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QUADRATIC CONTROL OF AFFINE DISCRETE-TIME,
PERIODIC SYSTEMS WITH INDEPENDENT

RANDOM PERTURBATIONS

Viorica Mariela Ungureanu

Abstract: In this paper we consider the affine discrete-time, periodic systems

with independent random perturbations and we solve, under stabilizability and uniform

observability or detectability conditions, the discrete time version of the quadratic control

problem introduced in [1].

1 – Introduction

We consider the quadratic control problem for the affine discrete-time, peri-

odic systems with independent random perturbations in Hilbert spaces (see [1] for

continuous time case). The existence of an optimal control is connected with the

behavior of the discrete-time Riccati equation associated with this problem. We

study the asymptotic behavior of the solutions of the Riccati equation and we find

an optimal control. In 1974 J. Zabczyk [10] treated a similar problem for time

homogeneous systems and proved that, under stabilizability and detectability

conditions, the Riccati equation (14) has a unique nonnegative bounded solu-

tion. In connection with this problem, he also introduced the notion of stochastic

observability (which is equivalent, in the finite dimensional case, with the one

Received : March 30, 2004; Revised : October 12, 2004.
AMS Subject Classification: 93E20, 49N10, 39A11.
Keywords: exponential stability; detectability and observability; quadratic control; Riccati

equation.
This work was supported by CNCSIS (National Council for Research in High Education)

under grant no 349/2004.



304 VIORICA MARIELA UNGUREANU

considered in this paper). The case of time varying systems in finite dimensions

has been investigated by T.Morozan in [6]. He proved that, under uniform ob-

servability and stabilizability conditions, the discrete-time Riccati equation has

a unique, uniformly positive, bounded on N solution. In this paper we gener-

alize the results of T. Morozan. We also establish that, in the stochastic case,

the uniform observability does not imply the detectability and, consequently, our

result is different from that obtained by J. Zabczyk in the time invariant case.

In [1] G. Da Prato and I. Ichikawa proposed a quadratic control problem for

affine periodic systems (for both deterministic and stochastic cases), which is a

generalization of the average cost criterion, usually considered for time-invariant

systems. They proved that, under stabilizability and detectability conditions,

the optimal control is given by a periodic feedback, which involves the periodic

solution of the Riccati equation associated to this problem. In [9] we consider

differential linear stochastic equations. We replace the detectability condition

with the uniform observability property and, under stabilizability condition, we

prove that the Riccati equation has a unique, uniformly positive, bounded on

R+ solution, which is stabilizing for the controlled system. This result can be

used to find the optimal control and the optimal cost for the quadratic control

problem. We also proved in [9] that, in the stochastic case, uniform observabil-

ity does not imply detectability, as in the deterministic case, and our result is

different from the one of G. Da Prato. On the other hand, we note that the

observability property is easier to verify than the detectability condition, both

in the continuous and deterministic cases. So, the results of this paper are (in a

certain sense) the discrete-time versions of those obtained in [9] and [1] for the

continuous case. They are not obtained by a simple discretization of the results

mentioned above (for example the algebraic Riccati equation, involved in the

time invariant quadratic control problem, is not the same in the discrete-time

(see (32)) and continuous cases (see [1])). There are many technical differences

between the discrete time and the continuous cases. For example, in the discrete

time case, we used the induction to prove the existence of the solution of the

Riccati equation with final condition, while in the continuous case we work with

specific properties of the functions, which are continuously time dependent.

2 – Notations and statement of the problem

Let H, V , U be separable real Hilbert spaces and let us denote by L(H,V )

the Banach space of all bounded linear operators which transform H into V .
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If H = V we put L(H,V ) = L (H). We write 〈., .〉 for the inner product and ‖.‖

for norms of elements and operators. If A ∈ L(H) then A∗ is the adjoint operator

of A. The operator A ∈ L(H) is said to be nonnegative and we write A ≥ 0, if A is

self-adjoint and 〈Ax, x〉 ≥ 0 for all x ∈ H. We denote by H the Banach subspace

of L(H) formed by all self-adjoint operators, by K the cone of all nonnegative

operators of H and by I the identity operator on H. We also consider the Banach

space Cb(H) = {ϕ : H → R, ϕ is bounded and continuous}. Let τ ∈ N, τ > 1.

The sequence Ln ∈ L(H,V ), n ∈ N is bounded on N if sup
n∈N

‖Ln‖ < ∞ and is

τ -periodic if Ln = Ln+τ for all n ∈ N.
Let (Ω,F , P ) be a probability space and ξ be a real or H -valued random

variable on Ω. We write E(ξ) for mean value (expectation) of ξ. We will use the

notation B(H) for the Borel σ-field of H.

Let us consider the sequence ξn, n ∈ Z of real independent random vari-

ables, which satisfy the conditions E(ξn) = 0 and E |ξn|
2 = bn < ∞. If Fn is

the σ-algebra generated by {ξi, i ≤ n − 1}, then we will denote by L2
n(H) =

L2(Ω,Fn, P,H) the space of all equivalence class of H-valued random variables η

(i.e. η is a measurable mapping from (Ω,Fn) into (H,B(H))) such that E ‖η‖2 <

∞. Analogously we define L2(Ω,F , P,H) and we denote it L2.

We introduce the controlled system

{
xn+1 = Anxn + ξnBnxn +Dnun + fn

xk = x ∈ H, k ∈ N(1)

where An, Bn ∈ L(H), Dn ∈ L(U,H). The control {uk, uk+1, ...} belongs to the

class Ũk defined by the property that un, n ≥ k is an U -valued random variable,

Fn-measurable and sup
n≥k

E ‖un‖
2 <∞. For every x ∈ H and k ∈ N, fixed, we will

denote by Uk,x the subset of admissible controls from Ũk with the property that

(1) has a bounded solution.

