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Abstract: New oscillation criteria of Kamenev-type and Philos-type are established

for a pair of coupled nonlinear delay differential equations. Our results improve the results

of Kowng and Wong and the recent results of Li and Cheng. The relevance of the results

obtained is illustrated with a number of carefully selected examples.

1 – Introduction

In this paper, we are concerned with the oscillation of all solutions of a pair

of coupled nonlinear delay differential equations of the form

(1.1)
x′(t) = a(t) f(y(σ(t)))

y′(t) = −b(t) g(x(σ(t)))

}

, t ≥ t0 ,

where

(H1) a, b ∈ C([t0,∞),R+) and σ ∈ C1([t0,∞),R+), σ(t) ≤ t, σ′(t) > 0;

(H2) f ∈ C1(R,R), uf(u) > 0, f ′(u) ≥ k > 0, and g ∈ C(R,R), ug(u) > 0,
g(u)

u ≥ k1 > 0 for u 6= 0.

We will restrict our attention to those solutions of the differential system (1.1)

that exist on some ray [T0,∞), where T0 ≥ t0 may depend upon the particular

solution involved. Note that under quite general conditions there will always exist
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solutions that are continuable to an interval of the form [T0,∞) , even though non-

continuable solutions will also exist [2]. We make the standing hypothesis that

(1.1) does possess such continuable solutions. As usual, a continuous real valued

function defined on an interval [T0,∞) is said to be oscillatory if it has arbitrarily

large zeros; otherwise it will be called nonoscillatory. A solution (x(t), y(t)) of

the system (1.1) will be called oscillatory if both x(t) and y(t) are oscillatory;

otherwise it will be called nonoscillatory.

The system (1.1) is naturally classified into four cases according to whether

∫ ∞

t0
a(t) dt =∞,

∫ ∞

t0
a(t) dt <∞,

∫ ∞

t0
b(t) dt =∞ and

∫ ∞

t0
b(t) dt <∞ .

However, by symmetry considerations, we will restrict our attention to the cases

where

(1.2)

∫ ∞

t0
a(t) dt =∞ ,

and

(1.3)

∫ ∞

t0
a(t) dt <∞ .

A particular case of (1.1) is the following system

(1.4)
x′(t) = a(t) f(y(t))

y′(t) = −b(t) g(x(t))

}

, t ≥ t0 .

A few number of oscillation and nonoscillation criteria of solutions of (1.4) have

already been derived, (see for example, Kordonis and Philos [1], Kwong and

Wong [2], Mirzov [5–7] and the recent results of Li and Cheng [4]). It seems that

nothing is known regarding the qualitative behavior of solutions of the system

(1.1). Therefore our aim in this paper is to provide some new sufficient conditions

for having (1.1) oscillatory, when (1.2) holds, using the techniques of Philos [8]

and Li [3] regarding second order differential equations. The case when (1.3)

holds will be treated in a separate paper. Our results improve the results of

Kwong and Wong [2] and the recent results of Li and Cheng [4]. The relevance

of our results becomes clear through some carefully selected examples.

In the sequel, when we write a functional inequality we will assume that it

holds for all sufficient large values of t.
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2 – Main results

In this section we will give some new sufficient conditions for having system

(1.1) oscillatory. Before stating our main results we need the following lemma, the

proof of which is similar to that of Lemma 1.1 in [4]. For the sake of completeness

we will include the proof.

Lemma 2.1. Assume that condition (H 1) and (H2) hold. Suppose further

that the function a(t) is not identically zero on any interval of the form [T0,∞),

where T0 ≥ t0. Then the component function x(t) of a nonoscillatory solution

(x(t), y(t)) of (1.1) is also nonoscillatory.

Proof: Assume to the contrary that x(t) is oscillatory but y(t) and y(σ(t)),

for some T0≥ t0, are positive for every t≥T0. Therefore x
′(t)=a(t)f(y(σ(t)))≥0

for every t ∈ [T0,+∞) and x′(t) cannot be identically zero on any interval

[T,+∞), (T ≥ T0). Then neither x(t) can be identically zero on any interval

[T,+∞), (T ≥ T0) nor x
′(t) can be negative on [T0,+∞). This contradicts the

oscillatory property of x(t). The case where y(t) and y(σ(t)), for some T0, are

negative for t ≥ T0 is similarly proved.

