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GLOBAL SOLVABILITY TO THE KIRCHHOFF EQUATION
FOR A NEW CLASS OF INITIAL DATA

R. MANFRIN

Presented by E. Zuazua

Abstract: Introducing a new simple energy estimate, we prove the global solvability
of the classical Kirchhoff equation for initial data w(0,z), u(0,z) in a suitable subset
of the Sobolev class H?xH!.

Introduction

In this paper we investigate the question of the global solvability of the
Kirchhoff equation

(1.1) U — M (/ \Vu(x,t)|? dm) Au=0 in Qx][0,00),
Q
where m(s) is a C2-function such that m(s) > dp > 0, Vs > 0. We shall consider
the following cases:
(1) the Cauchy problem, when 2 = R";
(2) the periodic initial value problem, when = |0, 27[";

(3) the initial-boundary value problem, if Q C R™ is a bounded domain with
C? boundary.

Our results will be proved introducing a particular class of initial data in which
we are able to show that the derivative of the nonlinear term s(t)dgfmeu(ar, t)|?dx
is a a-priori bounded in every bounded interval [0,T).
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1 — Formulation of the problem and main results

(1) In the case Q = R", we consider the Cauchy problem

(1.2) et — m(/Rn W“(x,t)|2dx> Au = 0,

in R"x]0,00) ,
w(@,0) =uo(z), w(z,0)=ui(z),

and we say that u(z,t) is a strong solution of (1.2) in R™ x [0,T) if

(1.3) u(z,t) € CF([0,T); H> F(R"™) for 0<EkE<2,

(analogously we define the strong periodic solutions if Q = ]0, 27["). Besides, we
introduce the following class of functions:

Definition 1.1. Let {p;},5, be a given sequence of positive numbers such
that p; — +oo. We say that a L?-function f(z) belongs to prj}(]R”) if there
exists n > 0 such that
(1.4) imsup [ 64O exp(n03/16]) de < +oo o

Pj

joto
Then we have:

Theorem 1. Let us suppose that the initial data satisfy
(1.5) uo(x) € prj}(R”), ui(z) € B%pj}(]R”) .

Then the Cauchy problem (1.2) has a unique global strong solution in
R™ x [0, 00).

(2) By the same arguments, we may consider the periodic initial value
problem. Namely, we assume that  =]0,27[" and that the unknown wu(z,t)
is 2m-periodic in the space variables.

Denoting with c¢(f), for £ € Z", the Fourier coeflicients of f(z), with respect
to the orthonormal system e¢(z) = (27) ™™ 2 exp{i { x}, we say that:

Definition 1.2. Let {p;};>0 be a given sequence of positive numbers such
that p; — 4+00. A L? locally integrable 27-periodic function f(x) belongs to
prj}(]o, 27[™) if there exists a constant 7 > 0 such that

(1.6) limsup Y [ [ee(F)1* exp(npl/l€]) < 400 .0
ITEO0 ez, gl>ps
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Then, we have the following:

Corollary 2. Let Q =1]0,2n[" and suppose that the initial data are
2n-periodic functions such that ug(x) € B%pj}(]O,QW["), ui(x) € B%pj}(]O, 27[™).
Then the initial value problem

Ut — m</ \Vu(z,t)? d:L‘) Au = 0,
10,27 [

(1.7) in R" x[0,00) ,

u(z,0) =uop(z), u(z,0)=ui(z),

has a unique global strong periodic solution in R™x[0,00). u

(3) Finally, in the case of a bounded C? domain Q C R", we consider the
initial-boundary value problem:

Ut — m(/ \Vu(x,t)]zda;> Au = 0,
)

(1.8) in Qx[0,00) ,

u(z,0) =uo(z), wi(z,0)=u(2),
u(z,t) =0 on 08 x [0,00),

and we say that u(x,t) is a strong solution of (1.8) in Qx[0,7T) if

(L9)  ule,t) € CO0,T); HX(Q) N CH([0.7); HY(2)) N C2([0,T); LA(%) -

As it is well known, we can find an orthonormal basis {v;};>0 of L?() such that

—Avi = )\12 Vi v; € H&(Q) ,

where A; > 0, \; — +o0. Following the same lines, we say that f(z) € B?pj}(Q)
if for some constant 1 > 0 we have

