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ON THE METRIZABILITY OF

TVS-CONE METRIC SPACES

Shou Lin, Kedian Li, and Ying Ge

Abstract. Metric spaces are cone metric spaces, and cone metric spaces are
TVS-cone metric spaces. We prove that TVS-cone metric spaces are para-
compact. A metrization theorem of TVS-cone metric spaces is obtained by
a purely topological tools. We obtain that a homeomorphism f of a com-
pact space is expansive if and only if f is TVS-cone expansive. In the end,

for a TVS-cone metric topology, a concrete metric generating the topology is
constructed.

1. Introduction

Cone metric spaces were introduced and discussed by Huang and Zhang in
[8], in which every metric space is a cone metric space. In some results about
metric spaces, can metric spaces be relaxed to cone metric spaces? This is an
interesting question and many relevant results have been obtained (see [1,8,12,20],
for example). Recently, Khani and Pourmahdian [12] proved that each cone metric
space is metrizable, which shows that some improvements by relaxing metric spaces
to cone metric spaces are trivial. This leads that more general cone metric spaces
are discussed. In particular, it is interesting to consider certain topological groups
in place of Banach spaces in the definition of cone metric spaces, which can serve
as a topic for further studies [12]. In fact, Du [6] introduced and investigated TVS-
cone metric spaces by replacing Banach spaces with topological vector spaces in the
definition of cone metric spaces. In the past years, TVS-cone metric spaces have
aroused many mathematical scholars’ interests and some interesting results have
been obtained (see [5, 6, 10, 17], for example). However, the following question is
still open.
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Question 1.1. Are TVS-cone metric spaces metrizable?

As a partial answer for the above question, it is proved that each TVS-cone
metric space is metrizable under assumption that the topological vector space is
locally convex and Hausdorff (see [5,6,10], for example).

On the other hand, we notice that metrization problem for cone metric spaces
and TVS-cone metric spaces were discussed by using “constructing method of con-
crete metric”. For example, for a cone metric space (X, d), Khani and Pourmah-
dian [12] constructed a metric D on X by a symmetric function and the Frink
Lemma’s method such that D generates the same topology on X as the cone met-
ric d; for a TVS-cone metric space (X, d), under assumption that the topological
vector space is locally convex and Hausdorff, Du [6] used the nonlinear scalariza-
tion function ξe to construct a metric dp on X such that the topology of (X, dp)
coincides with the topology of (X, d). Then, the following question arises naturally.

Question 1.2. Can one solve metrization problem of TVS-cone metric spaces
by a purely topological method?

Just as topological theories are enriched and deepen, some classical topological
methods plays an important role in the development of topology. In 1948, Stone [19]
proved one of the deepest and most important theorems we have about metric
spaces: every metric space is paracompact. It would be difficult to overestimate the
important role of this theorem in metrization theorem and the theory of generalized
metrizable spaces [7]. One of the most interesting problems in general topology is
the metrization problem. This is why the metrization problem of cone metric spaces
and TVS-cone metric spaces cause attention once again. The general metrization
problem was finally solved in the early 1950s independently by Nagata [16], Smirnov
[18] and Bing [3]. It should be note that Stone’s important result played a key role
in the Nagata–Smirnov–Bing solution of the metrization problem.

Applying the technique of Stone’s method, Michael [13–15] obtained a series
of interesting characterizations for paracompact spaces in 1953, 1957 and 1959. It
follows that closed mappings preserve T2-paracompactness. As a further develop-
ment of the technique of Stone’s method, Burke [4] characterized subparacompact
spaces and proved that closed mappings preserve subparacompactness in 1969. As
an absolute gem of Stone’s method, characterizations for submetacompact spaces
were obtained by Junnila in 1978 [9], which makes that submetacompactness is pre-
served under closed mappings. After surveying developments for Stone’s method,
one can see that this method occupies an important place in topology and the
breakthrough of general topology would not have been possible without Stone’s
paper.