If b(t) is not identically zero on any interval of the form [T0,∞), where T0 ≥ t0,

then the component function y(t) of a nonoscillatory solution (x(t), y(t)) of (1.1)

is also nonoscillatory. Therefore, under the additional condition

(H3) a(t) and b(t) are not identically zero on any interval of the form [T0,∞) ,

where T0 ≥ t0,

each component function of a nonosillatory solution (x(t), y(t)) is eventually of

one sign.

It is remarkable that for any solution (x, y) of the differential system (1.1),

in the case where the coefficients a and b are assumed to be not identically zero

on any interval of the form [T1,∞), T1 ≥ t0, from the first equation of (1.1) it

follows easily that the oscillation of x implies that y is also oscillatory. So if (x, y)

is a nonoscillatory solution of (1.1) then x is always nonoscillatory.

Now, we present some new oscillation results for system (1.1), using Kamenev-

type integral average conditions [3].
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Theorem 2.1. Assume that (H 1)–(H3) hold. Let r(t) = 1
a(t) and ρ ∈

C1[[t0,∞),R+) be such that

(2.1) lim
t→∞

sup
1

tn

t
∫

t0

(t− s)n
(

ρ(s) q(s)−
(ρ′(s))2 r(σ(σ(s)))

4ρ(s)σ′(s)σ′(σ(s))

)

ds = ∞ ,

for some nonnegative integer n, where

(2.2) q(t) = k k1 b(σ(t))σ
′(t) .

Then every solution of (1.1) oscillates.

Proof: Assume that the differential system (1.1) admits a nonoscillatory

solution (x(t), y(t)) on an interval [T0,∞) , where T0 ≥ t0. From (H3) it follows

that the coefficients a and b are not identically zero on any interval of the form

[T0,∞) , T0 ≥ t0. So, as pointed out in Lemma 2.1, x(t) is always nonoscillatory.

Without loss of generality we shall assume that x(t) 6= 0 for t ≥ T0. Furthermore,

we observe that the substitution u = −x and v = −y transforms the system (1.1)

into a system of the same form subject to the same assumptions of the theorem.

Thus we restrict our discussion only to the case where x(t) and x(σ(t)) > 0 are

positive on [T0,∞) .

From (H3), as a(t) is positive and not identically zero on any interval [T0,∞)

the differential system (1.1) reduces to the second order nonlinear delay differen-

tial equation

(2.3) (r(t)x′(t))′ + b(σ(t))σ′(t) f ′(y(σ(t))) g(x(σ(σ(t)))) = 0 , t ≥ T0 .

From (1.2) we have

(2.4)

∞
∫

t0

1

r(t)
dt = ∞ .

From (H2) and (2.3) it follows that

(2.5) (r(t)x′(t))′ + k k1b(σ(t))σ
′(t)x(σ(σ(t))) ≤ 0 , t ≥ T0 ,

which implies that

(2.6) (r(t)x′(t))′ < 0 for t ≥ T0 .

Therefore r(t)x′(t) is a decreasing function. We claim that

(2.7) x′(t) ≥ 0, for t ≥ T0 .
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If not, there is a T1 > T0 such that x
′(T1) < 0. It follows from (2.6) that

(2.8) x(t) ≤ x(T1) + r(T1)x
′(T1)

t
∫

T1

(

1

r(s)

)

ds .

Hence, by (2.4) we have limt→∞ x(t) = −∞, which contradicts the fact that

x(t) > 0 for t ≥ T0.

Define now the function

(2.9) w(t) = ρ(t)
r(t)x′(t)

x(σ(σ(t)))
, for t ≥ T0 .

Differentiating (2.9) and using (2.5), we have

(2.10) w′(t) ≤ −ρ(t) q(t) +
ρ′(t)

ρ(t)
w(t)− σ′(t)σ′(σ(t)) ρ(t) r(t)

x′(t)x′(σ(σ(t)))

x(σ(σ(t)))
.