(1.10) lim sup Z Il |ei( )2 exp(npjz/)\i) < 400,
Jj—+oo Xi>pj

where ¢;(f) are the Fourier coefficients with respect to the basis {v;};>0. Then,
we have:

Corollary 3. Let QCR" be a bounded C? domain and assume that ug(z) €
B%pj}(Q) and ui(x) € B%pj}(Q). Then the initial-boundary value problem (1.8)
has a unique global strong solution u(x,t) in 2x[0,00). u
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Remark 1.3. If the sequence {p;};>0 does not increase too fast, then
fpg_}(R") = Ar2(R™) and prj}(]o, 27t[") coincide with the space A, (R™) of the
analytic, 2m-periodic functions in R". On the other hand, if p; — 400 and

satisfies (for example) a condition like

(1.11) pit1 > 205,

it is easy to see that Az2(R™) & prj}(]R"), Aor(R™) & prj}(]O, 27[") and that

the spaces prj}(R") and prj}(]O, 27[™) contain non-smooth functions. Unfor-

tunately, it is also possible to prove that B"f pj}(R”) does not contain compactly

supported functions (see the appendix). This means that the class Bf pj}(]R") is

(in some sense) relatively small.

In the case of a bounded C?-domain 2, if the sequence {p;};>0 increase suf-
ficiently fast, we have Ay(Q) & pr]_}(Q) where Ay(€2) denotes the space of all
analytic functions in some neighborhood of € such that Alu = 0 on 9Q for all
[>0.

In conclusion Theorem 1 and the Corollaries 1 and 2 extend the known global
existence results in the space of real analytic functions. o

In this paper we shall give in details only the proof of the global solvability
of the Cauchy problem (1.2), that is Theorem 1, because the Corollaries 2 and 3
can be proved following the same arguments.

Moreover, since the local solvability of the Kirchhoff equation (1.1) is well
known (see [1], [5], [6], [12], [17], [18]), we shall only prove the basic a-priori
estimates.

Finally we mention about the related works. The global solvability of the clas-
sical Kirchhoff equation in the space of analytic functions was originally proved
by Bernstein [3], in one space dimension, and then extended by Pohozaev [15] to
several space dimensions. Later, the result of [15] has been generalized in [2], [4],
[9] considering the weakly hyperbolic case and more general second order elliptic
operators. For quasi-analytic initial data the first result of global solvability was
proved by Nishihara [10] and then generalized in [8], [20].

2 — The Linearized Equation
In this section we study the linearized equation derived from (1.1) setting

m([ |Vu(z,t)|> dr) = a(t) and v(£,t) = F,u(€, t), i.e. applying the Fourier trans-
form in the space variables. We use a technique introduced by Pohozaev [16] to
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obtain a second order conservation law for the Kirchhoff equation. See also [13],
[14]. Let us consider the infinite system of linear oscillating equations of the form

(2.1) vt + at)|€Pv = 0 for t€[0,T), £€€R",

where 0 < T < o0, v = v(§,t); a(t) is a real valued function satisfying the condi-
tions

(2.2) a(t) € C*([0,T)), a(t)>d >0 Vt>0.

Multiplying (2.1) by the factor a;(t)|¢|? ¢, we easily obtain that

23 La®) P ol + al) ar(t) ¢ o) =
’1

dt
= ay () €% [ve]* + [a(t) ar (1)) [€]* [0]* -
While, multiplying by the term as(t) |£]? v we find

24) (00 P REEu)) =

dt
= —alt) as(t) [€]" [o]* + az(t) [€]? el + an () €] R{D v}
where R{z} denotes the real part of z € C. Thus, introducing the quantity

(25)  E6H) X Sar) IR >+ g alt) ar(t) €l of? + as(r) e Rivee)

it follows that
GEED = [emm®)y-at )l P
(2.0 + [+ o) 162 1P

+ aa(t) [€P R{v v} -
Now, let us choose the coefficients aq(t), as(t) such that

1

5 @@ ar(®))’ - a(t) as(t) = 0,

%al(t)’ Fas(t) = 0.

