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Abstract: In this paper we study the equations of magneto-hydrodynamics for a 2D

compressible viscous fluid, under periodic boundary conditions. It is well known that, as

the Mach number goes to zero, the solutions of the compressible model approximate that

of the incompressible one. In dimension 2 such incompressible limit solution is global in

time. We prove that also the compressible solution exists for all time, provided that the

Mach number is sufficiently small and the initial data are almost incompressible.

1 – Introduction

In this paper we study the following problem (see the Appendix for a deriva-

tion from the usual MHD equations and the meaning of all quantities)

ε2(ρt + u · ∇ρ) + (1 + ε2ρ)∇ · u = 0 ,(1)

ut + (u · ∇)u+ (1 + ε2ρ)γ−2∇ρ+
1

2
(1 + ε2ρ)−1∇|H|2 −(2)

− (1 + ε2ρ)−1 (H · ∇)H − (1 + ε2ρ)−1 (ν∆u+ η∇∇ · u) = 0 ,

Ht + (u · ∇)H − (H · ∇)u+H∇ · u− µ∆H = 0 ,(3)

∇ ·H = 0 ,(4)

where ν, η, µ are given constants such that

ν > 0 , η + ν > 0 , µ > 0 .

Received : January 15, 2001.



68 E. CASELLA, P. SECCHI and P. TREBESCHI

If the parameter ε, which represents the Mach number, is formally set to zero,

one obtains the equations of magneto-hydrodynamics for the incompressible flow

Ut + (U · ∇)U +
1

2
∇|B|2 − (B · ∇)B +∇P − ν∆U = 0 ,(5)

Bt + (U · ∇)B − (B · ∇)U − µ∆B = 0 ,(6)

∇ ·B = 0 ,(7)

∇ · U = 0 .(8)

In this work we restrict the discussion to two-space variables

(x, y) ∈ (Rmod 2π)2 := T 2 ;

hence, we assume that the functions

ρ(x, y, t), u(x, y, t), H(x, y, t), U(x, y, t), B(x, y, t), P (x, y, t)

are 2π-periodic in x and y.

For ε > 0, the equations (1)–(4) are supplemented by the following initial

conditions

ρ(x, y, 0) = ρ0(x, y) , u(x, y, 0) = u0(x, y) , H(x, y, 0) = H0(x, y) ,(9)

with u0, ρ0, H0 ∈ C∞(T 2). We assume that

∫

T 2

ρ0(x, y) dx dy = 0 ,(10)

∫

T 2

u0(x, y) dx dy = 0 ,(11)

∫

T 2

H0(x, y) dx dy = 0 and ∇ ·H0 = 0 .(12)

For the incompressible equations (5)–(8) we consider the following initial con-

ditions

U(x, y, 0) = U0(x, y) , B(x, y, 0) = B0(x, y) ,

with U0, B0 ∈ C∞(T 2). We assume that

∫

T 2

U0(x, y) dx dy = 0 and ∇ · U0 = 0 ,(13)

∫

T 2

B0(x, y) dx dy = 0 and ∇ ·B0 = 0 .(14)
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Moreover, to eliminate the free (time-depending) constant in the incompress-

ible pressure, we impose the side condition
∫

T 2

P (x, y, t) dx dy = 0 , ∀ t ≥ 0 .(15)

It is well known that solutions of the compressible MHD equations (see

Appendix) converge to the incompressible solution (U,P,B) as the Mach number

tends to zero (see [1], [5]).

Moreover, it is known that the incompressible problem (5)–(8), (13)–(15) has

a unique global classical solution (U,P,B) ∈ C∞(T 2×[0,+∞)), and this solution,

together with all its derivatives, tends to zero at an exponential rate as t→ +∞.

More precisely, we have that

‖U(·, t)‖j + ‖P (·, t)‖j + ‖B(·, t)‖j ≤ Cj e
−cjt , t ≥ 0, j = 0, 1, 2, ... ,(16)

with Cj > 0, cj > 0 independent of t, and where ‖ · ‖j denotes the usual norm in

the Sobolev space Hj(T 2), i.e.

‖u(·, t)‖j =
∑

|α|≤j

∫

T 2

|Dαu(x, y)| dx dy ,

where α = (α1, α2) is a multi-index of order |α| = α1 + α2 and D
α= ∂α1

1 ∂α2

2 .

The aim of this paper is to show all-time existence also for the compressible

problem (1)–(4), provided that ε > 0 is sufficiently small, and the initial data

u0, ρ0, H0 are almost incompressible.

The main result of this paper is given by the following theorem.

Theorem 1.1. Consider the compressible problem (1)–(4), supplemented

by the initial conditions (9), with u0, ρ0, H0 ∈ C∞(T 2), ν > 0, ε > 0, η + ν > 0,

µ > 0. Assume also (10)–(14).

There are ε0 = ε0(U0, B0, ν, µ, η) > 0 and δ0 = δ0(U0, B0, ν, µ, η) > 0 so that

the following holds. If 0 < ε ≤ ε0 and

‖u0 − U0‖
2
3 + ε2 ‖ρ0 − P0‖

2
3 + ‖H0 −B0‖

2
3 ≤ δ2

0 ,(17)

then the solution (u, ρ,H) is in C∞(T 2×[0,+∞)).