Since, the function r(t)x′(t) is nonincreasing, this leads to

(2.11) r(σ(σ(t)))x′(σ(σ(t))) ≥ r(t)x′(t), for t ≥ T0 .

In order to simplify the notations we introduce

(2.12) γ1(s) =
ρ′(s)

ρ(s)
, W1(s) =

σ′(s)σ′(σ(s))

ρ(s) r(σ(σ(s)))
.

Using (2.10) and (2.11) we find that w(t) > 0 and satisfies

(2.13)
w′(t) ≤ −ρ(t) q(t) + γ1(t)w(t)− 2W1(t)w

2(t)

< −ρ(t) q(t) + γ1(t)w(t)−W1(t)w
2(t) ,

which implies

(2.14) w′(t) < −ρ(t) q(t) +
(γ1(t))

2

4W1(t)
−

[

√

W1(t)w(t)−
γ1(t)

2
√

W1(t)

]2

.

Thus

w′(t) < −

[

ρ(t) q(t)−
(γ1(t))

2

4W1(t)

]

, for t ≥ T0 .

Multiplying the last inequality by (t−s)n and integrating it from T0 to t we have

(2.15)

t
∫

T0

(t− s)n
[

ρ(s) q(s)−
(γ1(s))

2

4W1(s)

]

ds < −

t
∫

T0

(t− s)nw′(s) ds .
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Since

(2.16)

t
∫

T0

(t− s)nw′(s) ds = n

t
∫

T0

(t− s)n−1w(s) ds − w(T0) (t− T0)
n

we obtain

(2.17)
1

tn

t
∫

T0

(t− s)nQ(s) ds ≤ w(T0)

(

t− T0

t

)n

−
n

tn

t
∫

T0

(t− s)n−1w(s) ds

where

Q(s) = ρ(s) q(s)−
(γ1(s))

2

4W1(s)
.

Hence

(2.18)
1

tn

t
∫

T0

(t− s)nQ(s) ds ≤ w(T0)

(

t− T0

t

)n

,

since w(t) > 0. Then

(2.19) lim
t→∞

sup
1

tn

t
∫

T0

(t− s)nQ(s) ds → w(T0) <∞

which contradicts the condition (2.1). Therefore every solution of (1.1) oscillates

and the proof is complete.

From Theorem 2.1 we have the following result.

Theorem 2.2. Assume that all the assumptions of Theorem 2.1 hold, except

the condition (2.1) which is replaced by

(2.20) lim
t→∞

sup

t
∫

t0

(

ρ(s) q(s)−
(γ1(s))

2

4W1(s)

)

ds = ∞ .

Then every solution of (1.1) oscillates.

The following examples illustrate this theorem.
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Example 2.1. Consider the pair of coupled nonlinear delay differential

equations

(2.21)

x′(t) =
1

1 + cos2 t
y (t− 2π)

[

1 + y2 (t− 2π)
]

y′(t) = −
1

1 + sin2 t
x (t− 2π)

[

1 + x2 (t− 2π)
]



















, t ≥ 4π .

Here

a(t) =
1

1 + cos2 t
, b(t) =

1

1 + sin2 t
, σ(t) = t− 2π ,

f(y) = y(1 + y2) and g(x) = x(1 + x2) .

Then

σ(σ(t)) = t− 4π , b(σ(t)) =
1

1 + sin2 t
and r(σ(σ(t))) = 1 + cos2 t ,

f ′(y) = 1 + 3 y2 ≥ 1 = k and
g(x)

x
= 1 + x2 ≥ 1 = k1 .

Let ρ(t) = 1. A straightforward computation yields that all the assumptions of

Theorem 2.2 are satisfied. Then every solution of (2.21) oscillates. In fact, one

such solution is (x(t), y(t)) = (sin t, cos t).