(2.7)

A straightforward computation gives

(2.8) a(t) =~ ag(t):% o) ith CeR.
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In the following, we fix C'=1. Then, taking a1 (t), a2(t) as in (2.8) we finally have

d
(2.9) Se(et) = ax(t) |6 Rivu}
Defining the energy

def 1

(2.10) B t) = Sa(t) [ vl + ( t)ax(t) €]* vl? ,

we can state the following lemma:

Lemma 2.1. Let us suppose that 0 <T' < co. Then, for every ¢ > 0 there
exists p. > 0 such that

(2.11) E(,t)<4E(,0) in [0, —¢],
for every |€] > pe.

Proof: Let us fix K > 0 such that
(2.12) lag(t)], laz(®)| < K in [0,T —¢] .

Then, having

€17 Jv] Joe| < €M ? = E(& 1),

1 2y, 2, Valt)
2m|£||vt|+ D)

for [£] > 0 the equations (2.5)—(2.9) give

(2.13)

%[E(ﬁ,t)mg(t) €2 R{ou}| < KIEP vl < KE(éit) .

Now, we can choose p; > 0 such that

E(&t)
2

(214)  [gl=p = |aa(t) [P R{Tu}| < for 0<t<T—¢.

Namely, we set py = 2K. Then, for || > p;, we have

B(6.0) < BE0) - [aa(r) P REu], + 1 [ B(En)

(2.15) 3

IN

E(£,0) + = Ef, |§|/Eg, ) dr .

Hence, by Gronwall’s Lemma, it follows that

(2.16) E(&,t) < 3E(£,0) exp<2‘§ >
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Thus, it is sufficient to take p. > p; such that

2K(T —¢) 4
(2.17) €l > p. = —g = 1n<§) n

Remark 2.2. A similar conclusion holds true if T = +o00. Precisely, the
estimate (2.11) holds in the interval [0,1/¢], provided || > p. for a suitable
pe > 0.0

Moreover, we easily have:

Corollary 2.3. Let T < co. Then for every € > 0 there exists p. > 0 such
that

E(£,0)

(2.18) 0

< E(Evt) < 4E(f,0) in [O7T— 5]

for all || > pe. m

3 — A-priori estimates for 0 <t<T —¢
Let us consider the infinite system of nonlinear oscillating equations

v ([ 16 o(€ O ) o = o,
U(f,O) = 'U()(f) ) vt(§7 O) = ’U1(£)7

(3.1) in R¢ x [0,00) ,

where m(s) € C?([0, 00)) with m(s) > dy > 0. From now on we assume that the
initial data vo(¢), v1(€) are L? functions such that

32 (1) @ ds < oo, [(14+167) (@) de < oo
and that v(¢, ¢) is the (unique) local strong solution of (3.1) in R x[0, T"). Namely:

Definition 3.1. We say that v(, ) is a strong solution of (3.1) in R x [0, T)
if

(33) (1+1€277) dfu(e,1) € COl0,T); LA (RE))

for 0 <j <2and ¢+ v(-t) satisfies (3.1) in [0,7). o
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Remark 3.2. Condition (3.3) implies that

(3.4) b s [1eP fot, v de

is a well defined C%-function on [0, 7). Setting then

(3.5) alt) = m(s(t)

it follows that a(t) € C2([0,T)) with a(t) > 8o and defining (with C'=1)
Mit) = s S ma(s(0).