If fn = 0 for all n ∈ N we use the notation {A : D,B} for the system (1).

In the sequel we need the hypotheses:

H0 : The sequences An, Bn ∈ L(H), Dn ∈ L(U,H), Cn ∈ L(H,V ), Kn ∈

L(U), fn, bn, n ∈ N are bounded on N and

Kn ≥ δI, δ > 0 for all n ∈ N.(2)

H1 : The sequences An, Bn, Dn, Cn,Kn, fn, n ∈ N, bn, n ∈ Z introduced above
are τ -periodic.
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If H0 (respectively H1) holds we will use the notation Z̃ =sup
n∈N

‖Zn‖ (respec-

tively Z̃ = max
n = 0,1,...,τ−1

‖Zn‖) for Z = A,B,D,C, F,K, b.

Assuming the hypotheses H0, H1 we study the following problem:

For every k ∈ N and x ∈ H, we look for an optimal control u = {uk, uk+1, ...},

which belongs to the class Uk,x and minimizes the following quadratic cost

Ik(x, u) = lim
q→∞

1

q − k
E

q−1∑

n=k

[‖Cnxn‖
2+ < Knun, un >],(3)

where xn is the solution of (1) for all n ∈ N, n ≥ k. (It is clear that if u ∈ Uk,x

then Ik(x, u) <∞).

We will establish that under stabilizability and uniform observability (or de-

tectability) conditions (see Theorem 26) the optimal cost, given by (28), is ob-

tained for the optimal control (29).

3 – Preliminaries

3.1. Properties of the solutions of the linear discrete time systems

We associate to (1) the linear stochastic system {A,B}
{

xn+1 = Anxn + ξnBnxn

xk = x ∈ H,n, k ∈ N.
(4)

The random evolution operator of (4) is the operator X(n, k) n ≥ k ≥ 0,

where X(k, k) = I and X(n, k) = (An−1+ξn−1Bn−1)...(Ak+ξkBk), for all ṅ > k.

Definition 1. A sequence {xn}, n ∈ Z of H-valued random variables is

τ -periodic (τ ∈ N, τ > 1) if

P{xn1+τ ∈ A1, ..., xnm+τ ∈ Am} = P{xn1
∈ A1, ..., xnm ∈ Am},(5)

for all n1, n2, ..., nm ∈ Z and all Ap ∈ B(H), p = 1, ..,m.

It is known that (5) is equivalent with

Eϕ(xn1+τ , ..., xnm+τ ) = Eϕ(xn1
, .., xnm),

for all ϕ ∈ Cb(H
m).
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Remark 2. Assume thatH1 holds and the sequence {ξn}, n ∈ Z is τ -periodic.
There exist the functions Fn,k : Rn−k → H measurable (B(Rn−k),B(H)) such

that X(n, k)x = Fn,k(ξn−1, ..., ξk), X(n + τ, k + τ)x = Fn+τ,k+τ (ξn−1+τ , ..., ξk+τ )

and Fn+τ,k+τ = Fn,k. Since the random variables ξn, n ∈ Z are independent and
τ -periodic, then it follows that the random variablesX(n, k)x andX(n+τ, k+τ)x

have the same distribution function for all n ≥ k, n, k ∈ Z.

If xn = xn(k, x) is the solution of the system (4) then it is unique and

xn(k, x) = X(n, k)x.

It is not very difficult to see that we have the following lemma:

Lemma 3. X(n, k) is a bounded linear operator from L2
k(H) into L2

n(H) and

we have

E ‖X(n, k)(ξ)‖2 ≤ (‖An−1‖
2 + bn−1 ‖Bn−1‖

2)...(‖Ak‖
2 + bk ‖Bk‖

2)E ‖ξ‖2

for all n > k and ξ ∈ L2
k(H).

From the above considerations it is clear that (1) has a unique solution

xn(x, k;u). Using the induction it follows that xn(x, k;u) satisfies the relation

xn(x, k;u) = X(n, k)x+
n−1∑

i=k

X(n, i+ 1) (Diui + fi)(6)

for n ≥ k + 1. Moreover, xn(x, k;u) is Fn-measurable and ξn-independent.

Now, we introduce the mappings Un, T (n, k) : H → H

Un(S) = A∗nSAn + bnB
∗
nSBn,

T (n, k) = UkUk+1...Un−1, for all n− 1 ≥ k and T (k, k) = I,
(7)

where I ∈ L(H) is the identity operator. It is easy to see that Un and T (n, k) are

linear and bounded operators.

Theorem 4 ([8]). If X(n, k) is the random evolution operator associated to

(4), then T (n, k)(K) ⊂ K and we have

〈T (n, k)(S)x, y〉 = E 〈SX(n, k)x,X(n, k)y〉(8)

for all S ∈ H, n ≥ k ≥ 0 and x, y ∈ H. Moreover ‖T (n, k) (I)‖ = ‖T (n, k)‖ .
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Remark 5. If H1 holds then T (n, k) is τ -periodic that means T (n, k) =

T (n+ τ, k + τ) for all n ≥ k ≥ 0.

3.2. Uniform exponential stability and uniform observability

Definition 6. We say that {A,B} is uniformly exponentially stable iff there

exist β ≥ 1, a ∈ (0, 1) and n0 ∈ N such that we have

E ‖X(n, k)x‖2 ≤ βan−k ‖x‖2(9)

for all n ≥ k ≥ n0 and x ∈ H.

