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NON LOCAL SOLUTIONS OF A NONLINEAR
HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION

Cicero LoprEs FROTA

Abstract: In this work we prove that the mixed problem for a temporally nonlinear
Kirchhoff-Carrier model, for vibrations of a nonhomogeneous stretched string, has unique
nonlocal solution for small data. The solution is obtained in S.L. Sobolev spaces.

Introduction

The nonlinear model of Kirchhoff-Carrier, cf. Carrier [5], for vibrations of an
elastic string, of lenght L, is given by:
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where 0 < x < L and ¢t > 0 represent the string in repose, u(z,t) is the vertical
displacement of the point x at the instant ¢, p is the mass density, h is the area of
the cross section of the string, L is the lenght of the string, P, the initial tension
on the string and F the Young’s modulus of the material.

The natural generalization of the model (1) is given by the following nonlinear
mixed problem
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where  is a bounded open set of R™ with smooth boundary I, M:[0,00) — R
2
n
is a positive real function and A = > 922 is the Laplace operator.
i=1 0%}

Remark 1. In the Kirchhoff-Carrier model (1), M:[0,00) — R is M(\) =
E

noE
p-h  2Lp

Several authors have investigated the nonlinear problem (2). When n =1
and Q = (0, L), it was studied by Dickey [8] and Bernstein [3] whom considered
¢, and ¢ analytic functions with some growth conditions. Assuming 2 bounded
open set of R, ¢, and ¢; analytic functions, Pohozaev [18] obtained existence
and uniqueness of global solutions for the mixed problem (2). In Lions [12] he
formulated the Pohozaev’s results in an abstract context obtaining better results
and presenting a collection of problems. One of the problems proposed by Lions
[12] was the study of the problem (2) with M: x [0,00) — R, i.e., the problem

0%u - ou |?

o M<x;/9 Oz dx>Au =fonQ
(3) u=0o0nX

u(z,0) = ¢o(z) on Q

O ,0) = 61() on

that is, for nonhomogeneous materials. This case has it’s origin in the model (1)
when the physic elements p, h and E are not constants, but depends on the point
x in the string. In Rivera Rodrigues [20] the author proved the existence and
uniqueness of local solutions for the problem (3).

In a more general context it is correct to consider p, h and E changing not
only with the point x in the string but with the instant ¢ too, i.e., p = p(z,t),
h = h(z,t) and E = E(x,t). In this case, we have the problem
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where M:Q x [0,T] x [0,00) — R.
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In this work we study the problem (4) and making use of the same technique

oM
used by Rivera Rodrigues [20], we prove that if ¢,, ¢1, f and -5 e small
in some sense, then exist one, and only one, nonlocal solution for the problem
(4). It’s important to observe that it’s a good assumption to consider v small,

because in normal conditions p, h and E have a small variation with the time.
For the study of problem (2) with dissipative terms we have, for instance, Brito
[4] and Medeiros-Milla Miranda [14]. The problem (2) in the degenerate case
can be find in Arosio-Spagnolo [1], Ebihara-Medeiros-Milla Miranda [9], Arosio-
Garavaldi [2], Crippa [6], Yamada [21], Nishihara-Yamada [17] and Nishihara
[16].
The plan of this paper is the following:

1) Notations and preliminary results;

2) Assumptions and statement of the principal result;
3) Galerkin’s approximation and a priori estimates;
4) Proof of the theorem;
)

5) Uniqueness.

1 — Notation and preliminary results

Let © be a bounded open set of R™ with smooth boundary I'. By L?() we
represent the usual space of Lebesgue square integrable functions on 2 whose
inner product and norm will be denoted by (-, ) and | - | respectively. In the
Sobolev space H}(£2) we consider the norm

) ol =3 [ |ete

and inner product

©) =3 [ ede

Let (—A) be the operator defined by {HZ(),L?(2),((-, -))}. Then as we
well known (—A) is an unbounded selfadjoint operator in L%(2) with domain

(7) D(-A) = {u € Hy(); Au € L*(Q)} = H)(Q) N H* ()

and it has the following properties:
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(a) There exist m, > 0 such that

®) (—Au,u) = mo ful?, Vu e D(-A) ;

(b)
(9) (_Au7u) - HU’H27 Vue D(_A) )

(c) There exist a sequence (\;),en of real numbers and (w;);eN a sequence
of L?() vectors such that

(10) mog)\lgAQS...
(11) —ij = )\jwj, VjeN
(12) lim A; = oo

j—o0

{w;} is a orthonormal complete set in L*(Q) and or-

(13) thogonal complete set in H} () and in H(Q)NH?(Q).

