walk bridge St, 0 ≤ t ≤ 2n such
that

P{ max
0≤t≤n

|Bt − S2t| ≥ c2 logn} ≤ c2 n
−4.

We then use this to construct the coupling. Whenever a random walk and Brow-
nian pair (z, n) occur we do the following:

• Choose from the (B,S) distribution for n,
• Let the random walk loop be S + z.
• Choose t ∈ [n− 3

8 , n+ 5
8 ] from density c nt−2.

• Scale B from time n to time t (this is not much of a change).

Ws = (t/n)1/2 Bsn/t, 0 ≤ s ≤ t.

• Let the Brownian loop be W+z+Y where Y is a uniform random variable
on the square of side length one about the origin.

After the estimate is proved for On, it is done for more general domains again
using conformal invariance of the Brownian loop measure.

7.6. The estimate (51)

We first consider the denominator HA(a, b) = Hp
A(a, b). In this setup, this was

considered in [9] where it was shown that there is an absolute constant c such
that

HA(a, b) = c [sin−2 θ]HA(0, a)HA(0, b) [1 +O(r−u
A )],

at least if sin θ ≥ r−u
A (explicit values of c and u were given but we will not use

them). The way to think of this result is that the termHA(a, b) has three factors:
one local factor at a measuring the probability of escaping the boundary there;
a similar local factor at b; and one global factor that is a conformal invariant.
Similarly, H(0, a) has the local factor at a and a conformal invariant. Given
this, one needs to estimate the terms like

Hq
A(0, a)

Hp
A(0, a)

.
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For these terms the “local factor” at a cancels and the limit should be a con-
formally invariant quantity about Brownian motion.

To see what the limit should be in our case, let us consider the continuous
case. Let D be a bounded domain containing the origin and let λ(t) : 0 ≤ t ≤ 1
be a “zipper”, that is, a simple curve with λ(0) = 0, b := λ(1) ∈ ∂D, λ[0, 1) ⊂ D.
Let a ∈ ∂D \ {b}, and let D̃ = D \ λ[0, 1]. An example would be λ the vertical
line segment starting at 0, going downward, and stopping at the first visit to
∂D. Let f : D → D be the conformal transformation with f(0) = 0, f(a) = −1.
Let λ̃ = f ◦ λ which is a zipper in D from 0 to ∂D.

If z ∈ D̃ \ {0}, consider a curve Bt, 0 ≤ t ≤ τ where B0 = z,Bτ = a and
assume that 0 �∈ B[0, τ ]. The example we have in mind is Bt is an h-process
that is, Brownian motion “conditioned” to leave D at a. We want to consider
(−1)J where J is the number of times that B crosses the zipper λ. This does not
quite make sense for curves such as Brownian motion since there are infinitely
many crossings. But we will make sense of this in terms of arguments. Define θt
by f(Bt) = e2iθt . Note that θ0 is only defined up to an additive multiple of π;
we we make an arbitrary choice of θ0 but then require θt to be continuous in t.
This is well defined assuming the curve does not go through the origin. In this
case θτ is well define and θτ − θ0 is independent of the arbitrary choice for θ0.
We then define J to be +1 if θτ = 2kπ for some integer k and define J to be
−1 if θτ = (2k + 1)π for some k. We then set

g(z) = Ez
a

[
(−1)J

]
where we write Ea to denote expectations with respect to the h-process corre-
sponding to Brownian motion conditioned to leave D at a.

To compute g, we first note that g is conformally invariant and so it suffices
to compute it when D = D, a = −1. Let l = [0, 1) denote the radial line is
antipodal to −1. By symmetry we can see that g(z) = 0 for z ∈ l, and hence by
the strong Markov property, that g(z) is the probability that an h-process in D

toward −1 starting at z reaches −1 without hitting the antipodal line l. This
can be written as

g(z) =
hD(z,−1)

hD(z,−1)
, D = D \ l.

Here h denotes the Poisson kernel which we will normalize so that hD(0,−1) = 1.
As z → 0, hD(z,−1) = 1 + O(z). To compute hD(z,−1) it is somewhat easier
to consider the upper half disk D+ = D ∩ H. Note that F (z) = z2 takes D+

conformally onto D. A computation shows that

hD+(z, i) = 4 Im(z) [1 +O(|z|)].

(One can see that it must be asymptotic to c Im(z) as z → 0 by considering the
“gambler’s ruin” estimate for the imaginary part of the Brownian motion.) The
scaling rule for the Poisson kernel gives

hD+(z,−1) = |F ′(z)|2 hD(z2, e2iθ) = 2hD(z2, e2iθ),
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and hence

g(re2iψ) = hD(re2iψ,−1) [1 +O(r)] = 2
√
r [sinψ] [1 +O(

√
r)].

The reader may note that the sin3 term in our results consists of two factors:
we have a sin2 coming from Hp

A(a, b) and then one extra sin coming from the
ratio Hq

A/H
p
A.
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