If Bn = 0 for all n ∈ N, we obtain the definition of the uniform exponential
stability of the deterministic system xn+1 = Anxn, xk = x ∈ H,n ≥ k denoted

{A}.

Definition 7 ([4]). The deterministic system {A} is uniformly exponentially

stable iff there exist β ≥ 1, a ∈ (0, 1) and n0 ∈ N such that we have

‖An−1An−2...Ak‖ ≤ βan−k for all n ≥ k ≥ n0.

It is easy to see that if {A,B} is uniformly exponentially stable then (9) holds

for n0 = 0. The following result is known [4] for the finite dimensional case but

it is presented for the readers’ convenience.

Proposition 8. If H1 holds and {A} is uniformly exponentially stable then

the system

yn = A∗nyn+1 + fn(10)

has a unique τ -periodic solution.

Proof: Using the condition required by the τ -periodic sequences we can ex-

tend the sequences An, fn for all n ∈ Z. Let us denote Y (n, k) = A∗kA
∗
k+1...A

∗
n−1

if n 6= k and Y (k, k) = I (the identity operator). If {A} is uniformly exponen-

tially stable then it is easy to see that there exist a ∈ (0, 1) and β > 1 such as

‖Y (n, k)∗‖ = ‖Y (n, k)‖ ≤ βan−k. Hence the series
∞∑
p=n

Y (p, n)fp converges in H.
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It is not difficult to see that yn =
∞∑
p=n

Y (p, n)fp satisfies (10). From H1 it follows

Y (p+ τ, n+ τ) = Y (p, n) for all p ≥ n and consequently

yn+τ =
∞∑

p=n+τ

Y (p, n+ τ)fp+τ =
∞∑

p=n

Y (p+ τ, n+ τ)fp = yn.

Thus yn is a τ -periodic solution of (10). If yn is another τ -periodic solution of (10)

we have
∥∥yn+1 − yn+1

∥∥ ≤ ‖Y (n, k)‖ max
k = 0,..,τ−1

‖yk − yk‖ ≤ βan−k max
k = 0,..,τ−1

‖yk − yk‖. As k → −∞ we get yn+1 = yn+1 for all n ∈ Z and the proof is

complete.

Now we consider the discrete time stochastic system {A,B;C} formed by the

system (4) and the observation relation zn = Cnxn, where Cn ∈ L(H,V ), n ∈ N.

Definition 9 (see Definition 6 in [6]). We say that {A,B;C} is uniformly

observable if there exist n0 ∈ N and ρ > 0 such that

k+n0∑

n=k

E ‖CnX(n, k)x‖
2 ≥ ρ ‖x‖2(11)

for all k ∈ N and x ∈ H.

If the stochastic perturbation is missing, that is Bn = 0 for all n ∈ N, we will
use the notation {A, ;C} for the observed (deterministic) system. We have the

following definition of the deterministic uniform observability (see [3] and [2]).

Definition 10. We say that {A, ;C} is uniformly observable iff there exist

n0 ∈ N and ρ > 0 such that
k+n0∑
n=k

‖CnAn−1An−2...Akx‖
2 ≥ ρ ‖x‖2 for all k ∈ N

and x ∈ H.

Remark 11. It is not difficult to see that, in the time-invariant, finite di-

mensional case, the deterministic system {A, ;C} is uniformly observable iff

rank(C∗, A∗C∗, ..., (A∗)n−1 C∗) = n, where n is the dimension of H.

The following proposition is a consequence of the Theorem 4.
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Proposition 12 ([8]).

a) The system (4) is uniformly exponentially stable if and only if there exist

β ≥ 1, a ∈ (0, 1) and n0 ∈ N such that we have

‖T (n, k)‖ ≤ βan−k(12)

for all n ≥ k ≥ n0.

b) The system {A,B;C} is uniformly observable if and only if there exist

n0 ∈ N and ρ > 0 such that

k+n0∑

n=k

T (n, k)(C∗nCn) ≥ ρI(13)

for all k ∈ N.

Conclusion 13. From the above proposition it follows that if the determinis-

tic system {A, ;C} is uniformly observable then the stochastic system {A,B;C}

is uniformly observable.

Proposition 14. Assume that H1 holds, Dn = 0 for all n ∈ N and the

sequence {ξn}, n ∈ Z is τ -periodic. If {A,B} is uniformly exponentially stable

then the system (1) (without initial condition) has a unique τ -periodic solution

in L2.

Proof: As in the proof of the Proposition 8 we consider the system (1) on Z.

Let us consider the series
n−1∑

p=−∞
X(n, p+ 1)fp in the Hilbert space L2. We have

∥∥∥∥∥∥

n−1∑

p=−∞

X(n, p+ 1)fp

∥∥∥∥∥∥
L2

≤
n−1∑

p=−∞

‖X(n, p+ 1)fp‖L2

=
n−1∑

p=−∞

√
E ‖X(n, p+ 1)fp‖

2

If T (n, k) is the operator associated to the system {A,B} according to the

Theorem 4, we deduce by Remark 5 and Proposition 12 that (12) holds for all

n ≥ k > −∞.
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Using Theorem 4 and the above considerations we get

∥∥∥∥∥∥

n−1∑

p=−∞

X(n, p+ 1)fp

∥∥∥∥∥∥
L2

≤
n−1∑

p=−∞

√〈
T (n, p+ 1)fp, fp

〉

≤
n−1∑

p=−∞

β1/2a(n−p−1)/2f̃ <∞.

Consequently the series converges in L2. We denote yn =
n−1∑

p=−∞
X(n, p + 1)fp.