For the proof we adapt to our problem the approach of [3].

The paper is organized as follows. In Section 2 we introduce some notations

and preliminaries; in Section 3 we introduce the problem obtained by the differ-

ence between the incompressible problem and the compressible one, which will be
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used as an auxiliary problem in order to obtain the existence result; in Section 4

we study the associated linear case; in Section 5 we obtain some properties of

the spatial mean of the solutions of the auxiliary problem; in Section 6 we derive

some a-priori estimates for the nonlinear terms of the equations and we prove the

main result of the paper; in Section 7 we derive the equations we study from the

usual MHD equations.

2 – Notation and preliminaries

With 〈u, v〉 =
∑
uj vj we denote the Euclidean inner product in any finite

dimensional space, and with |u| = 〈u, u〉
1

2 the associated norm.

Also, if A ∈ Cn×n is an n×n matrix, then |A| denotes the corresponding

matrix norm.

If H = H∗ and G = G∗ are Hermitian matrices in Cn×n, then we write H ≤ G

if and only if G−H is positive semidefinite, i.e.

u∗Hu ≤ u∗Gu , ∀u ∈ Cn .

If u, v : T 2 → Rn are functions with components uj , vj ∈ L2(T 2), then their

L2-inner product is

(u, v) =

∫

T 2

〈
u(x, y), v(x, y)

〉
dx dy ,

and the corresponding norm is denoted by ‖ · ‖.

We recall Parseval’s identity

(u, v) =
∑

k∈Z2

〈
û(k), v̂(k)

〉
,

where

ŵ(k) =
1

2π

∫

T 2

e−i(k1x+k2y)w(x, y) dx dy ,

for every w ∈ L2(T 2).

We shall use some general estimates holding in the classical Sobolev spaces

and based on the chain and the Leibniz’ rule. For the proof of these results we

refer to [2] and [3].

1. Sobolev’s Inequality : Let s >
N

2
and let u ∈ Hs(TN ). Then, u ∈ C(TN )

and

|u|∞ ≤ c ‖u‖s .(18)
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Moreover,

∀u ∈ H3(T 2) |Du|∞ ≤ c ‖u‖3 ;(19)

∀u ∈ H4(T 2) |D2u|∞ ≤ C ‖u‖4 .(20)

2. Estimate based on the chain rule: Let s >
N

2
and let u ∈ Hs(TN ,Rn),

φ ∈ Cs(Rn), then

‖Dα(φ ◦ u)‖ ≤ C
(
1 + |u||α|−1

∞

)
‖u‖|α| ,(21)

for each multi-index α, 1 ≤ |α| ≤ s.

3. Estimates based on the Leibniz’rule: Let s >
N

2
and let f, g ∈ Hs(TN ).

Then,

‖Dα(fg)‖ ≤ C
(
|f |∞ ‖g‖|α| + |g|∞ ‖f‖|α|

)
;(22)

‖Dα(fg)− fDαg‖ ≤ C
(
|Df |∞ ‖g‖|α|−1 + |g|∞ ‖f‖|α|

)
,(23)

for every multi-index α, 0 ≤ |α| ≤ s.

3 – Equations for the perturbed variables

Let us denote by (U,P,B) the solution of the incompressible problem (5)–(8).

It is convenient to subtract (U,P,B) from the solution of (1)–(3) and to write the

resulting system of equations in a symmetric form. We define the new variables

r, u′, H ′ by

ρ′ = ρ− P , r = ε ρ′ , u′ = u− U , H ′ = H −B .

Straightforward calculations yield

rt + (U + u′) · ∇r +
1

ε
∇ · u′ = F1 ,(24)

u′t +
(
(U + u′) · ∇

)
u′ +

1

ε
∇r +(25)

+ ∇H ′ ·B − (B · ∇)H ′ − ν∆u′ − η∇∇ · u′ = F2 ,

H ′
t +

(
(U + u′) · ∇

)
H ′ − (B · ∇)u′ +B∇ · u′ − µ∆H ′ = F3 ,(26)
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where, by denoting A = 1 + ε2P + ε r, we have

g1 = −(Pt + U ·∇P ) ;

F1 = −ε u′ · ∇P − εP ∇ · u′ − r∇ · u′ + ε g1 ;

F2 = −Ut −
(
(U + u′) · ∇

)
U −Aγ−2∇P +

1

ε
(1−Aγ−2)∇r

−A−1∇B · (B +H ′)−A−1∇H ′ ·H ′ + (1−A−1)∇H ′ ·B

+A−1
(
(B +H ′) · ∇

)
B +A−1(H ′ · ∇)H ′ − (1−A−1)(B · ∇)H ′

− (1−A−1) (ν∆u′ + η∇∇ · u′) +A−1 ν∆U ;

F3 = −Bt −
(
(U+u′)·∇

)
B +

(
(B+H ′)·∇

)
U + (H ′ ·∇)u′ −H ′∇· u′ + µ∆B .