This paper gives some properties of ordered topological vector spaces to in-
vestigate TVS-cone metric spaces. By Stone’s sphere method, we give a purely
topological proof for the metrization theorem of TVS-cone metric spaces without
assumption that the topological vector space is locally convex and Hausdorff. More
precisely, we use this method to prove that TVS-cone metric spaces are paracom-
pact spaces, and then it is obtained that TVS-cone metric spaces are metrizable,
which reveals the heart and soul of general topology. Also, as an application of
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metrization theorem of TVS-cone metric spaces, it is obtained that a homeomor-
phism f of a compact space is expansive if and only if f is TVS-cone expansive. In
the end of this paper, for a TVS-cone metric topology, we also construct a concrete
metric generating the topology.

Throughout this paper, N, Z, R+ and R
∗ denote the set of all natural numbers,

the set of all integral numbers, the set of all positive real numbers and the set of
all nonnegative real numbers, respectively.

2. Preliminaries

Definition 2.1. [6, 10] Let E be a topological vector space with its zero
vector θ. A subset P of E is called a TVS-cone in E if the following are satisfied.

(1) P is nonempty and closed in E.
(2) α, β ∈ P and a, b ∈ R

+ ⇒ aα + bβ ∈ P .
(3) α, −α ∈ P ⇒ α = θ.

Remark 2.1. (1) Let P be a TVS-cone of a topological vector space E. Then
the zero vector θ ∈ P − P ◦, where P ◦ denotes the interior of P in E. In fact, pick
α, β ∈ P ; then (α + β)/n ∈ P for each n ∈ N from Definition 2.1(2). Note that
(α + β)/n → θ when n → ∞. So θ ∈ P because P is closed from Definition 2.1(1).
On the other hand, pick γ ∈ Er{θ}, then γ/n → θ and −γ/n → θ when n → ∞. If
θ ∈ P ◦, then there is n ∈ N such that {γ/n, −γ/n} ⊆ P ◦ ⊆ P . By Definition 2.1(3),
γ/n = θ. This contradicts that γ 6= θ. So θ /∈ P ◦.

(2) If Definition 2.1(2) is replaced by “α, β ∈ P and a, b ∈ R
∗ ⇒ aα + bβ ∈ P ”,

then we obtain the original definition of the TVS-cone introduced in [6,10], where
R

∗ denotes the set of all nonnegative real numbers. By above (1), Definition 2.1
and the original definition of the TVS-cone are equivalent, which shows that the
former is formally an improvement of the latter.

Definition 2.2. [6,10] Let P be a TVS-cone in a topological vector space E.
Some partial orderings 6, < and ≪ on E with respect to P are defined as follows.
For each α, β ∈ E,

(1) α 6 β if β − α ∈ P . (2) α < β if α 6 β and α 6= β. (3) α ≪ β if β − α ∈ P ◦.

Then a pair (E, P ) is called an ordered topological vector space.

For an ordered topological vector space (E, P ), unless otherwise specified, we
always suppose that E is a topological vector space with its zero vector θ and P is
a TVS-cone in E with nonempty interior P ◦.

Remark 2.2. For the sake of conveniences, we also use notations >, > and ≫
in an ordered topological vector space (E, P ). The meanings of these notations are
clear and the following hold.

(1) α > β ⇔ α − β > θ ⇔ α − β ∈ P .
(2) α > β ⇔ α − β > θ ⇔ α − β ∈ P r {θ}.
(3) α ≫ β ⇔ α − β ≫ θ ⇔ α − β ∈ P ◦.
(4) α ≫ β ⇒ α > β ⇒ α > β.
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Lemma 2.1. Let (E, P ) be an ordered topological vector space. Then the fol-

lowing hold.

(1) If α ≫ θ, then rα ≫ θ for each r ∈ R
+.

(2) If α ≫ θ, then α ≫ α/2 ≫ · · · ≫ α/n ≫ · · · ≫ θ.

(3) If α1 ≫ β1 and α2 > β2, then α1 + α2 ≫ β1 + β2.

(4) If α ≫ β > γ or α > β ≫ γ, then α ≫ γ.