It is a simple exercise to verify that yn satisfies (1). Now we will prove that

it is a τ -periodic solution of (1). We consider the random variables yn,m =
n−1∑
p=m

X(n, p+ 1)fp and yn+τ,m+τ =
n−1∑
p=m

X(n+ τ, p+ τ + 1)fp.

Since X(n, p + 1)fp and X(n + τ, p + τ + 1)fp have the same distribution

functions for all n ≥ p + 1 > m it is clear that the distributions of yn,m and

yn+τ,m coincide.

Thus Eϕ(yn,m) = Eϕ(yn+τ,m+τ ) for all ϕ ∈ Cb(H). Since ‖yn,m − yn‖L2

−→
m−→−∞

0 we deduce that there exists a subsequence yn,mk
such that yn,mk

con-

verges to yn P.a.s, as k −→∞.

Analogously, from ‖yn+τ,mk+τ − yn+τ‖L2 −→
mk−→−∞

0 it follows that there ex-

ists a subsequence yn+τ,mkh
+τ such that yn+τ,mkh

+τ −→
h−→∞

yn+τ P.a.s. We con-

sider now the last subsequence and we denote yn+τ,mkh
+τ = yn+τ,m̃h+τ . It is

clear that both sequences yn+τ,m̃h+τ , yn,m̃h
converges to their limit P.a.s and we

deduce that ϕ(yn,m̃h
) −→

h−→∞
ϕ(yn) (respectively ϕ(yn+τ,m̃h+τ ) −→

h−→∞
ϕ(yn+τ ))

P.a.s for all ϕ ∈ Cb(H). Using the Bounded Convergence Theorem it follows

that Eϕ(yn,m̃h
) −→

h−→∞
Eϕ(yn) (respectively Eϕ(yn+τ,m̃h+τ ) −→

h−→∞
Eϕ(yn+τ )).

From Remark 2 we deduce that yn,m̃h
and yn+τ,m̃h+τ have the same distribution

function and Eϕ(yn,m̃h
) = Eϕ(yn+τ,m̃h+τ ). Hence Eϕ(yn) = Eϕ(yn+τ ) for all

ϕ ∈ Cb(H) and yn, yn+τ have the same distribution function. Using the same

way of proof it can be shown that yn1
, yn2

, ..., ynm and yn1+τ , yn2+τ , ..., ynm+τ for

all n1, n2, ..., nm ∈ Z have the same joint distribution functions and it follows
that yn is τ -periodic.

If zn ∈ L2, n ∈ Z is another τ -periodic solution of (1) then we have

E ‖yn+1 − zn+1‖
2 = E 〈T (n, k) (I) (yk − zk) , yk − zk〉

≤ ‖T (n, k)‖ max
p=0,..,τ−1

E ‖yp − zp‖
2 ≤ β

1
2a

n−k
2 max

p=0,..,τ−1
E ‖yp − zp‖

2
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for all n ≥ k. As k → −∞ we get yn+1 = zn+1 P.a.s for all n ∈ Z and the proof
is complete.

The above proposition is the infinite dimensional version of the statement i)

of Theorem 3 from [5].

4 – Optimal quadratic control for affine discrete-time systems

In this section we assume that the hypothesis H0 holds.

4.1. The discrete-time Riccati equation of stochastic control and

the uniform observability

We consider the transformation

Gn : K → K,Gn(S) = A∗nSDn(Kn +D∗nSDn)
−1D∗nSAn,

which is well defined. Let Un ∈ L(H) be the linear operator defined by (7).

We consider the following Riccati equation

Rn = Un(Rn+1) + C∗nCn − Gn(Rn+1)(14)

on K, connected with the quadratic cost (3).

Definition 15. A sequence {Rn}n∈N, Rn ∈ K such as (14) holds is said to

be a solution of the Riccati equation (14).

We need the following definitions (see D.3 from [6]).

Definition 16. A solution R = (Rn)n∈N of (14) is said to be stabilizing for
{A : D,B} if {A+DF,B} with

Fn = −(Kn +D∗nRn+1Dn)
−1D∗nRn+1An, n ∈ N(15)

is uniformly exponentially stable.

Definition 17 ([6]). The system {A : D,B} is stabilizable if there exists a

bounded on N sequence F = {Fn}n∈N, Fn ∈ L(H,U) such that {A + DF,B} is

uniformly exponentially stable.
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Proposition 18. The Riccati equation (14) has at most one stabilizing and

bounded on N solution.

Proof: Let Rn,1 and Rn,2 be two stabilizing and bounded on N solutions of
equation (14). We introduce the systems

{
xn+1,i = (An +DnFn,i)xn,i + ξnBnxn,i

xk,i = x ∈ H
(16)

for all n ≥ k, n, k ∈ N, where Fn,i = −(Kn+D∗nRn+1,iDn)
−1D∗nRn+1,iAn, i = 1, 2.

If we denote Qn = Rn,1 −Rn,2, we get

E 〈Qn+1xn+1,1, xn+1,2〉 = E 〈Qnxn,1, xn,2〉 , for all n ≥ k.

It is easy to see that E 〈Qn+1xn+1,1, xn+1,2〉 = 〈Qkx, x〉 for all n ≥ k, x ∈ H.

Since Rn,i, i = 1, 2 are bounded on N we deduce that there exists M > 0 such

that ‖Qn‖ ≤M for all n ∈ N. Thus,

0 ≤ |〈Qkx, x〉| ≤M
√

E ‖xn+1,1‖
2 E ‖xn+1,2‖

2.