If we introduce the 5-vector wT = (r, u′1, u
′
2, H

′
1, H

′
2) and take account of (5)–(17),

equations (24)–(26) can be written as

wt +
(
(U + u′) · ∇

)
w + Bw = Aεw + εG+Q1 +Q2 ,(27)

where

B =




0 0 0 0 0
0 0 0 −B2∂2 B2∂1

0 0 0 B1∂2 −B1∂1

0 −B2∂2 B1∂2 0 0
0 B2∂1 −B1∂1 0 0



;(28)

Aε = −
1

ε




0 ∂1 ∂2 0 0
∂1 0 0 0 0
∂2 0 0 0 0
0 0 0 0 0
0 0 0 0 0



+




0 0 0 0 0
0 ν∆+ η∂2

1 η∂1∂2 0 0
0 η∂1∂2 ν∆+ η∂2

2 0 0
0 0 0 µ∆ 0
0 0 0 0 µ∆



;(29)

G =




g1

g2

0



=




−(Pt + U · ∇P )

1

ε
∇P (1− Eγ−2)−

ε ν P∆U

E

0



, with E = 1 + ε2P ;(30)
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Q1 =




0
Q̃1

0
0


 ,(31)

where Q̃1 is the 2 vector defined as follows

Q̃1 =

(
1

A
− 1

)[
ν∆u′ + η∇∇ · u′

]
+
1

ε
(1−Aγ−2)∇r

+

(
1

A
− 1

) [
(B · ∇)B −∇H ′ ·B + (B · ∇)H ′ −∇B ·B

]

+
1

A

[
−∇(B +H ′) ·H ′ + (H ′ · ∇) (B +H ′)

]
;

and finally

Q2 =




−ε u′ · ∇P − (εP + r)∇ · u′

−(u′ · ∇)U − [Aγ−2 − Eγ−2]∇P −
ε ν r∆U

AE

−(u′ · ∇)B + (H ′ · ∇)U −H ′(∇ · u′) + (H ′ · ∇)u′



.(32)

4 – The linear case wt = Aεw

To analyze the all-time existence question for equation (27) it is natural to

consider first the linear system wt = Aεw, and, secondly, to apply Fourier expan-

sion in space. One obtains a linear O.D.E. system

ŵt(k, t) = Âε(k) ŵ(k, t) ,(33)

for each vector k ∈ Z2.

The previous matrix Âε(k) is the so-called “symbol of Aε” and it is defined

as follows

Âε(k) = −




0
i

ε
k1

i

ε
k2 0 0

i

ε
k1 ν|k|2 + η k2

1 η k1k2 0 0

i

ε
k2 η k1k2 ν|k|2 + η k2

2 0 0

0 0 0 µ|k|2 0

0 0 0 0 µ|k|2




.(34)
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The matrix Âε(k) allows us to construct a new matrix H̃, and consequently a

new norm, which is equivalent to the L2-norm, in which we have the exponential

decay of w, except for its spatial averages. Recall that the spatial averages of the

solutions of wt = Aεw are constant in time.

We now prove that the eigenvalues of Âε(k) have negative real parts for all

k 6= 0. This implies that all solutions ŵ(k, t), k 6= 0, tend to zero as t→ +∞.

Lemma 4.1. Let λj = λj(ν, η, ε, µ, k) be the eigenvalues of the matrix Âε(k).

Then, we have

Reλj ≤ max

{
−ν, −

ν + η

2
, −

1

(ν + η)ε2
, −µ

}
< 0 , j = 1, 2, ..., 5 ,

for all ν > 0, ν + η > 0, µ > 0, ε > 0, k ∈ Z2, k 6= 0.

Proof: For

φ1 =
1

|k|




0
−k2

k1

0
0



,

we have

Âε(k)φ1 = −ν |k|2 φ1 ,

thus λ1 = −ν|k|
2. Let us consider φ2, φ3 ∈ R5 as follows

φ2 =
1

|k|




0
k1

k2

0
0



, φ3 =




1
0
0
0
0



.

We note that φ2 and φ3 are orthogonal to φ1, and that

Âε(k)φ2 = −
i

ε
|k|φ3 − (ν + η) |k|2 φ2 ,

Âε(k)φ3 = −
i

ε
|k|φ2 .

It easily follows that the eigenvalues λ2 and λ3 of Âε(k) are the eigenvalues of

B̃ =



−(ν + η) |k|2 −

i

ε
|k|

−
i

ε
|k| 0


 .(35)
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Exactly as in [3], Lemma 4.1, we have

Reλ2, λ3 ≤ max

{
−

1

(ν + η)ε2
, −

ν + η

2

}
.

Finally, if we consider

φ4 =
1

|k|




0
0
0
k1

k2




and φ5 =
1

|k|




0
0
0
−k2

k1



,

we have
Âε(k)φ4 = −µ |k|2 φ4 ,

Âε(k)φ5 = −µ |k|2 φ5 .

Then, λ4 = λ5 = −µ|k|
2 and the lemma is proved.

Lemma 4.2. For fixed ν + η > 0, consider the family of matrices B̃ given in

(35) for k ∈ Z2, k 6= 0. There are positive constants c̃0, C1, C2, ε0, 0 < ε0 < 1,

depending only on ν+ η, and there are Hermitian matrices W =W (ν + η, ε, k) ∈

C2×2 for 0 < ε ≤ ε0 with the following properties:

0 < (1− C1ε)I ≤ W ≤ (1 + C1ε)I ;(36)

q∗(WB̃ + B̃∗W )q ≤ −c̃0 q
∗Wq − (ν + η) |k|2 |q2|

2 , ∀ q ∈ C2 ;(37)

|W − I| ≤ C2
ε

|k|
.(38)

Proof: For the proof we refer to [3], Lemma 4.2.