Remark 2. We introduce the equivalent norm
(14) ull i nmz@) = | — Aul,  Vue HY(Q)NH*(Q)

for smooth boundary I'.

In order to complete this section we introduce a compactness result. It is a
version of Arzela’s theorem and it’s proof follows the same argument as the usual
proof of scalar Arzela’s theorem.

Lemma 1. Let F and F' be Banach spaces, E — F with compact injection.
Let (0m)men be a sequence of functions from the interval [a,b] C R into E.
If (0m)meN Is uniformly bounded in [a,b] with respect to the norm of E and
equicontinuous with respect to the norm of F', then there exist a subsequence
(Om, )veN Of (0m)men and a continuous function o: [a,b] — F such that
(15) lim o, (t) = o(t) in F uniformly for t € [a,b] .

V—00

Moreover, if E is a reflexive Banach space then we find that o € L*(a,b; F).
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2 — Assumptions and principal result

Let € be as in section 1, T' > 0 a real number. We consider a real function

M: Qx0,T] x [0,00) — R
(z,t,\) —  M(xz,t,\)

such that the following assumptions are satisfied:

(H.1) M € L2 ([0, 00); Whe(2 x (0,T))), i.e., for each k > 0 we have M €

loc
M M
L(Q x (0,T) x (0,k)), % e L=(Q x (0,T) x (0,k)) and gx‘ e
L®(Q % (0,T) x (0,k)) fori =1,....n. '

(H.2) For each L > 0 we have %]\)\4 € L>*(Qx (0,7) x (0,L)).

(H.3) There exist a real number m; > 0 such that m; < M(z,t,\), Vo € Q,
t€[0,7] and A > 0.

Now we define

1
k:O — 4 o 3 —1/2 k -
(momy) ) 1 m
0, = esssup 8—]\4(;1;, t, 0)‘
— ot
z€Q
0<t<T
1 1
( 6) k2 = 5 |:]. + |’MHL°O(Q><(O,T)><(O,1)):|
4 T
— l (14k10,)T
k3 moml[<k2+2>(1+e )
H@M
ki = ||—
O | oo (x (0,1 % (0,k3))
In2
17 J = mi 1: 1/2. '
( ) mln{ ymy 73T[1 —|—T]€0]{34 —{—Tk’okzl e(1+k190)T] )
In 2 1/2
|:6Tk0k2]€4(1 + e(1+k190)T)] }
T
(18) ks = kad® + 50

Theorem. Let M:Qx[0,7]x[0,00) — R be a real function satisfying (H.1)—
(H.3), ¢o € HX(Q) N H*(Q), ¢1 € HXQ) and f:]0,T] — HL(Q) a continuous
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function. If

(19) [Ago? + [[¢1]]* +0 < t < T — Max || f(¢t)||* < 6°
and
oM In2
20 H < .
(20 Ot |l @x(0,7)x(0,k3))  3Lk1

Then there exist one, and only one, function u: [0,T] — HZ(Q) such that

(21)  we C([0,T); Hy(2)) N CH([0,T]; L2(2)) N C*([0, TILH 1 (Q))

w € L=(0,T; Hy () N H(Q))
(22) u' € L%(0,T; Hy (%))
u" € L%(0,T; L3(Q))

u"(t) — M(t, |[u(®)]]?) Au(t) = f(t) in L*(Q), 0<t<T
(23) u(0) = ¢o
u'(0) = ¢1 .

Remark 3. In (23); we are making use of the following notation: if 1: Q x
(0,7) — R is a function then ¥(¢): 2 — R is defined by ¥(t)(x) = ¢(x,t).