From the hypothesis and from the Definition 17 it follows that the systems (16)

are uniformly exponentially stable and E ‖xn+1,i‖
2 →

n→∞
0, i = 1, 2, uniformly

with respect to x.

As n→∞ in the last inequality, we deduce that Qk = 0 and Rk,1 = Rk,2 for

all k ∈ N. The proof is complete.

Let xn be the solution of system {A : D,B}. By Uk,M ,M ∈ N∗ we denote the
set of all finite sequences uM

k = {uk, uk+1, ...uM−1} of U -valued and Fi measurable

random variables ui, i = k, ...,M − 1 with the property E ‖ui‖
2 < ∞. Now, we

introduce the performance

V (M,k, x, u) = E
M−1∑

n=k

[‖Cnxn‖
2+ < Knun, un >].

Let us consider the sequence R(M,M) = 0 ∈ K,

R(M,n) = Un(R(M,n+ 1)) + C∗nCn − Gn(R(M,n+ 1))

for all n ≤M − 1.

The following lemma prove that the sequence R(M,n) is well defined for all

0 ≤ n ≤ M . It is called the solution of the Riccati equation (14) with the final

condition R(M,M) = 0.
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Lemma 19.

a) R(M,n) ∈ K for all 0 ≤ n ≤M ;

b) 0 ≤ R(M − 1, n) ≤ R(M,n) for all 0 ≤ n ≤M − 1.

Moreover, if H1 is satisfied then

R(M + τ, n+ τ) = R(M,n), 0 ≤ n ≤M.(17)

Proof: We will prove the first assertion by induction. For n =M , R(M,n) =

0 ∈ K. Let us assume R(M,n) ∈ K for all n ∈ N, k < n ≤M .

We will prove R(M,k) ∈ K. Let xn be the solution of system {A : D,B}

with the initial condition xk = x and let us denote Fn = −[Kn + D∗nR(M,n +

1)Dn]
−1D∗nR(M,n+ 1)An and zn = un − Fnxn. We have

E 〈R(M,n+ 1)xn+1, xn+1〉 =

E 〈R(M,n)xn, xn〉 − E 〈C∗nCnxn, xn〉 − E 〈Knun, un〉+

E 〈(Kn +D∗nR(M,n+ 1)Dn)zn, zn〉 .

Now, we consider the last equality for n = k, k + 1, ...,M − 1 and summing,

we obtain

V (M,k, x, u) = 〈R(M,k)x, x〉+

E
M−1∑

n=k

〈(Kn +D∗nR(M,n+ 1)Dn)zn, zn〉
(18)

Let x̃n be the solution of system
{

xn+1 = (An +DnFn)xn + ξnBnxn

xk = x ∈ H
,(19)

where Fn was introduced above.

It is clear that x̃n is also the solution of {A : D,B} with ũn = Fnx̃n, k ≤ n ≤

M − 1 and {ũn, k ≤ n ≤M − 1} ∈ Uk,M .

Thus we obtain, for all 0 ≤ k < M

min
u∈Uk,M

V (M,k, x, u) = V (M,k, x, ũ) = 〈R(M,k)x, x〉 .(20)

We deduce that R(M,k) ≥ 0 and the induction is complete.

b) Let uM−1
k = {ũk, ũk+1, ..., ũM−2}. It is clear that uM−1

k ∈ Uk,M−1 and

from the definition of V (M,k, x, u) we get V (M − 1, k, x, u) ≤ V (M,k, x, ũ).
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If we consider (20) for M − 1, we have, for all 0 ≤ k < M

〈R(M − 1, k)x, x〉 = min
û∈Uk−1,M

V (M − 1, k, x, û) ≤ V (M − 1, k, x, u).

From (20) and the last inequalities it follows the conclusion. The proof of last

statement is trivial.

Proposition 20. Assume that {A : D,B} is stabilizable. Then the Riccati

equation (14) admits a bounded on N solution. If H1 is satisfied then the solution

of the Riccati equation is τ -periodic.

Proof: Since {A : D,B} is stabilizable it follows that there exists a bounded

on N sequence F = {Fn}n∈N, Fn ∈ L(H,U) such that {A+DF,B} is uniformly

exponentially stable.

Let us consider un = Fnxn, where xn is the solution of {A+DF,B} with the

initial condition xk = x . Since Fn is bounded on N, it is not difficult to see that
un ∈ Ũk. We have

V (M,k, x, u) ≤ η
∞∑

n=k

E ‖xn‖
2

for allM > k, where η = C̃2+K̃F̃ 2. Since {A+DF,B} is uniformly exponentially

stable, it is not difficult to see that there exists λ1 > 0 such that V (M,k, x, u) ≤

ηλ1 ‖x‖
2 = λ ‖x‖2 , x ∈ H.

Let R(M,n) be the solution of the Riccati equation (14) with R(M,M) = 0.

Using (20) and the above inequality, we deduce that

〈R(M,k)x, x〉 ≤ λ ‖x‖2 .

Using Lemma 19 it follows that there exists R(k) ∈ L(H) such that 0 ≤

R(M,k) ≤ R(k) ≤ λI for M ∈ N, M ≥ k and the sequence

{R(M,k)}M∈N,M≥k converges to R(k) in the strong operator topology.