Lemma 4.3. For fixed ν > 0, ν + η > 0, µ > 0, and ε0 sufficiently small,

0 < ε0 < 1, consider the family of matrices Âε(k), given by (34), for 0 < ε ≤ ε0,

k ∈ Z2, k 6= 0. There are positive constants c0, c1, C1, C2 depending only on

ν, η, µ, and there are Hermitian matrices Z=Z(ν, µ, η, ε, k) ∈ C5×5 with the

following properties

0 < (1− C1ε)I ≤ Z ≤ (1 + C1ε)I ;(39)

q∗(ZÂε + Â∗εZ)q ≤ −2 c0 q
∗ Z q − c1 |k|

2
(
|q2|

2 + |q3|
2 + |q4|

2 + |q5|
2
)
,(40)

∀ q ∈ C5 ;
|Z − I| ≤ C2

ε

|k|
.(41)
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Proof: Let W ∈ C2×2 denote the symmetrizer for the matrix B̃ defined as

W =




1 i
ε l

|k|

−i
ε l

|k|
1


 ,

where l is a suitable constant. We set

Z = S




1 0
W

1
0 1


S∗ := SĤS∗ ,

where S is the orthogonal matrix containing as columns the vectors φj defined

in the proof of Lemma 4.1, and Ĥ is defined by this equation.

Let q be an arbitrary vector in C5, and let p = S∗q. We now show (39).

Let us consider

Z − I = SĤS∗ − SIS∗ = S




0 0
W − I

0
0 0


S∗ := SRS∗ .

We have

q∗(Z − I) q = q∗SRS∗q = p∗Rp ,

and for (36) we obtain

−C1 ε |p|
2 ≤ p∗Rp ≤ C1 ε |p|

2 .

We now prove (40). Let us consider

q∗(ZÂε + Â∗εZ) q = q∗(SĤS∗Âε + Â∗εSĤS∗) q

= p∗Ĥ(S∗ÂεS) p + p∗(S∗Â∗εS) Ĥp

= p∗




−ν |k|2 0
WB̃ + B̃∗W

−µ |k|2

0 −µ |k|2


 p .

By using (37), we can estimate the right hand side of the above identity as follows

q∗(ZÂε + Â∗εZ) q ≤ −ν |k|2 |p1|
2 − c̃0(p2, p3)W

(
p2

p3

)

− (ν + η) |k|2 |p2|
2 − µ |k|2 (|p4|

2 + |p5|
2) ≤
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≤ −2 c0 p
∗Ĥp− c1 |k|

2
(
|p1|

2 + |p2|
2 + |p4|

2 + |p5|
2
)

= −2 c0 q
∗ Z q − c1 |k|

2
(
|q2|

2 + |q3|
2 + |q4|

2 + |q5|
2
)
,

for suitable 0 < c0 ≤
c̃0

2
and 0 < c1 < min{ν, ν + η, µ}.

To conclude the proof we remark that inequality (41) follows directly from

(38).

Remark. By the previous Lemma the symmetrizer Z = Z(µ, ν, η, ε, k) of

(33) is constructed for ν > 0, ν + η > 0, µ > 0, 0 < ε ≤ ε0, k ∈ Z2, k 6= 0.

For k = 0 we set Z = I.

By using the matrices Z(k), k ∈ Z2, and the Fourier coefficients we define a

new inner product on L2(T 2) by

(u, v)Z =
∑

k∈Z2

û∗(k)Z(k) v̂(k) .

We denote by ‖ · ‖Z the corresponding norm.

As an easy consequence of Lemma 4.3 and Parseval’s relation, we obtain the

following results.

Lemma 4.4. The inner product (·, ·)Z has the following properties.

(i) The norm ‖ · ‖Z and the L
2-norm are equivalent, i.e. there exists a

constant C1 such that

(1− C1ε) ‖w‖
2 ≤ ‖w‖2Z ≤ (1 + C1ε) ‖w‖

2 .

(ii) If w = (r, u′, H ′) ∈ L2(T 2) satisfies ŵ(0) = 0, i.e. if w has zero spatial

mean, there exist two positive constants c0, c1 such that

(w,Aεw)Z + (Aεw,w)Z ≤ −2 c0 ‖w‖
2
Z − c1

(
‖∇u′‖2 + ‖∇H ′‖2

)
.

(iii) If w1 ∈ L2(T 2), w2 ∈ H1(T 2), then there exists a real positive constant

C2 such that

∣∣∣(w1, Dw2)Z − (w1, Dw2)
∣∣∣ ≤ εC2 ‖w1‖ ‖w2‖ ,

where D denotes ∂1 or ∂2.
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(iv) If w1, w2 ∈ H1(T 2), then the rule of integration by parts holds in Z-inner

product:

(w1, Dw2)Z = −(Dw1, w2)Z .

In order to prove Theorem (1.1) we have essentially to estimate the non linear

terms. To obtain these estimates we need some bounds concerning the L2-inner

product and consequently the Z-inner product.

Lemma 4.5. Let w ∈ H1(T 2,R5) and let v ∈ C1(T 2) be a real valued

function. Then, we have

|(w, vDw)| ≤ C |Dv|∞ ‖w‖
2 ,(42)

for D = ∂1 or D = ∂2.