3 — Galerkin’s approximation and a priori estimates

We consider V, = {0} and V,;, = [w1,...,wy] for m = 1,2,... i.e., V,, is the
vector space spanned by w1, ..., wy,; where (wy,),,eN is as in the section 1. The
sequence of Galerkin’s approximation is defined by induction as follows: we put

up: [0,7] — Vo

t — u(t) =0
and for m =1,2,..., we consider
Um: [0, 1] — Vin
t — up(t) = X0 gim(tw;

the unique solution of the initial value problem, with the coefficient of —Awu,,(t)
depends on the time t:

ul (t) — M(t, |]um_1(t)\|2) Aup,(t) = f(t) in Vi, Vi € [0,T))
(24) U (0) = @om

!/
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where

(25) T, = sup{T; 0 <7 <Tp-1 and uy,: [0, 7] — V,, is solution of (24)} ,

(26) fnl®) = S (W) wy,  0<EST,
=1
(27) Pom = Z(¢07wj) wj ,
j=1
(28) Pim = Z(¢1a wj) wy .
=1

Remark 4. The Galerkin’s approximation is well defined. It’s sufficient we
note that the initial value problem (24) is equivalent to the following system of
ordinary differential equations:

)+ 3 Mg (®) (M s (8] Py ;) = (£(8), )
k=1

(29) 0<t<Tp j=1,....m
gim(0) = (do, w;)
9im(0) = (¢1,w;5) .

Estimate (i) From (24); we have the approximate equation
(30) (i (8),v) = (M(E, lJum—1 (D)) A (t),0) = (fn(t),v), Yo € Vi .
Take v = —Aul, (t) in (30) we get

%%Hulm(t)||2 +/QM(‘T’t’ Hum—1||2) Aum(aj,t).Au;n(x,t) dr = ((fm(t)vu;n(t)))a
/Q M (.1, [t 1 (8)]?) At (2, ) Ay (2, ) da =

- %%(M(t, [t 1 ()][2) Aty (), Aty (1))

-3 0 %—Af (@1, [t -1 (D) (At (2, £))? dax

~ (W (0 1) | O @t i1 ()]12) (Dt 1))?
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= (Um0 + 5 [ Tt a0 (B0 d
(10, 0)) [ S 1 0)]2) (Bt 1)),

Vte[0,Tn], m=1,2,...

Lemma 2. Let be

Z,(t) =0
1
(32)  § Zu(®) = 5 [[lun @I + (M, a1 (O17) A (1), A (1))
0<t<T,, m=12,...,
, 2
a= sup Zny(t), a, = Qo s
0<t<Tm, memi
H ot ' 0 (2% (0,T)x (0,0, )) H Loo(Qx (0,T)x (0,0.))

Then, T,, =T, a,, is finite Vm € N and

(5+k10m—1+koam—lﬁm—1)t.

39 Zn(0) < [ 20O+ 55 [ (o) ds]

Proof: The proof will be done by induction on m. Clearly the solution of
the problem

g1 (t) + M (M (t, 0)wr, wi) g1 (t) = (f(£), w1)
911(0) = (¢o, w1)
911(0) = (¢1,w1)

is defined in all [0, 7. This show us that 73 = T. Moreover if we consider the
assumption (H.3) on M we have
2

(34) |Aui(t)> < — Zi(t), Ytelo,T].
m1

From (31) and (34) we get

Z(1) ~ 5+ kabo) Z2(0) < o AP



A NONLINEAR HYPERBOLIC PARTIAL DIFFERENTIAL EQUATION 463

where 0 is given by (17). By the last inequality we obtain

1 t
720 < [20) + g5 [ AP ds] e
0
and it proves that «; is finite and (33) is true when m = 1. Now we make the

induction assumption, i.e., we assume that for m > 1 we have T,,, =T, «,, finite
and (34) true for this m. Then (31) for m + 1 implies

1
et (0) < el DI + 02 (1)
1 [ |OM )
45 |Gt @)

Ol O [ 55 t an O)| (Btnsa .0 o

(At (z,1))? da

By the other hand, we note that

it (]2 < — | At (£)[2 <
(35) Mo MMy

It follows that:

1
1 () = (0 k1O + kotmfBm) Zm1(8) < o || fmsa (1)1 -

The above inequality shows that (33) is true for (m + 1), a1 is finite and
Trma1 =T, i.e., the proof of Lemma 2 is complete. n

We denote,
1 T
(36) Tm:Zm(o)Jr% [ fm@®|2dt, m=1,2,...,
0

and then the sequence (7p,),,cn is bounded. In fact, by (26), (27) and (28) we
have that

Apom — A, strong in L2(Q)
(37) ©1m — ¢1 strong in HY(Q)

fm(t) — f(t) strong in H}(Q), uniformly on [0, T

and from the hypothesis of small data (17) we obtain

(38)  [Apom|” + [lpum|[* +0 <t < T — Méx || fm(t)|]* < 6%, ¥meN.
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Therefore,
o 1 o_ 1 o
HSOOmH §7|A900m| gié gl, VmEN,
Mo me
and then,
= 2+ | M(x,0 ) (A 2d
Tm = 5 [llml[” + . (@, 0, |[o(m-1)lI7) (Apom(x))” dx
1 (T T
t— | @I dt < k0 + =6 = ks .
20 Jo 2

We conclude that:

(39) 0<7n<ks, VmeN,
and
(40) Zm(t) < T eOFF10m—1tkoam—1Sm—1)t i c [0, T],m e N .

Lemma 3. Exists a constant ¢, (independent of m € N and t € [0,T]) such
that

(41) Zm(t) <2¢0, Vt€[0,T], Yme N .

Proof: We consider ¢, = ks[1 + e(1+k190)T]. Then, we have by (39):
(42) Tm < G, YmEN,

and by (40)
Zy(t) < my el0TRi0)t < g UHRI0IT < ) < 2¢,

it shows that (41) is true for m = 1. Now, we do the follows induction assumption:
given m > 1 we assume that (41) is true for this m. In order to prove that (41)
is true for (m + 1) we have

Q= sup Zp(t) < 2¢,
0<t<T

and

of = 20, < 4c, _ 4 {k6[1+6(1+k1€0)T]}:
mMeMq MMy MMy

- { <k2(52 + g 5) (1 + e(1+k19°)T) } <ks.

memi
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Therefore, we can see that

oM
) 5, < ‘ oM =ky
O [ Lo (% (0,7) % (0,k3))
and
M In2
(44) %SHa iy
Ot |l Loo@x (0,1 % (0.ks)) ~ 3TR1

By (40), (42), (43) and (44) we get

Zini1(t) < Trs o(5+K10m +komBm)t co e(6+§1—T2+2kok4co)t _

We note that, from our choice we have

In2
(5 + ;—T + 2k:ok:4co) = [L+ Thoky + Thoky 101007 5 1
ln2<ln2 In2 ln2_ln2

2 1 (1+k:190)T 2 - I i s
+ 2kokoks[1l + e I +3T73T+3T+3T T

Therefore,
In2
(45) <5 + 37T + 2kok:4co)t S In 2, Vi € [O,T] N
and then

Zmi1(t) < 2¢0, Yt €[0,T] .

The above relation complete the proof of lemma 3. n

We obtain from (41) the first estimate: There exists a constant ¢; such that

(46) [um @)1 + [l (DI + [Aum (t)]? < e1, YE € [0,T], Ym e N

Estimate (ii) We start observing that

2 2
M s O1F) D] = [ [M@t @) At (.0 do
<Ml zoe(@x(0.7)x (0,c1)) * €1

and
m 2

n(OF = 31w < 0P < Il @I < <1

=1 0
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Thus, using (24); we obtain the existence of a constant ¢y such that
(47) lull ()* < ca, YEE[0,T], Vm €N .

By (46), (47) and the fundamental theorem of calculus we choose t, s € [0, T
and we have that

(48) [um (t) — um(s)|| < Ver |t — s,
(49) [ty (£) — i (5)| < e [t — s .