We denote L = lim
M→∞

(< Gn(R(M,n+ 1))x, x > − < Gn(R(n+ 1))x, x >) and

PM,n = Kn +D∗nR(M,n+ 1)Dn, Pn = Kn +D∗nR(n+ 1)Dn. If

L1 = lim
M→∞

∥∥∥P−1
M,n

∥∥∥ ‖D∗nR(M,n+ 1)Anx−D∗nR(n+ 1)Anx‖ ·

‖D∗nR(M,n+ 1)Anx+D∗nR(n+ 1)Anx‖ and

L2 = lim
M→∞

〈(
P−1
M,n − P−1

n

)
D∗nR(n+ 1)Anx,D

∗
nR(n+ 1)Anx

〉
,
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then

|L| ≤ L1 + L2

Since PM,n ≥ Kn ≥ δI, δ > 0 we deduce that
∥∥∥P−1

M,n

∥∥∥ ≤ 1
δ for allM ≥ n+1 ≥ k

and from the strong convergence of {R(M,n)}M∈N,M≥n it follows L1 = 0.

We see that
∥∥∥P−1

M,nx− P−1
n x

∥∥∥ ≤
∥∥∥P−1

M,n

∥∥∥ ‖PM,ny − Pny‖, where y = P−1
n x.

Since lim
M→∞

‖PM,ny − Pny‖ = 0 we get lim
M→∞

∥∥∥P−1
M,nx− P−1

n x
∥∥∥ = 0.

Now it is clear that L2 = 0. Hence L = 0 and

lim
M→∞

〈Gn(R(M,n+ 1))x, x〉 = 〈Gn(R(n+ 1))x, x〉 .

From the definition of R(M,n) and the above result we deduce that R(n) is

a solution of (14). If H1 holds then we take M → ∞ in (17) and it follows that

R(n) is τ -periodic.

Theorem 21. Let us assume that the system {A,B;C} is uniformly observ-

able. If Rn is a nonnegative bounded on N solution of (14) then:

a) there exist m > 0 such that Rn ≥ mI, for all n ∈ N (Rn is uniformly

positive on N).

b) Rn is stabilizing for (1).

Proof: The main idea is the one of [6] .

Let Rn be a nonnegative, τ -periodic solution of (14) and let X̃(n, k) be the

random evolution operator associated to system {A+DF,B} with

Fn = −(Kn +D∗nRn+1Dn)
−1D∗nRn+1An.(21)

Let n0 and ρ be the number introduced by the Definition 9. We have (see the

proof of Lemma 19)

〈Tnx, x〉 = 〈Rnx, x〉 −

E
〈
Rn0+n+1X̃(n0 + n+ 1, n)x, X̃(n0 + n+ 1, n)x

〉
,

(22)

where the operator Tn ∈ H is

〈Tnx, x〉 =
n+n0∑

j=n

(E
∥∥∥CjX̃(j, n)x

∥∥∥
2
+ E

〈
KjFjX̃(j, n)x, FjX̃(j, n)x

〉
).(23)
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From (6), we deduce that for all j ≥ n+ 1 we have

X̃(j, n)x = X(j, n)x+
j−1∑

i=n

X(j, i+ 1)Diũi,

where ũi = FiX̃(i, n)x and X(n, k) is the random evolution associated to {A,B}.

Thus

〈Tnx, x〉 >
n+n0∑

j=n+1

E

∥∥∥∥∥∥
CjX(j, n)x+ Cj

j−1∑

i=n

X(j, i+ 1)Diũi

∥∥∥∥∥∥

2

+
1

2
‖Cnx‖

2

≥
1

2
(
n+n0∑

j=n

E ‖CjX(j, n)x‖
2)− C̃2

n+n0∑

j=n+1

E

∥∥∥∥∥∥

j−1∑

i=n

X(j, i+ 1)Diũi

∥∥∥∥∥∥

2

.

Using H0, Lemma 3 and (23) it follows

E

∥∥∥∥∥∥

j−1∑

i=n

X(j, i+ 1)Diũi

∥∥∥∥∥∥

2

≤ D̃2µn0

n+n0∑

i=n

E
∥∥∥FiX̃(i, n)x

∥∥∥
2
≤ c 〈Tnx, x〉 ,

where µn0
=
(
n0max{1, (Ã

2 + b̃B̃2)n0}
)
and c =

D̃2µn0

δ .

Since the system {A,B;C} is uniformly observable then we have

〈Tnx, x〉 >
1

2
ρ ‖x‖2 − C̃2n0c 〈Tnx, x〉).

From the last equality and from the hypothesis we deduce that there exist

M > m such that

m ‖x‖2 ≤ 〈Tnx, x〉 ≤ 〈Rnx, x〉 ≤M ‖x‖2 .(24)

We obtain from (22) and (24)

−m/M 〈Rnx, x〉 ≥ − 〈Rnx, x〉+

E
〈
Rn0+n+1X̃(n0 + n+ 1, n)x, X̃(n0 + n+ 1, n)x

〉
.

Thus E
〈
Rn0+n+1X̃(n0 + n+ 1, n)x, X̃(n0 + n+ 1, n)x

〉
≤ q 〈Rnx, x〉 for all n ∈

N and x ∈ H, where q = 1−m/M, q ∈ (0, 1).

Let T̃ (n, k) be the operator introduced by Theorem 4 for the system {A +

DF,B}, where the sequence Fn is given by (21). Then the previous inequality

can be written

T̃ (n0 + n+ 1, n) (Rn0+n+1) ≤ qRn.
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Since T̃ (n, k) is monotone (T̃ (n, k)(P ) ≤ T̃ (n, k)(R) for P ≤ R, n ≥ k) we

deduce from (24) that T̃ (n, k)
(
T̃ (n0 + n+ 1, n) (Rn0+n+1)

)
≤ qT̃ (n, k)(Rn) and

T̃ (n0 + n+ 1, k) (Rn0+n+1) ≤ qT̃ (n, k)(Rn) for all n ≥ k.