30 L) o a ,
aalt) = § 2 90 mals(0) 1)

we can apply the energy estimates of the previous section. o
To continue, let us recall that:

First order conservation law. Assuming v(,t) a local strong solution of
(3.1) and multiplying by the factor v;, we find the well known identity:

e1) 1O [ ol o [ 1€ nPde) = 1) Ho
3

3
where ®(s) déf/ m(z) dz satisfies ®(s) > dp s for all s > 0. o
0

Thus, we have the a-priori estimate

(3.8) [loe i dg + 0o [ 1€ ole 0 dg < Ho |
uniformly for 0 < ¢ < T. In particular, we have 0 < s(t) < Ho/dp and
(39) [ 1€l il ds < po—p

l€1<p ' 2\/—

for all p > 0. Note also that
do <m(s(t)) <M and |ma(s(t))], [my(s(t)| < M/2,

for a suitable constant M > 0 because m(s) € C%(]0,00)).
Applying Lemma 2.1 we can state the following:
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Corollary 3.3. For every € > 0 there exists p. > 0 such that
HO E(07 5)

<p +8/
AR FT:

for all p > p. and t € [0,T — ¢].

(3.10) |s'(t) d¢

Proof: Deriving with respect to ¢, we have

SOI<2 [ (6Pl ledds +2 [ (€ ol e de
l€l<p l€1>p
P 2 21,12 2
311 < o2 + o€ o] d€ + 2 [ (€[ ol fuul
(310 75 Jeeol | >0 t

HO E(&at)
—_— 2
= p\/5o * El>p  [€]

Now, taking p. according to Lemma 2.1, namely

T—¢
.12 =2K 1, ———
where K > ( satisfies
(3.13) Ima s'(t)|, |mbs'(t)> +mas”(t)] < K in [0,T —¢],

we can apply the inequality (2.11), that is E(&,t) < 4 E(&,0) for [£] > pe. Clearly,
this immediately implies the estimate (3.10). m

4 — A-priori estimates for T'—c <t <T

Now, assuming suitable conditions on the initial data vy(£) and v (&) of prob-
lem (3.1), we shall prove that the energy F(,t) is uniformly bounded in the
interval [0,7), if T < +oo0.

To begin with, for p > 1, let us set

(4.1) £,(t) %< /|E>pE (é D e

Rewriting the expression of the energy E(&,t) with the positions (3.5)-(3.6), we

have

2Ut2
(4.2) B€) = s + 5\l Jl o



100 R. MANFRIN

Besides, taking into account of (3.8) and (3.11), it follows that

(4.30) 15'(8)] < p;}/_i% +28,(1)
@36) 1O < 2 [ 18R e + 2m(s(0) [ Jgl" ol de

< 2p%[1+ M /6| Ho + 4V M . E(&,t)dE .
§[>p
Hence, from (2.4)—(2.9), we have the following estimate
/ d / 2 g
(44) €D+ o (mals(0) 8(1) 6P R{vw}) <

< [mb(s(6)) /(07 + ma(s(2)) 8" (0] 61 fo] o

E(S, 1)
I

for a suitable constant C; > 0 depending only on M, dg. Now, let K1 > 1 be a

IN

y [(Ho LH RS+ [ B ds}
|€[>p

given constant (we will fix K; and ¢ in the following). Then, as long as

(4.5) )+ [ Bt de < Ky,
|&]>p

we have

E(&,1) < B(€,T~e) — [ma(s(r) 8 () |¢ Rivur}]

(4.6)
Lo Pt M) PP+ E 1t g

[3 T—c

where
H E(E,

(4.7) -, 0

= {P\/% + \/?1] E(&,t) .
Now, if we assume that
then

E( )

‘mg(s(t)) s'(t) [€]* R{D vt}‘ < provided |£| > max{p, 6 M\/K,} .




GLOBAL SOLVABILITY TO THE KIRCHHOFF EQUATION 101

This implies that, as long as (4.5) holds and || > max{p, 6 M /K, }, we have

(Ho + H3) p* + K1 [

(4.9) Et) < 3E(ET—¢)4+2C €] . E r)dr .
—€
Hence, applying the classical Gronwall’s lemma,
(Ho + Hp) p* + K1
(4.10)  E(&t) < 3E(,T —¢)expi2C €] t—T+He); .