Proof: The proof easily follows by integration by parts.

Lemma 4.6. Under the assumptions of Lemma 4.5, we have that

|(w, vDw)Z | ≤ C
(
ε |v|∞ + |Dv|∞

)
‖w‖2 .(43)

Proof: For the proof we refer to [3], Lemma 4.6.

5 – Spatial mean

In this Section we derive some properties of the spatial mean of the solution

w of problem (27): they come from the conservation laws.

Lemma 5.1. Under assumptions (10)–(15) and if w = (r′, u′1, u
′
2, H

′
1, H

′
2)

is a solution of (27), we have that

r̂(0, t) = 0 , ∀ t ≥ 0 ,(44)

Ĥ ′
1(0, t) = Ĥ ′

2(0, t) = 0 , ∀ t ≥ 0 .(45)

Proof: The proof is an easy consequence of the conservation laws. From (1)

and (10) we have that

∫

T 2

(1 + ε2 ρ) dx dy =

∫

T 2

(1 + ε2 ρ0) dx dy =

∫

T 2

dx dy .(46)



2D SLIGHTLY COMPRESSIBLE VISCOUS MAGNETO-FLUID MOTION 79

Recalling that ρ = ρ′ + P , we have from (46) and (15) that

0 =

∫

T 2

(ρ′ + P ) dx dy =

∫

T 2

ρ′ dx dy ,

which implies (44). By integrating equation (3) on T 2, we find that

d

dt

∫

T 2

H(x, y, t) dx dy = 0 , ∀ t ≥ 0 .(47)

Then, the conclusion of the proof follows from (12).

We now set

u′ =
1

(2π)2

∫

T 2

u′ dx dy

and we consider the spatial mean:

a(t) = (0, u′, 0)T ,

and

wc = w − a(t) .

Exactly as in [3], the following lemma holds. We repeat the proof for the sake

of completness. Without loss of generality we may assume that δ0 in (17) is less

than 1. From now on we also assume that ε ≤ ε0 < 1.

Lemma 5.2. Under the assumptions of Lemma 5.1 and (17), there exist

some constants C, c depending on U0 and ν, but independent of u0, ρ0, ε, such

that

|u′| ≤ εC

(
δ0 + ε+ ‖wc‖Z

(
e−ct + ‖wc‖Z

))
, ∀ t ≥ 0 .(48)

Proof: We have∫

T 2

(1 + ε2ρ′ + ε2P ) (u′ + U) dx dy = ε2
∫

T 2

ρ0 u0 dx dy .

Recalling that ρ′, U and P all have mean zero and solving for u′, we obtain

u′ = ε2(2π)−2
∫

T 2

(ρ0u0−PU) dx dy − ε(2π)−2
∫

T 2

(
ε(ρ′+P )(u′−u′)+ε ρ′U

)
dx dy .

From (17) we conclude

ε

∫

T 2

|ρ0u0 − PU | dx dy ≤ ε

∫

T 2

|ρ0u0 − P0U0| dx dy + ε

∫

T 2

|P0U0 − PU | dx dy

≤ C δ0 + C ε .

Using the Cauchy–Schwarz inequality on the remaining terms, the estimate

follows.
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Remark. By the definition of the Z-inner product and of wc, we have

(wc, a(t))Z = 0 , ∀ t ≥ 0 .

Consequently, as an immmediate corollary of these Lemmas, one has

‖wc‖2Z ≥
1

2
‖w‖2Z−ε

2C

(
ε2+δ2

0+‖w
c‖2Z

(
e−ct+‖wc‖2Z

))
, ∀ t ≥ 0 .(49)

6 – Nonlinear estimates

Standard arguments about coupled parabolic-hyperbolic system (see [4]) im-

ply that a unique solution w of (27) exists and it belongs to C∞ in some time

interval [0, T ). Moreover, if T is finite, then

sup
0≤t<T

‖w(·, t)‖3 = +∞ .(50)

Our a-priori estimates will show, however, that the left hand-side of (50) remains

bounded if the initial data of the problem have a norm in H3 sufficiently small.

Consequently, the solution exists for all t ≥ 0.

To show the first a-priori estimates for the solution w, we introduce the fol-

lowing two functions:

φ2(t) =
1

2

∑

|α|≤3

‖Dαw(·, t)‖2Z ,

h2(t) =
∑

|α|=4

(
‖Dαu′(·, t)‖2 + ‖DαH ′(·, t)‖2

)
.

We remark that
d

dt
φ2 = Re

∑

|α|≤3

(Dαw,Dαwt)Z ,(51)

where

Dαwt = −Dα

((
(U + u′) · ∇

)
w

)
−Dα(Bw) +AεD

αw(52)

+ εDαG+DαQ1 +DαQ2 .

We bound the right-hand side of (51) term by term in a sequence of lemmas.
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Lemma 6.1. Under the assumptions of Theorem 1.1, let T > 0 such that

in the interval 0 ≤ t < T there exists a smooth solution w of (27), such that

φ(t) ≤ 1. Then,
∣∣∣∣
(
Dαw, Dα

((
(U+u′)·∇

)
w
))

Z

∣∣∣∣ ≤ C e−ct φ2(t) + C φ3(t) , ∀ |α| ≤ 3 .(53)

The proof of the previous assert follows the same lines as in [3], Lemma 6.2:

the inequality comes from Lemma 4.6 and by the Sobolev’s inequalities (18)–(20).