Example 2.2. Consider the pair of coupled nonlinear delay differential

equations

(2.22)

x′(t) =
1

1 + cos2 t
y (t− 2π)

[

1 + y2 (t− 2π)
]

y′(t) = −
9(1 + cos2 t)

(10 + cos2 t)
x (t− 2π)

[

1

9
+

1

1 + x2 (t− 2π)

]



















, t ≥ 4π .

Here

(2.23) a(t) =
1

1 + cos2 t
, b(t) =

9(1 + cos2 t)

(10 + cos2 t)
,

σ(t) = t− 2π , σ(σ(t)) = t− 4π , r(σ(σ(t))) = 1 + cos2 t ,

(2.24) f(y) = y(1 + y2) , f ′(y) = 1 + 3 y2 ≥ 1 = k ,

(2.25)
g(x)

x
=

[

1

9
+

1

1 + x2

]

≥ k1 =
1

9
.
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One can easily show that all the assumptions of the Theorem 2.2 are satisfied if

we choose ρ(t) = 1. Hence every solution of (2.22) oscillates. Again, (x(t), y(t)) =

(sin t, cos t) is an oscillatory solution of (2.22).

Example 2.3. Consider the pair of coupled nonlinear differential equations

(2.26)
x′(t) = t y(t)

y′(t) = −
2

t3
x(t)







, t ≥ 1 .

Here

(2.27) a(t) = t , b(t) =
2

t3
, σ(t) = t .

f(y) = y , f ′(y) = 1 = k ,
g(x)

x
= 1 = k1 .

Let ρ(t) = t2. Then condition (2.20) is satisfied and from Theorem 2.2 every

solution of (2.26) oscillates. In fact, one such solution is

(x(t), y(t)) =

(

t sin(ln t),
1

t

(

sin(ln t) + cos(ln t)
)

)

.

Remark 2.1. Note that the results of Kwong and Wong [2] cannot be applied

to (2.26) since the assumption (2.5) of Theorem 1 in [2] does not hold. Therefore

our results in Theorems 2.1 and 2.2 improve the results of Kwong and Wong [2].

Remark 2.2. For f(y) = y
[

1
9 +

1
1+y2

]

, we note that

(2.28) f ′(y) =
(y2 − 2) (y2 − 9)

9 (1 + y2)2

changes sign on R four times. Therefore, the condition (H2) in this case is not

satisfied and consequently Theorem 2.1 cannot be applied. It seems interesting

to find other oscillation criteria for the case where f(y) is not monotonic.

Next, we present some new oscillation results for (1.1), using integral average

conditions of Philos-type. Following Philos [8], we introduce a class of functions

<, defined as follows. Let

(2.29) D0 =
{

(t, s) : t > s ≥ t0

}

and D =
{

(t, s) : t ≥ s ≥ t0

}

.
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A function H ∈ C(D,R) is said to belong to the class < if

(I) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for t > s ≥ t0;

(II) H has a continuous and nonpositive partial derivative onD0 with respect

to the second variable.

Theorem 2.3. Assume that (H 1)–(H3) hold. Let r(t) = 1
a(t) ,

ρ ∈ C1 ([t0,∞),R+) , H ∈ < and h ∈ C(D,R) be such that

(2.30) −
∂H(t, s)

∂s
= h(t, s)

√

H(t, s) for all (t, s) ∈ D0 ,

and

(2.31) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

[

H(t, s) ρ(s) q(s)−
ρ(s) r(σ(σ(s)))Q2(t, s)

4σ′(s)σ′(σ(s))

]

ds = ∞ ,

where

(2.32) Q(t, s) = h(t, s)−
ρ′(s)

ρ(s)

√

H(t, s) .

Then every solution of (1.1) oscillates.

Proof: Assume that the differential system (1.1) admits a nonoscillatory

solution (x(t), y(t)) on an interval [T0,∞) , where T0 ≥ t0. Now as in the proof of

the Theorem 2.1 we consider the function w defined by (2.9). Therefore by similar

arguments we have that w(t) > 0, and then for all t > T ≥ T0 the inequality

(2.13) can be obtained.