Finally, having p, K1 > 1, in order to verify the condition (4.5), it will be sufficient
to require that

(4.11) E(&t)d¢ < vE )
1€1>p 2

To this end, recalling Lemma 2.1 and (3.12), (3.13) we assume that
(4.12) p > max{l, De, 6M\/K1} ,

thus, by the estimate (2.11), we know that E(,T —¢) < 4E(£,0) in (4.10).
Then, condition (4.5) will be verified as long as

1) € [ E(€,0) eXp{QCl (Ho +H6) 0" + 11, —T+5)}d§
< Vi
Y

In order to extend the solution v(&,t), we require now that (4.13) holds for
T —e <t <T. Clearly, this leads to a sufficient condition for the global solvabil-
ity of the Cauchy problem (3.1). More precisely, we assume that the initial data
vo(€), v1(&) satisfy the following conditions:

Definition 4.1. Let {p;};>0 be a given sequence of positive numbers such
that p; — +oo. We say that a L:-function f(¢) belong to prj}(R") if there exist
n > 0 and C > 0 such that

@) [P IOR ewlng/lehde <€ Viz0.0

Then, if vg(§) € B%pj}{R”}, v1(€) € B{lpj}{R”}, it is easy to see that (4.13)
holds true in [T'—¢, T") provided we choose € > 0 sufficiently small, p = p; > 1 and
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K1 > 1 large enough. In fact, since |£]?v(€), |€|v1(€) € L?, we have Hy < oo
and

(4.15) E(€,0) < Cs (I [on(©)* + I¢[* [vo(©)) ,

with Cy = ﬁ + @ Hence, for T'— e <t < T, we have

2 2 4 2 Csp* +2C1 K,
I(t) < CQ/pz>|§|>p<|§\ [o1(€)” + [¢]* oo (€) ) exp{ €] 8} *
(4.16) ’
03,0 +201 Kl
£ Co [ (1P (@ + 1€l fo(©)F) expf PLI T cLae

where C3 = 2C} (Ho + H2). Then, since vg(€), v1(€) satisfy the inequality (4.14)
(with £ = 2 and k = 1 respectively) for suitable constants n; > 0 and C; > 0, we
choose K large such that

VK
48
and ¢ > 0 small such that, for p > 1,

(4.17)

1> 0y¢ for i=0,1

C3p? +2C1 K,
€]

In this way, for all p = p; the value of the first integral in (4.16) is less than

VK1
24
Finally, noting that

2
(4.18) €<m’% in p<l¢|<p? fori=0,1.

— 2.

Csp? +2C Ky
i
we take j > 0 large, such that the value of the second integral in (4.16) is less

than 2.
Summarizing up, we have proved the following:

@19) tim [ (1P ©F + € eo(e) ) exp

ptoo Jlg[>p?

€}d§ =0

Lemma 4.2. Let v({,t) be a local strong solution of the problem (3.1) in
the stripe R¢x[0,T) with 0 <T < +oo. Assume that (4.8) holds and that

vo(§) € prj}(R?), vi(§) € B%pj}(R?) .

Then the integral / E(&,t) d¢ is uniformly bounded in [0,T).
RTL
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Proof: By the previous arguments, see (4.11), we know that

(4.20) E(&,t)dE < vEL

[€1>p; -2

Vte[0,T),

for suitable constants K satisfying (4.17) and p; > max{1, p., 6 M+/K;} such
that the value of the second integral in (4.16) is less than 2. On other hand for
€] < pj, by (3.8), we have

1 VMY
(4.21) B < g =(1+ Y5 ) i

for allt € [0,7). n

5 — Global solvability for small data

From the estimates of the previous sections, it is now straightforward to
prove the global solvability provided the initial data (ug(x),u;(x)) € B% pj}(R”) X
B{lpj}(R”) is sufficiently small. Namely, we assume that (4.8) holds true with

Ho — /Rn|u1(x)\2daf + @(/{Rn]Vuo(a;)\de) .