(5) If α ≫ θ and β ∈ E, then there is n ∈ N such that β/n ≪ α
(6) If α ≫ θ and β ≫ θ, then there is γ ≫ θ such that γ ≪ α and γ ≪ β.

(7) If ε ≫ θ and θ 6 α 6 ε/n for each n ∈ N, then α = θ.

Proof. For r ∈ R
+, α ∈ E and B ⊆ E, rB and α + B denote {rβ : β ∈ B}

and {α + β : β ∈ B}, respectively.
(1) Let α ≫ θ, i.e., α ∈ P ◦. Then there is an open neighborhood B of α in

E such that B ⊆ P . If r ∈ R
+, then rB ⊆ P from Definition 2.1(2). Note that

rα ∈ rB and rB is an open subset of E. So rα ∈ P ◦, i.e., rα ≫ θ.
(2) Let α ≫ θ. For each n ∈ N, α/n ≫ θ by (1). Furthermore, α/n−α/(n+1) =

α/((n(n + 1)) ≫ θ, and so α/n ≫ α/(n + 1).
(3) Let α1 ≫ β1 and α2 > β2. Then α1 − β1 ≫ θ and α2 − β2 > θ, i.e.,

α1 −β1 ∈ P ◦ and α2 −β2 ∈ P . So there is an open neighborhood B of α1 −β1 in E
such that B ⊆ P . Note that (α2 − β2) + B is an open subset of E, and (α2 − β2) +
(α1 −β1) ∈ (α2 −β2)+B ⊆ P from Definition 2.1(2). So (α2 −β2)+(α1 −β1) ∈ P ◦,
i.e., (α2 − β2) + (α1 − β1) ≫ θ. It follows that (α1 + α2) − (β1 + β2) ≫ θ, i.e.,
α1 + α2 ≫ β1 + β2.

(4) Let α ≫ β > γ or α > β ≫ γ. Then α − β ≫ θ and β − γ > θ, or α − β > θ
and β − γ ≫ θ. By (3), α − γ = (α − β) + (β − γ) ≫ θ + θ = θ. So α ≫ γ.

(5) Let α ≫ θ and β ∈ E. It is clear that {α − β/n} → α ∈ P ◦ when n → ∞.
So there is n ∈ N such that α − β/n ∈ P ◦, i.e., α − β/n ≫ θ. It follows that
β/n ≪ α.

(6) Let α ≫ θ and β ≫ θ. By (5), there is n ∈ N such that β/n ≪ α. Put
γ = β/(n + 1), then γ ≫ θ by (1). By (2), γ ≪ β/n ≪ α and γ ≪ β/n 6 β. It
follows that γ ≪ α and γ ≪ β.

(7) Let ε ≫ θ. If θ 6 α 6 ε/n for each n ∈ N, then ε/n − α > θ, i.e.,
ε/n − α ∈ P . Let n → ∞, then {ε/n − α} → −α. Hence −α ∈ P because P is
closed by Definition 2.1(1). Note that α ∈ P . So α = θ by Definition 2.1(3). �

Definition 2.3. [6,12] Let (E, P ) be an ordered topological vector space and
let X be a nonempty set. A mapping d : X × X → E is called a TVS-cone metric
and (X, E, P, d) is called a TVS-cone metric space if the following is satisfied.

(1) d(x, y) > 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y ∈ X .
(3) d(x, y) 6 d(x, z) + d(z, y) for all x, y, z ∈ X .

Let (X, E, P, d) be a TVS-cone metric space. The following notations are used
in this paper, where x ∈ X , D ⊆ X and ε ≫ 0.

(1) B(x, ε) = {y ∈ X : d(x, y) ≪ ε}.
(2) S(D, ε) =

⋃
{B(x, ε) : x ∈ D}.
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Proposition 2.1. Let (X, E, P, d) be a TVS-cone metric space. Put B =
{B(x, ε) : x ∈ X and ε ≫ 0}; then B is a base for some topology on X.

