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A NOTE ON THE HOLOMORPHIC INVARIANTS
OF TIAN–ZHU *

Zhiqin Lu

In this short note, we compute the holomorphic invariants defined by Tian

and Zhu [4] on smooth hypersurfaces of CP n. The holomorphic invariants, which

generalize the famous Futaki invariants [1], are obstructions towards the existence

of Kähler–Ricci solitons.

For a Kähler manifold with the first positive Chern class, the existence of the

Kähler–Ricci soliton can be reduced to the existence of the solution of a nonlinear

equation of Monge–Ampere type. In general, solving such an equation is highly

nontrivial. Similarly to the Futaki invariants, the Tian–Zhu invariants give the

obstruction before one needs to solve the equation. It is thus very important to

compute it concretely. In this paper, in the case of hypersurfaces, we give an

explicit formula.

Let M ⊂ CP n be a smooth hypersurface defined by a homogeneous polyno-

mial F = 0 of degree d. Let v and X be two holomorphic vector fields on CP n.

For the sake of simplicity, we assume that

v =
n
∑

i=0

viZi
∂

∂Zi
and X =

n
∑

i=0

XiZi
∂

∂Zi
,

where [Z0, ..., Zn] is the homogeneous coordinate of CP n, (v0, ..., vn) ∈ Cn+1,

(X0, ..., Xn) ∈ Cn+1. We further assume that

n
∑

i=0

vi= 0 ,
n
∑

i=0

Xi= 0 .(1)
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If v and X are tangent vector fields of M , then there are complex numbers λ and

κ such that

vF = κF , XF = λF .(2)

Let ω be the Kähler form of the Fubini–Study metric of CP n. Then (n−d+1)ω

restricts to a representative of the first Chern class c1(M) of M . Thus there is a

smooth function ξ on M such that

Ric
(

(n− d+ 1)ω|M
)

− (n− d+ 1)ω|M = ∂∂ξ .

For fixed holomorphic vectors X and v, the holomorphic invariant defined by

Tian–Zhu [4], in our context, is

FX(v) = (n− d+ 1)n−1
∫

M
v
(

ξ − (n− d+ 1)θX
)

e(n−d+1)θX ωn−1 ,(3)

where θX is defined as















i(X)ω =

√
−1
2π

∂θX ,
∫

M
e(n−d+1)θX ωn−1 = d .

(4)

The main property of the Tian–Zhu invariants is the following (cf. [4]):

Theorem 1. Let FX(v) be the Tian–Zhu invariant. Then we have

1. If the Kähler-Ricci soliton exists, that is, we have

Ric(ω)− ω = LXω

for some Kähler metric ω. Then FX(v) ≡ 0.

2. FX(v) is independent of the choice of the Kähler metric ω within the first

Chern class.

In this note, we give a “computable” expression of FX(v). Our main result is

as follows:

Theorem 2. Using the notations as above, defined the function

ϕ(X) =
∞
∑

k=0

n! (n− d+ 1)k

(n+ k)!

∑

α0+···+αn=k

Xα0

0 · · ·Xαn
n ,(5)
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where α0, ..., αn ∈ Zn+1 are nonnegative integers. Let

σ(X) =

(

−λ(n− d+ 1)

n
+ d

)

ϕ(X) +
d

n

n
∑

i=0

Xi ∂ϕ(X)

∂Xi
.(6)

Then the invariants defined by Tian–Zhu can be explicitly expressed as

FX(v) = −(n− d+ 1)n−1 d

(

κ+
n
∑

i=0

vi
∂ log σ(X)

∂Xi

)

.(7)

Corollary 1. The Futaki invariant for the hypersurface M is

F (v) = −(n− d+ 1)n−1 (n+ 1) (d− 1)

n
κ .