In order to estimate the term Dα(Bw), we need the following result.

Lemma 6.2. For each w ∈ H1(T 2), we have that

|(Bw,w)Z | ≤ C
(
ε |B|∞ + |DB|∞

)
‖w‖2 .(54)

Proof: By using the definition of the matrix B, we have

(Bw,w)Z =







0
−B2 ∂2H

′
1 +B2 ∂1H

′
2

B1 ∂2H
′
1 −B1 ∂1H

′
2

−B2 ∂2u
′
1 +B1 ∂2u

′
2

B2 ∂1u
′
1 −B1 ∂1u

′
2



,




r

u
′

1

u
′

2

H
′

1

H
′

2






Z

.(55)

We now set

B1 =




0
−∂2(B2H

′
1) + ∂1(B2H

′
2)

∂2(B1H
′
1)− ∂1(B1H

′
2)

−∂2(B2 u
′
1) + ∂2(B1u

′
2)

∂1(B2 u
′
1)− ∂1(B1u

′
2)



,

and

Λ1 =







0
−H ′

1∂2B2 +H ′
2 ∂1B2

H ′
1∂2B1 −H ′

2 ∂1B1

−u′1∂2B2 + u′2 ∂2B1

u′1∂1B2 − u′2 ∂1B1



,




r

u′1
u′2
H ′

1

H ′
2






Z

.

Then, identity (55) can be written as

(Bw,w)Z = (B1, w)Z − Λ1 .(56)

From (iii) of Lemma 4.4, we can write

(B1, w)Z = (B1, w) + Λ2 ,
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where Λ2 satisfies

|Λ2| ≤ C ε |B|∞ ‖w‖
2 .

Moreover, by the definition of Λ1 and by (i) of Lemma 4.4, we have

|Λ1| ≤ C |DB|∞ ‖w‖
2 .

To conclude the proof, it is sufficiently to compute explicitly the L2-inner product

(B1, w). By integrating by parts, it easily follows that

|(B1, w)| ≤ C |DB|∞ ‖w‖
2 ,

which concludes the proof.

Lemma 6.3. Under the assumptions of Lemma 6.1 we have

|(Dαw,Dα(Bw))Z | ≤ C e−ct φ2(t) , ∀ |α| ≤ 3 .

Proof: We have

(Dαw,Dα(Bw))Z = (D
αw,BDαw)Z +

∑

0≤β<α

cα,β(D
αw,Dα−β(BDβw))Z .

By using Lemma 6.2, we find

|(Dαw,BDαw)Z | ≤ C
(
ε |B|∞ + |DB|∞

)
‖Dαw‖2 ≤ C e−ct φ2(t) .(57)

In order to estimate

Λ3 =
∑

0≤β<α

cα,β(D
αw,Dα−β(BDβw))Z ,

we observe that, by the definition of the matrix Dα−βB, we have to estimate

(Dα−β−γBi ∂jD
β+γw, Dαw)Z ,

where 0 ≤ γ ≤ α− β. Hence, by using the Cauchy–Schwarz inequality, we easily

obtain

|Λ3| ≤ C e−ctφ2(t) .(58)

Collecting (57) and (58), we conclude the proof.

In order to estimate the term concerning the matrix Aε, we use the estimates

obtained on the function wc.



2D SLIGHTLY COMPRESSIBLE VISCOUS MAGNETO-FLUID MOTION 83

Lemma 6.4. Under the assumptions of Lemma 6.1, we have

Re
∑

|α|≤3

(Dαw,AεD
αw)Z ≤ −c0 φ

2(t)− c1 h
2(t)(59)

+ ε2C
(
ε2 + δ2

0 + e−ct φ2(t) + φ4(t)
)
.

Proof: The inequality comes by using (ii) of Lemma 4.4, and (49). For the

details we refer to [3], Lemma 6.3.

Lemma 6.5. Under the assumptions of Lemma 6.1, we have

|(Dαw, εDαG)Z | ≤ C e−ct φ2(t) + ε2 C e−ct , ∀ |α| ≤ 3 .(60)

Proof: By using the Cauchy–Schwarz inequality and the decay at infinite of

U and P we have

|(Dαw, εDαG)Z | ≤ φ(t) εC e−ct .

Hence, by the Cauchy inequality, the proof easily follows.

Lemma 6.6. Under the assumptions of Lemma 6.1, we have

∑

|α|≤3

|(Dαw,DαQ1)Z | ≤ C e−ct
(
φ2(t) + ε2 h2(t)

)
+ Cφ3(t)(61)

+ C φ2(t)h(t) + εC φ(t)h2(t) + C ε2 e−ct .

Proof: By recalling that A = 1 + ε2P + ε r, we decompose Q1 as

Q1 = M1 +M2 +M3 +M4 ,

where

M1 =




0

(
1

A
− 1

)[
ν∆u′ + η∇∇ · u′

]
+
1

ε
(1−Aγ−2)∇r

0



,

M2 =




0

(
1

A
− 1

)[
−∇H ′ ·B + (B · ∇)H ′

]

0



,
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M3 =




0

(
1

A
− 1

)[
(B · ∇)B −∇B ·B

]

0



,

M4 =




0

1

A

[
−∇H ·H ′ + (H ′ · ∇)H

]

0



.