Let n ≥ k arbitrary. Then there exists c, r ∈ N such that n−k = (n0+1)c+r

and 0 ≤ r ≤ n0. We obtain by induction:

T̃ (n, k)(Rn) ≤ qcT̃ (r + k, k)(Rr).

From (24) and Theorem 4 we get mT̃ (n, k)(I) ≤Mqc
∥∥∥X̃(r + k, k)

∥∥∥
2
I.

Using Lemma 3 we putG =M max
0≤ r≤n0

{(Ã2+b̃B̃2)r} and we getmT̃ (n, k)(I) ≤

qcGI. Now we take a = q1/(n0+1), b = q−n0/(n0+1)(G/m) ≥ 1 and it follows

T̃ (n, k)(I) ≤ ban−kI.

From Theorem 4 we deduce E
∥∥∥X̃(n, k)x

∥∥∥
2
≤ ban−k ‖x‖2 for all x ∈ H and

0 ≤ k ≤ n, k, n ∈ N. Therefore Rn is stabilizing for (1). The proof is complete.

Now, we can state the main result of this section.

Theorem 22. Assume that

1) the system {A : D,B} is stabilizable and

2) the system {A,B;C} is uniformly observable.

Then the Riccati equation (14) admits a unique uniformly positive, bounded

on N and stabilizing solution. Moreover, if H1 holds then the solution of the

Riccati equation is τ -periodic.

Proof: From the Proposition 20 and the assumption 1) we deduce that

(14) admits a nonnegative, bounded on N (or τ -periodic, if H1 holds) solution.

Now, using the above theorem and 2), we deduce that this solution is stabilizing.

A stabilizing and bounded on N solution of the Riccati equation is unique by

Proposition 18. The proof is complete.

The above theorem is proved in [6] for the discrete time stochastic systems in

finite dimensional spaces. The continuous case, for stochastic systems on infinite

dimensional spaces, is treated in [9].

Definition 23. The system {A,B;C} is detectable if there exists a bounded

on N sequence P = {Pn}n∈N, Pn ∈ L(U,H) such that {A + PC,B} is uniformly

exponentially stable.
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The next result is the infinite dimensional version of Proposition 9 from [7],

where we replace the Markov perturbations with independent random perturba-

tions. So, it can be proved similarly the following proposition.

Proposition 24. If {A,B;C} is detectable then every nonnegative bounded

solution of (14) is stabilizing.

Now, it is clear that if we replace the observability condition in Theorem 22

with the detectability property we deduce that the Riccati equation (14) has

a unique nonnegative, bounded on N (τ -periodic, if H1 holds) and stabilizing

solution. The obtained result is already known for the time invariant case (see

[10]) and for the continuous, time-varying case (see [1]).

We only will prove that observability does not imply detectability and it fol-

lows that our result is different to those mentioned above. Before to give the

counter-example, which will solve this problem we need the following remarks.

Remark 25. Let us consider the time invariant case An= A, Bn= B, bn= b,

Cn= C and Kn= I. It is not difficult to see that, in the finite dimensional case,

the system {A,B;C} is detectable if and only if the controlled system {A∗ :

C∗, B∗} is stabilizable. Thus, it follows from Proposition 20 that if {A,B;C}

is detectable then the Riccati equation (14), where we replace the operators A

with A∗, B with B∗, C with I, and D with C∗ has a nonnegative bounded on

N solution. Using Lemma 3.1 from [11] we deduce that the Riccati equation

associated to the above detectable system becomes

Rn = A(Rn+1)(25)

where A : K → K A(S) = bBSB∗ + I +AS(I + C∗CS)−1A∗. By Proposition 20

it follows that if the system {A,B;C} is detectable then the algebraic Riccati

equation

R = A(R)(26)

has a nonnegative solution.

The following counter-example prove that the stochastic observability doesn’t

imply detectability.
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Counter-example

Let us consider the stochastic system {A,B;C} where H = R2, V = R (R2 is

the real 2-dimensional space), An = A =

(
1 0
0 2

)
, Cn = C =

(
1 1

)
, bn = 1 and

Bn = B =

(
1 0
0 0

)
for all n ∈ N.

Since rank(C∗, A∗C∗) = 2 then the deterministic system {A;C} [3] is ob-

servable. Therefore (see Conclusion 13) the stochastic system {A,B;C} is uni-

formly observable. It is easy to see that if we look for a solution K =

(
x1 x2

x2 x3

)

of (26), which satisfies the conditions x1x3 ≥ x2
2, x1 ≥ 0, we obtain x2

2 =

3x3x1 + 3x3 + x1 + 1 ≥ 3x
2
2 + 1, that is impossible. Thus the equation (26) has

not a nonnegative solution. Then, from Remark 25, we deduce that {A,B;C}

cannot be detectable.

4.2. Optimal quadratic control and the uniform observability

The following theorem gives the optimal control, which minimize the cost

function (3). Let H0 and H1 hold.