Proof. It is clear that X =
⋃

B. Let B(x, α), B(y, β) ∈ B and z ∈ B(x, α) ∩
B(y, β). Since z ∈ B(x, α), d(x, z) ≪ α. Put γ1 = α − d(x, z); then γ1 ≫ 0. We
claim that B(z, γ1) ⊆ B(x, α). In fact, if u ∈ B(z, γ1), then d(z, u) ≪ γ1, hence
d(x, u) 6 d(x, z) + d(z, u) ≪ d(x, z) + γ1 = α, and so u ∈ B(x, α). Using the
same way, we can obtain that there is γ2 ≫ 0 such that B(z, γ2) ⊆ B(y, β). By
Lemma 2.1(6), there is γ ≫ 0 such that γ ≪ γ1 and γ ≪ γ2. Let v ∈ B(z, γ); then
d(z, v) ≪ γ ≪ γ1 and d(z, v) ≪ γ ≪ γ2, so v ∈ B(z, γ1) ∩ B(z, γ2) ⊆ B(x, α) ∩
B(y, β). This proves that B(z, γ) ⊆ B(x, α) ∩ B(y, β). Note that z ∈ B(z, γ) ∈ B.
Consequently, B is a base for a topology on X . In fact, put T = {U ⊆ X :
there is B′ ⊆ B such that U =

⋃
B′}; then T is a topology on X and B is a base

for T . �

Let (X, E, P, d) be a TVS-cone metric space. We always suppose that X is a
topological space endowed with the topology T described above.

Now we give Michael’s theorem for characterizations of paracompact spaces
and the classical Nagata–Smirnov metrization theorem.

Theorem 2.1. [13] A regular space X is paracompact if and only if each open

cover of X has a σ-discrete open refinement.

Theorem 2.2. [16, 18] A regular space X is metrizable if and only if X has

a σ-locally finite base.

3. A metrization theorem

Lemma 3.1. Let (X, E, P, d) be a TVS-cone metric space. Then X is regular.

Proof. Let x, y ∈ X such that x 6= y; then d(x, y) > θ. By Lemma 2.1(7),
there is ε ≫ θ such that “d(x, y) 6 ε” does not hold, and so “d(x, y) ≪ ε” does not
hold by Remark 2.2(4). It follows that x /∈ B(y, ε) and y /∈ B(x, ε). This proves
that X is a T1-space.

Let F be a closed subset of X and x ∈ X r F . Then there is ε ≫ θ such
that B(x, 2ε) ∩ F = ∅. Put U =

⋃
{B(y, ε) : y ∈ F}. It is clear that U is

an open subset of X containing F . We claim that U ∩ B(x, ε) = ∅, hence X is
regular. In fact, if not, then there are y ∈ F and z ∈ B(y, ε) ∩ B(x, ε). Thus,
d(x, y) 6 d(x, z) + d(z, y) ≪ ε + ε = 2ε, hence y ∈ B(x, 2ε). This contradicts
B(x, 2ε) ∩ F = ∅. �

Lemma 3.2. Let (X, E, P, d) be a TVS-cone metric space, x ∈ X and ε ≫ θ.

Then {B(x, ε/n) : n ∈ N} is a neighborhood base at x in X.

Proof. Let x ∈ U with U open in X . Then there is α ≫ θ such that x ∈
B(x, α) ⊆ U . By Lemma 2.1(5), there is k ∈ N such that ε/k ≪ α. It follows
that x ∈ B(x, ε/k) ⊆ B(x, α) ⊆ U . This proves that {B(x, ε/n) : n ∈ N} is a
neighborhood base at x in X . �
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Theorem 3.1. Let (X, E, P, d) be a TVS-cone metric space. Then X is a

paracompact space.

Proof. Let U be an open cover of X . By the well ordering principle, we
can assume that U = {Uα : α < κ}, where κ is an ordinal. Pick ε ≫ θ. For
each n ∈ N, α < κ, put Kn,α = Uα r (S(X r Uα, ε/n) ∪

⋃
{Uβ : β < α}) and

V =
⋃

{Un : n ∈ N}, where Un = {S(Kn,α, ε/(3n)) : α < κ}.