We now estimate separately the vectors M1, ...,M4. For M1 we refer to [3],

Lemma 6.5. In particular, we find that M1 is majored exactly by the left hand

side of (61).

By following the same lines as in the proof of Lemma 6.3, and by observing

that

Dα

(
1

A

)
≤ C

(
ε φ(t) + ε2 e−ct

)
(62)

and, finally, by applying the Cauchy–Schwarz inequality, we get

∑

|α|≤3

|(DαM2, D
αw)Z | ≤ e−ct

(
ε φ(t) + ε2 e−ct

)
φ(t)

(
φ(t) + h(t)

)
.

As an easy consequence of the exponential decay of B and by using (62), one has

the following estimate concerning the vector M3

∑

|α|≤3

|(DαM3, D
αw)Z | ≤ C e−ctφ(t)

(
ε φ(t) + ε2 e−ct

)
(63)

≤ C e−ct φ2(t) + C ε2 e−ct .

In order to estimate the vector M4, we observe that

∑

|α|≤3

(
Dα

[
∇H ·H ′+(H ′·∇)H

]
, Dαw

)

Z

≤ C φ(t)
(
φ2(t)+C e−ct φ(t)+h(t)φ(t)

)
.

Now, by (62), we get

∑

|α|≤3

|(DαM4, D
αw)Z | ≤ C φ3(t) + C φ2(t)h(t) + C e−ct φ2(t) .

The proof is covered by collecting the previous estimates on the four terms

M1, ...,M4.
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Lemma 6.7. Under the assumptions of Lemma 6.1, we have
∑

|α|≤3

|(DαQ2, D
αw)Z | ≤ C e−ct

(
φ2(t) + ε2 h2(t)

)
+ C φ2(t)h(t) + C φ3(t) .(64)

Proof: We recall that E = (1 + ε2P ) and we split the matrix Q2 as

Q2 = N1 +N2 ,

with

N1 =




−ε u′ · ∇P − ε(P + ρ
′

)∇ · u′

−(u′ · ∇)U − (Aγ−2 − Eγ−2)∇P −
ε2 ν ρ

′

∆U

AE

0



,

N2 =




0

0

−(u′ · ∇)B + (H ′ · ∇)U −H ′(∇ · u′) + (H ′ · ∇)u′



.

By using Lemma 6.6 in [3], we find
∑

|α|≤3

|(DαN1, D
αw)Z | ≤ C e−ct φ2(t) + ε2C e−ct h2(t) + C φ2(t)h(t) .(65)

The estimate for the matrix N2 simply follows by using the exponential decay

of B and its derivatives, and by the definitions of the functions h(t) and φ(t).

More precisely, we obtain
∑

|α|≤3

|(DαN2, D
αw)Z | ≤ C φ(t)

(
C φ(t) e−ct + φ2(t) + h(t)φ(t)

)
.(66)

By summing (65) and (66), we obtain inequality (64).

We now prove the following fundamental result.

Lemma 6.8. Under the assumptions of Theorem 1.1, let T > 0 such that, in

the interval 0 ≤ t < T , there exists a smooth solution w of (27), with φ(t) ≤ 1.

Then, the function φ2(t) satisfies

d

dt
φ2(t) ≤ (C e−ct − c0)φ

2(t) +

(
ε2C e−ct −

1

2
c1

)
h2(t)(67)

+ ε2C e−ct + ε4C + ε2 δ2
0 C + C φ3(t) + εC φ(t)h2(t) ,
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φ2(0) ≤
1

2
(1 + C1 ε) δ

2
0 ,(68)

where all the constants are independent of ε, for 0 < ε ≤ ε0.

Proof: The proof is an easy consequence of (51), (52) and the results of the

previous Lemmata 6.1, 6.3–6.7.

We are now in position to prove Theorem 1.1. We give only the idea of the

proof. For all details we refer to [3], Theorem 2.1.

Assume that δ0 and ε0 are chosen so that φ(0) < 1. From the existence theory

of hyperbolic-parabolic systems, it is well-known that there is a maximal interval

of existence [0, T ), with φ(t) < 1, ∀ t ∈ [0, T ). Moreover, if T <∞, then

lim sup
t→T−

φ2(t) = 1 .

The basic idea to prove all-time existence is to show that φ2(t) < 1 in arbitrary

intervals of existence. We consider the scalar ordinary differential inequality

d

dt
y(t) ≤

(
C e−ct −

1

2
c0

)
y(t) + ε2C(e−ct + ε2 + δ2

0) ,(69)

y(0) ≤
1

2
(1 + C1 ε) δ

2
0 .(70)

The following result holds (see [3], Lemma 6.7).