Theorem 26. Assume that the hypothesis 1) of the Theorem 22 holds and

the system {A,B;C} is either uniformly observable or detectable. Let Rn be the

unique solution of Riccati equation (14). If gn is the unique τ -periodic solution

of the Lyapunov equation

gn = (An +DnFn)
∗gn+1 +Rnfn−1(27)

where Fn is given by (21), then

min
u∈Uk,x

Ik(x, u) = I(x, ũ)

=
1

τ

τ−1∑

i=0

[2 〈gi+1, fi〉 −
∥∥∥V −1/2

i D∗i gi+1

∥∥∥
2
− 〈Ri+1fi, fi〉],

(28)

where the optimal control is

ũn = −Vn
−1D∗n (Rn+1Anx̃n + gn+1) ,(29)

n ≥ k ≥ 0, x̃n is the solution of the system (1) and Vn = Kn +D∗nRn+1Dn.
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Proof: First we note that if the above hypotheses hold, then the Riccati

equation (14) has a unique nonnegative, bounded on N and stabilizing solution
Rn, according Theorem 22 and Proposition 24. Since the Riccati equation is

stabilizing we can apply Proposition 12 to deduce that {A+DF} (see Definition 7)

is uniformly exponentially stable, where Fn, n∈N is given by (21). Using the
Proposition 8 it follows that (27) has a unique τ -periodic solution. Let xn be the

solution of the system (1) and let us consider the function

vn : H → R, vn(x) = 〈Rnx, x〉+ 2 〈gn+1, (An +DnFn)x〉 .

Arguing as in the proof of Lemma 19 we have

Evn+1 (xn+1) = Evn (xn)− E[‖Cnxn‖
2 + 〈Knun, un〉]+

E 〈Vn (un − Fnxn) , un − Fnxn〉+

2E 〈D∗ngn+1, un − Fnxn〉+ 2 〈gn+1, fn〉 − 〈Rn+1fn, fn〉 .

If we put an = V −1
n D∗ngn+1 + un − Fnxn we have

E 〈Vnan, an〉 − E
∥∥∥V −1/2

n D∗ngn+1

∥∥∥
2
= E 〈Vn (un − Fnxn) , (un − Fnxn)〉+

2E 〈D∗ngn+1, un − Fnxn〉 .

Hence we deduce that

Evn+1 (xn+1) = Evn (xn)− E[‖Cnxn‖
2 + 〈Knun, un〉] + E 〈Vnan, an〉 −

∥∥∥V −1/2
n D∗ngn+1

∥∥∥
2
+ 2 〈gn+1, fn〉 − 〈Rn+1fn, fn〉 .

(30)

Let x̃n be the solution of system (1), where ũn = Fnx̃n − V −1
n D∗ngn+1. It is

not difficult to see that x̃n and ũn are bounded on N. Thus ũ ∈ Uk,x.

Using (30) we get

1

n− k
[vk(x)− Evn+1 (x̃n+1)] =

1

n− k

n−1∑

i=k

E[‖Cix̃i‖
2 + 〈Kiũi, ũi〉]−

2 〈gi+1, fi〉+
∥∥∥V −1/2

i D∗i gi+1

∥∥∥
2
+ 〈Ri+1fi, fi〉 .

(31)

Since gn, Rn are τ periodic and Rn is stabilizing we deduce that there exists

P > 0 such that Evn+1 (x̃n+1) ≤ P for all n ∈ N.
As n→∞ in (31), it follows

Ik(x, ũ) = lim
n→∞

1

n− k

n−1∑

i=k

[2 〈gi+1, fi〉 −
∥∥∥V −1/2

i D∗i gi+1

∥∥∥
2
− 〈Ri+1fi, fi〉]
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Thus

min
u∈Ui,x

Ik(x, u) ≤ Ik(x, ũ) = lim
n→∞

1

n− k

n−1∑

i=k

[2 〈gi+1, fi〉−

∥∥∥V −1/2
i D∗i gi+1

∥∥∥
2
− 〈Ri+1fi, fi〉].

If u ∈ Uk,x it is not difficult to deduce from (30) that Ik(x, u) ≥ Ik(x, ũ).

Thus min
u∈Ui,x

Ik(x, u) = Ik(x, ũ). Using H1 we see that for n = pτ + k then

Ik(x, ũ) =
1
τ

τ−1∑
i=0
[2 〈gi+1, fi〉 −

∥∥∥V −1/2
i D∗i gi+1

∥∥∥
2
− 〈Ri+1fi, fi〉] and the conclusion

follows.

From the above theorem it follows that the optimal cost does not depend on

the initial condition. It is not difficult to see that the conclusions of the above

theorem stay true if we consider the initial condition xk = ξ ∈ L2
k(H). Thus,

using Proposition 14 we have the following result:

Proposition 27. If the hypothesis of the Theorem 26 holds and the sequence

{ξn}, n ∈ Z is τ -periodic, then the optimal cost is given by (28) and the optimal

control is (29), where x̃n =
n−1∑

p=−∞
X̃(n, p + 1)

(
fp −DpV

−1
p D∗pgp+1

)
, gp is the

τ -periodic solution of (27) and X̃(n, k), n ≥ k is the random evolution operator

associated with the system {A+DF,B} considered on Z.

The time invariant case

In this subsection we work under the hypotheses H0 and

H2 : Zn = Z for all n ∈ N (or n ∈ Z) and Z = A,B,D,C, F,K, b, f .

We consider the algebraic Riccati equation

R = U(R) + C∗C − G(R),(32)

where U(R) = A∗RA+ bB∗RB and G(R) = A∗RD(K +D∗RD)−1D∗RA.

Remark 28. It is easy to see that if the hypotheses 1) and 2) of the Theo-

rem22 hold then

a) the algebraic equation (32) has a unique positive solution;
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b) the system (10) has a unique time-invariant solution given by

g =
∞∑

p=0

(A∗ + F ∗D∗)p f.(33)

Corollary 29. If the hypotheses of the Theorem 26 are verified then the

Riccati equation (32) has a unique nonnegative solution R and the optimal cost

is

I(ũ) = 2 〈g, f〉 −
∥∥∥V −1/2D∗g

∥∥∥
2
− 〈Rf, f〉 ,(34)

where g and the optimal control ũ are given by (33) respectively (29) and V =

K +D∗RD.
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