Claim 1: V is an open refinement of U .
It is clear that each element of V is an open subset of X . Let x ∈ X . Put

α0 = min{α < κ : x ∈ Uα}, then α0 < κ and x ∈ Uα0
r

⋃
{Uβ : β < α0}. By

Lemma 3.2, there is n0 ∈ N such that B(x, ε/n0) ⊆ Uα0
. If y ∈ X r Uα0

, then
y /∈ B(x, ε/n0), and so x /∈ B(y, ε/n0). Consequently, x /∈ S(X r Uα0

, ε/n0). It
follows that x ∈ Kn0,α0

⊂ S(Kn0,α0
, ε/(3n0)) ∈ Un0

. This shows that V is a cover
of X . Let n ∈ N and α < κ. If x ∈ S(Kn,α, ε/(3n)), then there is y ∈ Kn,α such
that x ∈ B(y, ε/(3n)). Thus, y /∈ S(X r Uα, ε/n) and y ∈ B(x, ε/(3n)). It follows
that x /∈ X r Uα, i.e., x ∈ Uα. This shows that S(Kn,α, ε/(3n)) ⊆ Uα for each
n ∈ N and α < κ. By the above, V is an open refinement of U .

Claim 2: Un is a discrete family in X for each n ∈ N.
Let x ∈ X . It is enough to prove that B(x, ε/(6n)) intersects at most one

member of Un. If not, then for some β < α < κ, we would have

B(x, ε/(6n)) ∩ S(Kn,β, ε/(3n)) 6= ∅,

B(x, ε/(6n)) ∩ S(Kn,α, ε/(3n)) 6= ∅.

Pick y1 ∈ B(x, ε/(6n)) ∩ S(Kn,β, ε/(3n)) and y2 ∈ B(x, ε/(6n)) ∩ S(Kn,α, ε/(3n)).
Then there are z1 ∈ Kn,β and z2 ∈ Kn,α such that y1 ∈ B(z1, ε/(3n)) and
y2 ∈ B(z2, ε/(3n)), hence d(z1, y1) ≪ ε/(3n) and d(z2, y2) ≪ ε/(3n). Note that
d(y1, y2) 6 d(y1, x)+d(y2, x) ≪ ε/(3n). It follows d(z1, z2) 6 d(z1, y1)+d(y1, y2)+
d(y2, z2) ≪ ε/n. On the other hand, Kn,α ⊆ X r

⋃
{Uγ : γ < α} ⊆ X r Uβ, so

S(Kn,α, ε/n) ⊆ S(X r Uβ, ε/n). Since z1 ∈ Kn,β ⊆ Uβ r S(X r Uβ , ε/n) ⊆ Uβ r

S(Kn,α, ε/n), we have z1 /∈ S(Kn,α, ε/n). Note that z2 ∈ Kn,α. So z1 /∈ B(z2, ε/n).
It follows that “d(z1, z2) ≪ ε/n” does not hold, a contradiction. So B(x, ε/(6n))
intersects at most one member of Un.

By the above claims, V is a σ-discrete open refinement of U . Consequently,
X is a paracompact space by Lemma 3.1 and Theorem 2.1. �

Theorem 3.2. Let (X, E, P, d) be a TVS-cone metric space. Then X is metriz-

able.

Proof. Pick an ε ≫ θ. For each x ∈ X , put B(x) = {B(x, ε/n) : n ∈ N};
then B(x) is a neighborhood base at x in X by Lemma 3.2. For each n ∈ N, put
Un = {B(x, ε/n) : x ∈ X}; then Un is an open cover of X . By Theorem 3.1,
X is paracompact, and so Un has a locally finite open refinement Bn. Put B =⋃