The rest of this note is devoted to the proof Theorem 2. We define

θ̃X =
λ0|Z0|2 + · · ·+ λn|Zn|2
|Z0|2 + · · ·+ |Zn|2

.(8)

Then we have

i(X)ω = ∂θ̃X .(9)

By comparing the above equation with (4), we have

θX = θ̃X + cX(10)

for a constant cX . First, we have the following lemma

Lemma 1.
∫

CPn
e(n−d+1)θ̃X ωn = ϕ(X) ,

where ϕ(X) is defined in (5).

Proof: This follows from the expansion

e(n−d+1)θ̃X =
∞
∑

k=0

(n− d+ 1)k

k!
θ̃kX ,

and the elementary Calculus.
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Lemma 2. Using the same notation as above, we have

FX(v) = (n− d+ 1)n−1
(

−κd−
∫

M
(n− d+ 1) θv e

(n−d+1)θXωn−1
)

.

Proof: By [3, Theorem 4.1], we have

div v + v(ξ) + (n− d+ 1)θv = −κ ,

where θv is the function on CP n defined by

θv =
v0|Z0|2 + · · ·+ vn|Zn|2
|Z0|2 + · · ·+ |Zn|2

,

and κ is defined in (2). Then (3) becomes

FX(v) = (n− d+ 1)n−1

(11)
·
(
∫

M

(

−κ− div v − (n−d+1)θv − (n−d+1) v(θX)
)

e(n−d+1)θXωn−1
)

.

We also have

div (e(n−d+1)θXv) = e(n−d+1)θX

(

div v + (n− d+ 1) v(θX)
)

.(12)

The lemma follows from (4), (11), (12) and the divergence theorem.

The following key lemma transfers the integration on M to the integrations

on CPn.

Lemma 3.

(n− d+ 1)

∫

M
θv e

(n−d+1)θXωn−1 = d
n
∑

i=0

vi
∂ log σ

∂Xi
,(13)

where σ(X) is defined in (6).

Proof: Let

η = log
|F |2

(

|Z0|2 + · · ·+ |Zn|2
)d

.(14)

Then η is a smooth function on CP n outside M . We have the following identity:

∂
(

e(n−d+1)θX∂η ∧ ωn−1
)

− n−d+1

n
i(X)

(

e(n−d+1)θX∂η ∧ ωn
)

=

(15)
= −e(n−d+1)θX∂∂η ∧ ωn−1 − n−d+1

n
e(n−d+1)θX (λ− dθ̃X)ωn .



A NOTE ON THE HOLOMORPHIC INVARIANTS OF TIAN–ZHU 267

Since on CP n, there are no (2n+1) forms, the left hand side of the above equation

is the divergence of some vector field. Integrate the equation on both side and

use the divergence theorem, we have

∫

CPn
e(n−d+1)θX∂∂η ∧ ωn−1 = −n−d+1

n

∫

CPn
(λ− dθ̃X) e(n−d+1)θXωn .(16)

By [2, page 388], in the sense of currents, we have

∂∂η = [M ]− dω .(17)

Thus from (16),

∫

M
e(n−d+1)θXωn−1 =

(

−λ(n−d+1)

n
+ d

)
∫

CPn
e(n−d+1)θXωn

(18)

+
d(n−d+1)

n

∫

CPn
θ̃Xe

(n−d+1)θXωn .

From Lemma 1, we have

n
∑

i=0

Xi ∂ϕ(X)

∂Xi
= (n−d+1)

∫

CPn
θ̃X e(n−d+1)θ̃Xωn .(19)

By (10), (18) and (19)

∫

M
e(n−d+1)θXωn−1 = σ(X) ecX .(20)

From the above equation, we have

(n− d+ 1)

∫

M
θv e

(n−d+1)θXωn−1 =
n
∑

i=0

vi
∂σ(X)

∂Xi
ecX .(21)

On the other hand, from (20), we have

d = σ(X) ecX ,(22)

by (4). Lemma 3 follows from (21) and (22).

Theorem 2 follows from Lemma 2 and Lemma 3.
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