In fact, let us consider again problem (1.2)

Ut — m(/ \Vu(:x,t)]zdw> Au = 0,
R"

(1.2) in R" x[0,00) ,

u(0,2) =up(z), w(0,z)=ui(z),

with ug(x) € B%q]_}(]R”), ui(z) € B%qj}(R"). Since we know that the Cauchy

problem for the Kirchhoff equation (in the space of strong solutions, with wug(z) €
H?(R™) and uq(z) € HY(R™), see [12], [17], [18]) is well posed, we can define

(5.1) 7 sup{T >0 | 3 wu(x,t) strong solution in R"Xx [O,T)} .

Besides, having ug(z) € B%pj}(R”) and uqy(z) € B{lpj}(R”), it easily follows that
vo(§) = up(§) and v1(§) = uq(§) satisfy the conditions of Definition 4.1, for a
suitable subsequence {p;};>0. More precisely, we have

vo(§) € E’%ﬁj}(R?)» vi(§) € Biﬁj}(R?) .
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Assume, by contradiction, that 7 < +oco. From Lemma 4.2, if (4.8) holds, it
follows that the norms

JuC Ol e )l

are uniformly bounded in the interval [0,7). Thus, by (4.3), the coefficient
m(s(t)) is uniformly bounded in the C?-norm and there exists a(t) € C1([0,7])
such that a(t) = m(s(t)) in [0, 7). Hence, we may consider the linear problem

(5.2) wy —a(t) Aw = 0 with w(z,0) =up(x), wi(z,0) =ui(x) .

Clearly, this problem has a global strong solution w(x,t) in [0, 7|xR"™ and by the
uniqueness property we have u(x,t) = w(z,t) in [0,7)xR". This means that
there exist the limits

lirqr_l u(z,t) = w(x,T) in H?,
t—7T —

11171_1 u(x,t) = wy(z,7) in H' .
t—7T—

(5.3)

Now, using again the local existence theorem for the Kirchhoff equation, with
initial data for ¢t = 7 given by u(x,7) = w(z,7) and w(x,7) = we(z,T), we
can extend u(zx,t) (as strong solution of (1.2)) to a larger stripe R"™x[0,77) with
Ty > 7. Clearly, this contradicts the definition of 7 and concludes the proof of
Theorem 1 in the case of small initial data. m

Remark 5.1. Observe that for all ¢ > 0 we have

(5.4) ult,-) € B,y (R"),  dwult,-) € Bf,,(R") .o

6 — Proof of Theorem 1

We shall only see how to perform the energy estimates of Section 4, for
t € [T'—¢,T), in the case the condition (4.8) does not hold. We use the fact
that the initial data (ug(),u;(x)) belongs to B? ,(R") x B} ,(R"), but we

{r} {pi}
don’t require that ug(x), ui(x) are small. First of all, setting

M Hy

(6.1) N=3

+1,
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for every p > 1 we can write:
SO < 2 [ (6P llluldg +2 [ e folludd d
l€1<p p<|g|<Ap

+ 2 €[ o] |ve] d€
(6.2) lel<Ap

HO 2
p—r= + 2 [E17 (o] Joe| d§ + 2Ex,(2) -

Vo p<||<Ap g
Now, we use the trivial inequality E(&,t) < M3/2|s'(t)| E(¢,t) (with M > 0 the
constant introduced after (3.9)) to estimate the second term in right hand side
of (6.2). Namely, by (2.11), for T'—e <t <T and p > p. we have

(6.3) E(¢,t) < 4E(£,0) exp{M3/2 /t

T—¢

18(7)] dT} .

To continue, let K1, Ko > 1 and let us suppose that p > max{1, p:}. Then,
following the argument developed in (4.5)—(4.19) of Section 4, as long as

(6.4a) Exp(H)? + / B t)de < K
|E[>Xp

(6.40) / B t)de < K,
p<[é|<Ap

in the interval [T —¢,T'), we have

(6.5) /t |s’(T)|dTga<p%+@+2\f>.

T—e¢

y (6.3), this means that the condition (6.4b) holds true if

J(p,e) dﬁf//K'EQPE(&O)exp{sMg/Q[ \7/@ 2K2+2\/7H

Ky
1

(6.6)
<
To verify (6.6) we use the fact that wo(x) € B%pj}(R")7 ui(x) € B{lpj}(R”).