In order to obtain an estimate for (u/,) analogous to (48) and (49) we choose
t,s € [0,T] and by (24); we get

i (£) = 1 (5) = M, -1 (D7) Al (t) = un(s)) +
+ M a1 0P = M(s, |lum-1(5)][*)] Atin(s) + () = Fn(s)) -
On the other hand, for v € H!(Q) we note that

e Humfl(tm?)‘vuz _

2
dx

-3 / \fjgfu,t, o AO2)002) + M o2 (O] o 2)

n

+2||M|[3
Lo (9%(0,T)x (0,c1)) L@ (0 x(0en)) z; Ox;

oM } DU‘Q +Z

8951-

< 2v)?

< 2{”MHL°° (@ (0,7)x (0,

Lo(Qx(0,7)x (0,c1)) 393@ ] '

Whence, there exists a constant c3 such that
2
(50) | M, i1 (®)]2).0] < esllol?, ¥t [0,7], YmeN.
By the above estimate we have

(M (t, =1 (£)] ) At () = (), >

(A — tm(s)), M(t, [[um—1(8)]*)-v)
= ( () = (), M a1 ()] 2)0))
Ve[l llum(s) = (@)

IN
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and using (48) we get
(61) (M a1 0 Alum(t) = um(s),0)| < veres ol [t 5|
Now, if we consider g(z,t) = (x,1, ||um_1(t)||?) then we have

M (z,t, [|um-1()]*) = M(z, s, [[um-1(5)|[*) =

to
= [ 3¢ 0). € de
oM )
= [ e @&l (O] ae

t GM
+2/ (@, &, tm—1(E)I?) (wm—1(8), up,—1 (£))) dE .
Then we can see that there exists a constant ¢4 such that
M (@,t, [um-1 (D7) = M (@, 5, [um-1(5)][*)] < exlt = s

and this estimate shows that there exists a constant ¢ such that

62 |([M s 1) = MG, a5 St (),0)

< csllollt —s] .
Finally, we note that

(53) |(fm(t) = fm(s),0)| < Tio LF (@) = F()IHIvll -
From (51), (52) and (53) we obtain that there exists a constant cg such that

(54) [ (8) = ()| -2y < o ([t = sl + [1£(&) = F(s)I]) -

The estimate (ii) is the relations (47), (48), (49) and (54).

4 — Proof of the theorem

By estimates (i) and (ii) we have:

(tm)men uniformly bounded in [0, 7] with respect to the norm of H}(Q2) N
H?(Q) and equicontinuous with respect to the norm of H} ().

() men uniformly bounded in [0, T] with respect to the norm of H2(£2) and
equicontinuous with respect to the norm of L?(12).
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(ull,)men uniformly bounded in [0, 7] with respect to the norm of L?(€2) and
equicontinuous with respect to the norm of H~1(€).

Then, by lemma 1, there exists a function u: 2x[0,7] — R and a subsequence
(Um,, ) en extracted from (upm),,eN, such that

(55)  we O([0,T]; Hy () N CH([0, T]; L*(2) N C*([0, T]; H~H(%)

U, (t) — u(t) strongly in H1(Q), uniformly in [0, T]
(56) uy, (t) — u'(t) strongly in L*(), uniformly in [0, 7]
uy, (t) — u”(t) strongly in H~1(Q), uniformly in [0,7] .

Moreover, since H}(Q)NH?(Q), H!(Q) and L?(Q2) are reflexive Banach spaces,
we still have
we L0, T; HY(Q) N H*(Q)
(57) u' € L®(0,T; HX(Q))
u’ € L®(0,T; L*()) .
The convergences don’t allow us to pass to the limit in the approximate equa-
tion. Indeed, the sequence (u,, ),cn have the properties, but we can’t say the

same for (U, —1),eN- In order to solve this problem we will prove the following
lemma.

Lemma 4. lim ||ty 1(t) — um(t)||*> = 0 uniformly on [0, T).
m—0o0

Proof: For each m € N we define wy, = upm4+1 — Um. Then

o) =01 =3 [ (Getan) o

and making use of the assumption (H.3) we can see that there exists a constant
c7 such that

(58)  [lum+1(t) = um(®)]]* <

<er{ a0 + X (Mm@ G, o) |

Hence, we are motivated to put

59 nl0)= WP + 3 (Mt I G220, 5 0) |
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and then, we will conclude with the proof of lemma showing that ,,(t) — 0
uniformly in [0, 7.
Differentiating 1, (), we have