Again to simplify the notation we denote

γ1(s) =
ρ′(s)

ρ(s)
, W1(s) =

σ′(s)σ′(σ(s))

ρ(s) r(σ(σ(s)))
.

Then from (2.13) for all t > T ≥ T0, we have

t
∫

T

H(t, s) ρ(s) q(s) ds ≤

≤

t
∫

T

H(t, s) γ1(s)w(s) ds −

t
∫

T

H(t, s)w′(s) ds −

t
∫

T

H(t, s)W1(s)w
2(s) ds

= −H(t, s)w(s)
∣

∣

∣

t

T

−

t
∫

T

[

−
∂H(t, s)

∂s
w(s)−H(t, s) γ1(s)w(s) +H(t, s)W1(s)w

2(s)

]

ds
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= H(t, T )w(T )

−

t
∫

T

[

√

H(t, s)
(

h(t, s)−
√

H(t, s) γ1(s)
)

w(s) +H(t, s)W1(s)w
2(s)

]

ds

= H(t, T )w(T )−

t
∫

T

[

√

H(t, s)W1(s)w(s) +
1

2

Q(t, s)
√

W1(s)

]2

+

t
∫

T

Q2(t, s)

4W1(s)
ds .

Therefore, we conclude that

(2.33)

t
∫

T

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤

≤ H(t, T )w(T )−

t
∫

T

[

√

H(t, s)W1(s)w(s) +
1

2

Q(t, s)
√

W1(s)

]2

ds .

By virtue of (2.33) and (II) we obtain for t > T ≥ T0,

(2.34)

t
∫

T

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤ H(t, T )w(T ) .

Then by (2.34) and (II), we have

(2.35)
1

H(t, t0)

t
∫

t0

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤

T0
∫

t0

ρ(s) q(s) ds+ w(T0) .

Inequality (2.35) yields

(2.36)

lim
t→∞

sup
1

H(t, t0)

t
∫

t0

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤

≤

T0
∫

t0

ρ(s) q(s) ds + w(T0) < ∞ ,

and assumption (2.31) is contradicted. Therefore every solution of (1.1) oscillates.

The proof is complete.

The following theorem follows directly from Theorem 2.3.
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Theorem 2.4. Assume that all the assumptions of Theorem 2.3 hold except

the condition (2.31) which is replaced by

(2.37) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

H(t, s)ρ(s) q(s) ds = ∞ ,

(2.38) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

ρ(s) r(σ(σ(s)))Q2(t, s)

σ′(s)σ′(σ(s))
ds < ∞ .

Then every solution of (1.1) oscillates.

The following two oscillation criteria are useful when condition (2.31) cannot

be easily verified.

Theorem 2.5. Assume that (H 1)–(H3) hold. Let r(t) = 1
a(t) ,

ρ ∈ C1 ([t0,∞),R+) , H ∈ < and h ∈ C(D,R) be such that (2.30) holds.

Furthermore suppose that

(2.39) 0 < inf
s≥t0

[

lim
t→∞

inf
H(t, s)

H(t, t0)

]

≤ ∞ ,

and

(2.40) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

Q2(t, s)

W1(s)
ds < ∞ ,

where Q(t, s) and W1(s) are given by (2.32) and (2.11), respectively. Let ψ ∈

C([t0,∞),R) be such that

(2.41) lim
t→∞

sup

t
∫

t0

ψ2
+(s)W1(s) ds = ∞

and

(2.42) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

(

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

)

ds ≥ ψ(T ) ,

where ψ+ (t) = max{ψ(t), 0}. Then every solution of (1.1) oscillates.
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Proof: As in the proof of the Theorem 2.3, assume that (1.1) has a nonoscil-

latory solution. Defining again w(t) by (2.9), by similar arguments, we obtain

the inequality (2.33). Therefore for t > T ≥ T0 we have

1

H(t, T )

t
∫

T

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤

≤ w(T )−
1

H(t, T )

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds

and consequently

lim
t→∞

sup
1

H(t, T )

t
∫

T

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤

≤ w(T )− lim
t→∞

inf
1

H(t, T )

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds .

On the other hand inequality (2.42) implies that

(2.43) w(T ) ≥ ψ(T )+ lim
t→∞

inf
1

H(t, T )

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds ,

and so, for every T ≥ T0 one has

(2.44) w(T ) ≥ ψ(T )

and

lim
t→∞

inf
1

H(t, T0)

t
∫

T0

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds ≤ w(T0)− ψ(T0)

= M < ∞ .

Therefore, for t ≥ T0, we have

(2.45)

∞ > lim
t→∞

inf
1

H(t, T0)

t
∫

T0

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds

≥ lim
t→∞

inf
1

H(t, T0)

t
∫

T0

[

H(t, s)W1(s)w
2(s) +

√

H(t, s)Q(t, s)w(s)

]

ds .
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Defining the functions α(t) and β(t) as

α(t) =
1

H(t, T0)

t
∫

T0

H(t, s)W1(s)w
2(s) ds ,

β(t) =
1

H(t, T0)

t
∫

T0

√

H(t, s)Q(t, s)w(s) ds ,

(2.45) can be written as

(2.46) lim
t→∞

[α(t) + β(t)] <∞ .

Now we claim that

(2.47)

∞
∫

T0

W1(s)w
2(s) ds < ∞ .

Suppose on the contrary that

(2.48)

∞
∫

T0

W1(s)w
2(s) ds = ∞ .

By (2.39), there is a positive constant ζ satisfying

(2.49) inf
s≥t0

[

lim
t→∞

inf
H(t, s)

H(t, t0)

]

> ζ > 0 ,

and from (2.48) it follows that for every positive number, µ, there exists a T1 ≥ T0

such that
t
∫

T0

W1(s)w
2(s) ds ≥

µ

ζ
for t ≥ T1 .

Therefore, for every t ≥ T1, we have

α(t) =
1

H(t, T0)

t
∫

T0

H(t, s) d







s
∫

T0

W1(u)w
2(u) du







=
1

H(t, T0)

t
∫

T0

−
∂H(t, s)

∂s







s
∫

T0

W1(u)w
2(u) du






ds
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≥
1

H(t, T0)

t
∫

T1

−
∂H(t, s)

∂s







s
∫

T1

W1(u)w
2(u) du






ds

≥
µ

ζ

1

H(t, T0)

t
∫

T1

−
∂H(t, s)

∂s
ds =

µ

ζ

H(t, T1)

H(t, T0)
.

But by (2.49), there exists a T2 ≥ T1 such that

H(t, T1)

H(t, T0)
≥ ζ for all t ≥ T2 ,

which implies that α(t) ≥ µ1 for all t ≥ T2 and since µ is arbitrary, we conclude

(2.50) lim
t→∞

α(t) =∞ .

Next, consider a sequence tn →∞ satisfying

lim
n→∞

[α(tn) + β(tn)] = lim
t→∞

[α(t) + β(t)] .

In view of (2.46), there exists a constant µ2 such that

(2.51) α(tn) + β(tn) ≤ µ2 , n = 1, 2, ... .

But from (2.50) one has

(2.52) lim
n→∞

α(tn) =∞ ,

and (2.51) implies

(2.53) lim
n→∞

β(tn) = −∞ .

Then, by (2.51) and (2.53), one has for n large enough

1 +
β(tn)

α(tn)
≤

M

α(tn)
<
1

2
.

and consequently
β(tn)

α(tn)
≤ −

1

2
.

which implies that

(2.54) lim
n→∞

β(tn)

α(tn)
β(tn) = ∞ .
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On the other hand by Schwarz’s inequality, we have for every positive integer n

β2(tn) =







1

H(tn, T0)

tn
∫

T0

√

H(tn, s)Q(tn, s)w(s) ds







2

≤











1

H(tn, T0)

tn
∫

T0

Q2(tn, s)

W1(s)
ds





















1

H(tn, T0)

tn
∫

T0

H(tn, s)W1(s)w
2(s) ds











≤ α(tn)











1

H(tn, T0)

tn
∫

T0

Q2(tn, s)

W1(s)
ds











,

But (2.49) guarantees that for n large enough

H(tn, T0)

H(tn, t0)
> ζ ,

and consequently

β2(tn)

α(tn)
≤

1

ζH(tn, t0)

tn
∫

T0

Q2(tn, s)

W1(s)
ds .