{Bn : n ∈ N}; then B is a σ-locally finite family consisting of open subsets
of X . Note that X is regular. By Theorem 2.2, it suffices to prove that B is a
base for X . Let u ∈ U with U open in X . Since B(u) is a neighborhood base at
u in X , there is n0 ∈ N such that B(u, ε/n0) ⊆ U . On the other hand, there is
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V ∈ B2n0
⊆ B such that u ∈ V since B2n0

is a cover of X . Note that B2n0
is a

refinement of U2n0
. So, there is y ∈ X such that u ∈ V ⊆ B(y, ε/(2n0)). It follows

that y ∈ B(u, ε/(2n0)), hence B(y, ε/(2n0)) ⊆ B(u, ε/n0). Consequently, V ∈ B

and u ∈ V ⊆ B(y, ε/(2n0)) ⊆ B(u, ε/n0) ⊆ U . So B is a base for X . �

4. An application

The following TVS-cone expansive homeomorphism is a natural generalization
of expansive homeomorphism. As an application of Theorem 3.2, in this section,
we prove that TVS-cone expansive homeomorphism and expansive homeomorphism
are equivalent.

Definition 4.1. Let f : X → X be a homeomorphism of a space X . f is
called TVS-cone expansive if there are a TVS-cone metric d on X and ε ≫ θ such
that x, y ∈ X with x 6= y implies d(fn(x), fn(y)) ≫ ε for some n ∈ Z. Here, ε is
called an expansive cone-constant for f .

Remark 4.1. (1) If “TVS-cone metric”, ≫ and θ in Definition 4.1 are replaced
by “metric”, > and 0’ respectively, then the definition of expansive homeomorphism
of a space X is obtained [2].

(2) It is clear that every expansive homeomorphism is TVS-cone expansive.

Definition 4.2. [11] Let f : X → X be a homeomorphism of a space X .
A finite open cover U of X is called a generator for f if for every bisequence
{An : n ∈ Z} consisting of members of U ,

⋂
{f−n(Ān) : n ∈ Z} is at most one

point.

Lemma 4.1. Let f be a homeomorphism of a compact space X. If f is TVS-

cone expansive, then f has a generator and X is TVS-cone metrizable.

Proof. Let f be TVS-cone expansive. Then there are a TVS-cone metric d
on X and an expansive cone-constant ε ≫ θ for f . So X is TVS-cone metrizable.
Put U = {B(x, ε/2) : x ∈ X}. Then U is an open cover of X and has a finite
subcover V of U . We claim that V is a generator for f . In fact, if not, then there
are a bisequence {An : n ∈ Z} consisting of members of V and x, y ∈

⋂
{f−n(Ān) :

n ∈ Z} with x 6= y. Note that ε is an expansive cone-constant for f . So there is
k ∈ Z such that d(fk(x), fk(y)) ≫ ε. Put η = d(fk(x), fk(y)) − ε, then η ≫ θ.

Since x, y ∈ f−k(Āk), then fk(x), fk(y) ∈ Ān = B(z, ε/2) for some z ∈ X . Note
that B(fk(x), η/2) ∩ B(z, ε/2) 6= ∅, we pick u ∈ B(fk(x), η/2) ∩ B(z, ε/2); then
d(fk(x), z) 6 d(fk(x), u) + d(u, z) ≪ η/2 + ε/2. Similarly, d(fk(y), z) ≪ η/2 + ε/2.
Thus, d(fk(x), fk(y)) 6 d(fk(x), z) + d(fk(y), z) ≪ η + ε = d(fk(x), fk(y)). It
follows that d(fk(x), fk(y)) − d(fk(x), fk(y)) ≫ θ, i.e., θ = d(fk(x), fk(y)) −
d(fk(x), fk(y)) ∈ P ◦. This contradicts Remark 2.2. �

Lemma 4.2. [11] Let f be a homeomorphism of a compact space X. Then f
is expansive if and only if f has a generator and X is metrizable.

Theorem 4.1. Let f be a homeomorphism of a compact space X. Then the

following are equivalent.