Lemma 6.9. There exists K depending only on C, c̃0, c, C1 such that any

solution y(t) of (69), (70) satisfies

y(t) < K2(ε2 + δ2
0) , 0 ≤ t < +∞ ,(71)

lim sup
t→+∞

y(t) ≤ ε2K2(1 + ε2 + δ2
0) .(72)

We now choose ε0(ν, µ, η, U0, B0) and δ0(ν, µ, η, U0, B0) sufficiently small such

that all previous lemmas hold and such that

K
√
ε20 + δ2

0 ≤ 1 ,(73)

2

(
ε20 C + ε0CK

√
ε20 + δ2

0

)
≤ c1 ,(74)

2CK
√
ε20 + δ2

0 , ≤ c0 .(75)

Hence from (67)–(68) the function φ2(t) satisfies the inequalities (69)–(70).
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Our claim is to show that φ2(t) < K2(ε2+δ2
0) in any interval of existence and

for 0 < ε ≤ ε0. By contradiction, we suppose that there exists T
∗ > 0 such that

φ2(t) < K2(ε2 + δ2
0) , ∀ 0 ≤ t < T ∗ ,(76)

φ2(T ∗) ≥ K2(ε2 + δ2
0) .(77)

By using inequality (69)–(70), we obtain that

φ2(T ∗) < K2(ε2 + δ2
0) .

The last inequality contradicts (77), hence all-time existence is proved.

7 – Appendix

We derive in this Section equations (1)–(3). We consider the equations of

magneto-hydrodynamics of isentropic compressible flow:

ρt + u · ∇ρ+ ρ∇ · u = 0 ,(78)

ρ
(
ut + (u · ∇)u

)
+∇p+ µ′H × (∇×H)− ν0∆u− η0∇∇ · u = 0 ,(79)

Ht −∇× (u×H)− µ0∆H = 0 ,(80)

p

p∗
=

(
ρ

ρ∗

)γ

, γ ≥ 1 ,(81)

where ρ is the density, u the velocity field, H the magnetic field, p the pressure,

ν0, η0 the viscosity coefficients, µ0 the resistivity, µ
′ the magnetic permeability.

We introduce the new variables t = t∗ t̃, x = x∗ x̃, ρ = ρ∗ ρ̃, H = H∗ H̃, where

t∗, x∗, ρ∗, H∗ are the units of time, length, density and magnetic field. We set

u∗ =
x∗

t∗
,

hence u = u∗ũ. If we rewrite equation (78)–(80) in terms of ρ̃, ũ, H̃, we obtain the

adimensional form of the compressible fluid equations. More precisely, dropping

˜ in order to simplify the notation, we obtain that the equation (78) remains

invariant. Equation (79) becomes:

ρ∗ ρ

(
u∗

t∗
ut +

u2
∗

x∗
(u · ∇)u

)
+

p∗

x∗
∇ργ + µ′

H2
∗

x∗
H × (∇×H) −

−
ν0

x2
∗

u∗∆u −
η0

x2
∗

u∗∇(∇ · u) = 0 .
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We divide all terms by
ρ∗ x∗

t2∗
, hence:

ρ
(
ut + (u · ∇)u

)
+

p∗

u∗2 ρ∗
∇ργ + µ′

H2
∗

u∗2 ρ∗
H × (∇×H) −

−
ν0

u∗ ρ∗ x∗
∆u−

η0

u∗ ρ∗ x∗
∇(∇ · u) = 0 .

We denote by a∗ the sound speed corresponding to the state ρ∗, p∗, such that

a2
∗ =

d

dρ
p(ρ∗) = γ ργ−1

∗ = γ
p∗

ρ∗

and by ε :=
u∗

a∗
the Mach number.

Hence, dividing the momentum equation by ρ, we obtain:

ut + (u · ∇)u+
1

ε2
ργ−2∇ρ+

A

ρ
H × (∇×H)−

ν

ρ
∇u−

η

ρ
∇∇ · u = 0 ,

where

A := µ
′ H2

∗

ρ∗ u2
∗

, ν :=
ν0

x∗ u∗ ρ∗
, η :=

η0

x∗ u∗ ρ∗
.

Equation (80) becomes:

Ht −∇× (u×H)−
µ0

x∗ u∗
∆H = 0 .

By setting µ :=
µ0

x∗u∗
, the system (78)–(81) becomes:

ρt + u · ∇ρ+ ρ∇ · u = 0 ,

ut + (u · ∇)u+
1

ε2
ργ−2∇ρ+

A

ρ
H × (∇×H)−

ν

ρ
∆u−

η

ρ
∇∇ · u = 0 ,(82)

Ht −∇× (u×H)− µ∆H = 0 .

If we introduce a new variable r = r(x, y, t) by setting ρ = 1 + ε2r, we obtain

ε2
(
rt + (u · ∇) r

)
+ (1 + ε2r)∇ · u = 0 ,

ut + (u · ∇)u+ (1 + ε2r)γ−2∇r +
A

1 + ε2 r
H × (∇×H) −

−
ν

1 + ε2r
∆u −

η

1 + ε2r
∇∇ · u = 0 ,

Ht −∇× (u×H)− µ∆H = 0 .
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Then, we obtain equations (1)–(3) if we write ρ instead of r, and take A = 1.

We introduce the variable r for the following reason. We suppose that there exists

the formal asymptotic expansion:

ρ(x, y, t) = ρ0(x, y, t) + ε ρ1(x, y, t) + 0(ε
2)

and a similar expansion for u and H. We substitute the expansions in (82), and

equalize the coefficients of powers of ε. It follows that ρ0 is constant in space and

time and that ρ1 may be taken equal to zero. Hence by choosing ρ0 = 1, we have

ρ = 1 + 0(ε2) ,

(see [4], [5] for more details).
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