More precisely, we know that there exist a sequence {p;};>0, p; — +00, and two
constants n > 0, C' > 0 such that

(6.7 J,.., €0 expng/lel} e < €
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for j > 0 sufficiently large. Then, for £ > 0 small enough, namely

1/2
N dg
0<e< 1%
© S S
and p = p; > max{1, p.} sufficiently large, we have

2

Ho 2K npj _ "NPj
(6.8) e M2 |p +—+2\/ 5 < 20
°i s 2 = 2
for all £ € R such that p; < [{] < Ap;. By (6.7) this implies that

i
(6.9) J(pjre) < Cexp{-npj/2a} < =2

provided j > 0 is sufficiently large. Summarizing up, for € > 0 small and p = p;
with j > 0 large enough, the condition (6.4b) is verified and the estimate (6.5)
holds true in the interval [T'—¢,T') as long as (6.4a) holds. Thus, taking in the
following p = p;, we can substitute (4.3a), (4.3b) with

(6.10a) ' (4)] < p \73 y 22 2K, +25m( ),
(6.100) |s"(t)] < 2X%p3 [L+ M/ Ho +4VM E(E,t) de .

1€1>X pj

Then, as long as (6.4a) holds in [T'—¢,T’), we can estimate E(&,t), for |{| > A pj,
using exactly the same arguments of Section 4. In fact, for p; > max{1, p.} large

ﬁﬂ/E}E
P

enough, instead of (4.7) we now have

IN

o Ima(s(®)) s (8) €12 R{T w1} |5|[

< f

because [£| > X p; and X satisfies (6.1). This completes the proof of Theorem 1. m

Appendix

Here we sketch the proof of the fact that prj}(R) does not contain nontrivial
compactly supported functions. To begin with, let us recall the following result
(see [11], Theorem XII):
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Theorem (Paley—Wiener). Let ¢(¢) € L%(R) be a real non-negative function
not equivalent to zero. A necessary and sufficient condition that there should exist
a complex-valued function f(x) vanishing for x > x, for some x, € R, and such

that | ()] = ¢(£), is that

+o00
(a.1) LOO Wd§<oo.l

We shall see that, if f(x) € Blfpj}(]R)\{O} has compact support, then the above
integral cannot converge.

First of all, observe that f(¢) is a bounded continuous function such that
|(€)] — 0 when & — +oo. Thus |f(¢)| < 1 for & large. Then, it is easy to see
that, for p = p; large enough,

7 |In|f(&)]
(.2) /p e gz

def P’ lny(t) r? 2
> inf J(y) = —/ dt‘ 0<y(t) <1, / R yt) e tdt = ¢
p P

1+t

where 1 > 0 is the constant in Definition 1.1 and C > 0 satisfy

(a.3) imsup [ |6 IF€) exp(np3/l) de < C

j—+oo

Let us evaluate the infimum of the functional J(y) for y(t) € D def CO([p, p?) N
{0 < y(t) <1} and constrained by f[f’2 2k y(t) e/t dt = C.

Since J(y) is strictly convex in D and the constrain is a linear functional,
by elementary variational calculus (see [19]) we know that J(y) has an absolute
minimum if there exists yo(t) € D such that

2

p
(a.4) 5 J(yo) =0, / 2% yo(8) P/ dt = C |
p

where J(y) e J(y) + )\f;’z 2k y(t) enP*/t dt with A € R. But the conditions in
(a.4) imply that

1 e P/t . C
(CL5) yo(t) = X m with )\ =~ ; as p — —+00 .

Thus, at least for £ > —1/2 (if K < —1/2 we must change a little our argument),
yo(t) € D and satisfies —In yo(t) > 1 p?/t +2(k +1)Int — Inp + O(1), provided
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t € [p, p?] and p > 0 is large enough. Finally, the last inequality gives

(a.6)

Panyo(t) n

and (a.6) implies that the integral (a.1) cannot converge if f(x) € prj}(R)\{O}.
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