(1) f is expansive. (2) f is TVS-cone expansive.
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Proof. (1) ⇒ (2): It holds by Remark 4.1(2).
(2) ⇒ (1): Let f be TVS-cone expansive. Then f has a generator and X is

TVS-cone metrizable by Lemma 4.1. By Theorem 3.2, X is metrizable. It follows
that f is expansive by Lemma 4.2. �

5. A concrete metric on TVS-cone metric spaces

In this section, for a TVS-cone metric space, we construct a concrete metric
topology coinciding with the TVS-cone metric topology, which came from the report
of the referees.

Theorem 5.1. Let (X, E, P, d) be a TVS-cone metric space. Let ε0 ≫ θ.

Define D : X × X → R
∗ by D(x, y) = inf{r ∈ R

∗ : d(x, y) ≪ rε0} for all x, y ∈ X.

Then D is a metric on X.

Proof. (1) Let x ∈ X . For any r ∈ R
+, d(x, x) = θ ≪ rε0, so D(x, x) =

inf{r ∈ R
∗ : d(x, x) ≪ rε0} = inf R+ = 0. Let x, y ∈ X and D(x, y) = 0. If

d(x, y) 6= θ, then there is r0 ∈ R
+ such that d(x, y) 6 r0ε0 does not hold by

Lemma 2.1(7). It follows that d(x, y) ≪ rε0 does not hold for all r < r0. Thus,
D(x, y) = inf{r ∈ R

∗ : d(x, x) ≪ rε0} > r0. This contradicts D(x, y) = 0, so
d(x, y) = 0. Consequently, x = y.

(2) It is clear that D(x, y) = D(y, x) for all x, y ∈ X .
(3) Let x, y, z ∈ X . Then d(x, y) 6 d(x, z) + d(z, y). So

D(x, y) = inf{r ∈ R
∗ : d(x, y) ≪ rε0} 6 inf{r ∈ R

∗ : d(x, z) + d(z, y) ≪ rε0}

6 inf{r ∈ R
∗ : d(x, z) ≪ rε0} + inf{r ∈ R

∗ : d(z, y) ≪ rε0}

= D(x, z) + D(z, y).

By (1), (2), (3), D is a metric on X . �

Theorem 5.2. Let (X, E, P, d) be a TVS-cone metric space, T be the topology

on X described in Proposition 2.1 and D be the metric described above. For x ∈ X
and r ∈ R

+, put BD(x, r) = {y ∈ X : D(x, y) < r}, and F = {BD(x, r) :
x ∈ X and r ∈ R

+}; then F is a base for the topology T .

Proof. Let B(x, ε) ∈ B, where B is the base for the topology T described
in Proposition 2.1. By Lemma 2.1(5), there is n ∈ N such that ε0/n ≪ ε. We
prove that BD(x, 1/n) ⊆ B(x, ε). Let y ∈ BD(x, 1/n). Then D(x, y) < 1/n, i.e.,
inf{t ∈ R

∗ : d(x, y) ≪ tε0} < 1/n. If d(x, y) ≪ ε0/n does not hold, then d(x, y) ≪
tε0 does not hold for all t < 1/n. This results that D(x, y) = inf{t ∈ R

∗ : d(x, y) ≪
tε0} > 1/n, which contradicts D(x, y) < 1/n. This shows that d(x, y) ≪ ε0/n < ε.
So y ∈ B(x, ε). Thus, we proved that BD(x, 1/n) ⊆ B(x, ε).

On the other hand, let BD(x, r0) ∈ F . Then B(x, r0ε0) ⊆ BD(x, r0). In fact,
if y ∈ B(x, r0ε0), then d(x, y) ≪ r0ε0. It follows that D(x, y) = inf{r ∈ R

∗ :
d(x, y) ≪ rε0} 6 r0, so y ∈ BD(x, r0). This proves that B(x, r0ε0) ⊆ BD(x, r0).
Consequently, F is a base for the topology T . �
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Remark 5.1. Let (X, E, P, d) be a TVS-cone metric space and D be the metric
described in Theorem 5.1. By Theorem 5.2, the topology TD generated by D
coincides with the topology T generated by d.
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