Thus by (2.54) we have

(2.55) lim
t→∞

sup
1

H(t, t0)

t
∫

T0

Q2(t, s)

W1(s)
ds = ∞ ,

which contradicts (2.40). Hence (2.47) holds and from (2.44) one obtains

∞
∫

T0

ψ2
+(s)W1(s) ds ≤

∞
∫

T0

w2(s)W1(s) ds < ∞ ,

which contradicts (2.41). Therefore, every solution of (1.1) oscillates.

Theorem 2.6. Assume that (H1)–(H3) hold. Let r(t) = 1
a(t) ,

ρ ∈ C1 ([t0,∞),R+), H ∈ < and h ∈ C(D,R) satisfying (2.30) and (2.39).

Suppose there exists a function ψ ∈ C([t0,∞),R) such that (2.41) holds,

lim
t→∞

sup
1

H(t, t0)

t
∫

t0

H(t, s) ρ(s) q(s)(s) ds < ∞ ,
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and

(2.56) lim
t→∞

sup
1

H(t, t0)

t
∫

t0

(

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

)

ds ≥ ψ(T ) .

where Q(t, s), W1(s) and ψ+ (t) are as in Theorem 2.5. Then every solution of

(1.1) oscillates.

Proof: Assuming as before that (1.1) has a nonoscillatory solution and

defining w(t) by (2.9), the inequality (2.33) can again be obtained. Therefore,

for t > T ≥ T0 we have

lim
t→∞

inf
1

H(t, T )

t
∫

T

[

H(t, s) ρ(s) q(s)−
Q2(t, s)

4W1(s)

]

ds ≤

≤ w(T )− lim
t→∞

sup
1

H(t, T )

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds .

It follows by (2.56) that for T ≥ T0

(2.57) w(T ) ≥ ψ(T )+ lim
t→∞

sup
1

H(t, T )

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds .

Hence, (2.44) holds for all T ≥ T0, and

lim
t→∞

sup
1

H(t, T0)

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds ≤ w(T0)−φ(T0) < ∞ .

For α(t) and β(t) defined as in the proof of Theorem 2.5, this implies that

(2.58)

lim
t→∞

sup[α(t) + β(t)] ≤

≤ lim
t→∞

sup
1

H(t, T0)

t
∫

T

[

√

H(t, s)W1(s)w(s) +
Q(t, s)

2
√

W1(s)

]2

ds ,

The remainder of the proof is similar to the proof of Theorem 2.5 and hence

omitted.

Under appropriate choices of the functions H and h, it is possible to derive

from Theorems 2.3–2.6 other oscillation criteria for (1.1).
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Taking, for example, for a nonnegative integer n, the function H(t, s) given

by

(2.59) H(t, s) = (t− s)n , (t, s) ∈ D .

we can easily check that H ∈ <. Furthermore the function

(2.60) h(t, s) = n(t− s)(n−2)/2 , (t, s) ∈ D

is continuous and satisfies condition (II).

Other possibilities arise if we choose the functions H and h as follows:

H(t, s) = (et − es)n, h(t, s) = n es(et − es)(n−2)/2 , t ≥ s ≥ t0 ,

or

H(t, s) =

(

ln
t

s

)n

, h(t, s) =
n

s

(

ln
t

s

)n/2−1

, t ≥ s ≥ t0 ,

or more generally:

H(t, s) =

( t
∫

s

du

θ(u)

)n

, h(t, s) =
n

θ(s)

( t
∫

s

du

θ(u)

)
n

2
−1

, t ≥ s ≥ t0 ,

where n > 1 is an integer, and θ : [t0,∞)→ R+ is a continuous function satisfying

the condition

lim
t→∞

t
∫

t0

du

θ(u)
= ∞ .

It is a simple matter to check that in all these cases the assumptions (I) and

(II) are verified.
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