1d

(6()) %/J;n(t) 5@’ m()|2+
%2(%—% lum(®IP) G 1), 2 0)) +

(1,00 3 (o len D) G ) +

# 3 (M0 1) G0, 2.

From the approximation equation we find
(&) + [ M, -1 (D]2) = M, [m—1 (8)] )] A () =
— Mt |um@)|[*) Aw(t) = frns1(t) = fm(t)

w

and then

Sl (O = (Mt e (O]) B, (1))
(MO = M O] S (®), 0 (1))
+ (fr1 (8) = fanl®), w0 (®)) -

From the above relation and (60) we obtain

(61) Wn(t) = Am(t) + Bm(t) + Cm(t) + Dm(t) + Em(t)

where

n

=3 (G O 0 G0 0,0

=1

| |
N

M (8, [ (8)][2) = M, [t 1<>H2>]Aum<t>,w;n<t>)
023 Cult) = ((n®. ) Y- (G lemOIP G20, 52 0)

pr ox;

D (1) = Z(?f(t (1) S 1), 20 1)
Enlt) = (o)~ n8), w9
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By (59) and the estimates we find constants cs, cg, c10 and ¢11 such that

Ap(t) < cgPm(t), B (t) < cg [thm—1(t) — tm(t)]
Cin(t) < c10¥m(t), D () < 11 ¥ (t)

1
and Ey, (1) < §|fm+l(t) — fmn(®)? + m (t).
Then we prove that there exists a constant cio, independent of m and ¢ €
[0, T, such that

V() = c12¥m(t) < 5 [ fnsi(t) = ()] + cr290m-1(2)

N |

and then,
1 (T
Un®) < [ 0) 4 5 [ Ui (6) = fn®P i

t
+ c12 ecl?T/O Ym—1(s)ds .

Now we denote by

1 (T
B = U0 + 5 [ a0 = FuO dt

and choose

c13 = Méx{eclzT, croe2l 0<t<T — Méxwl(t)} .

Then, we can see that
P1(t) < c3

(63) t
Y (t) < c13Ym + 613/0 VUm—1(s)ds .

By induction we find

J
(64) Y (t) < c13 ———Vm—j, Vt€[0,T], m=2,3,...

If we consider (37) we get
(65) lim v, =0

and, as we well know,

(66) i (613T)j — pesT
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Therefore, from (64), (65) and (66) we conclude that 1, (t) — 0 uniformly in
[0,T] and the proof of lemma 4 is complete. m

The result of lemma 4 implies that
(67) Jim |[thm, —1(£)]]? = ||u(t)]|* uniformly in [0, 77 .

Then, we have the following convergences:

(68)  M(t,llum,—1(£)*).v — M(t [[u(®)|*).v
strongly in L?(Q), uniformly in [0,7], Vv € L*(Q) ,

(69) Ay, (t) — Au(t) weakly in L*(Q), 0 <t < T .
The convergences (68) and (69) imply

(70) M (t, |[wm,—1 (1) *) A, (t) — M (2, |Ju(t)[|?) Au(t)
weakly in L*(Q), 0<t < T .

We have then by passage to the limit in v that
W() = Mt |u(t)|?) Au(t) = £() in L2(Q), 0< ¢ < T .

Clearly we also have u(0) = ¢, and u/(0) = ¢2.

5 — Uniqueness

Let u and v be satisfying (21), (22) and (23). Then, if we define w = u —v
we get

(71) {w(( )+ M(t, |[o(t)] %) Av(t) — M(t, [[u(t)]|?) Au(t) =

0) = w'(0) =0 .

Now we put

@ = e 3 (o 2. 220))

Therefore, using again the same analysis used in the proof of lemma 4, we
obtain a constant ¢4 such that

V() — crap(t) <0
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and this imply
(73) P(t) < 1t y(0), Vi e [0,T] .
But, from (72) there exists a constant cj5 such that
0 <9(t) < exs [0/ (P +[wP], 0t < T

By (71)2, if we take ¢ = 0 in the above relation, we have ¢(0) = 0. This fact
with (73) shows that ¥(¢) =0, 0 < ¢ < T; and then we have uniqueness.
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