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Abstract. We introduce the notion of an ls-π-Ponomarev-system to give
necessary and sufficient conditions for f : (M, M0) → X to be a strong wc-
mapping (wc-mapping, wk-mapping) where M is a locally separable metric
space. Then, we systematically get characterizations of weakly continuous
strong wc-images (wc-images, wk-images) of locally separable metric spaces
by means of certain networks. Also, we give counterexamples to sharpen some
results on images of locally separable metric spaces in the literature.

1. Introduction

Characterizing images of metric spaces by spaces with certain networks is an
interesting work in general topology [17,25]. In this field, the notion of a k-network
plays an important place [27,28]. There are many modifications of k-networks such
as cs-networks, cs∗-networks, wcs∗-networks, sn-networks, so-networks, etc. These
notions are used to characterize continuous images of metric spaces with certain
covering-properties [2,5,7,10,19,21,26–29]. In 2002, Lin [19] posed the following
problem.

Problem. [19] Find a nice mapping such that a space with a point-countable
wcs∗-network can be characterized by the image of a metric space under this map-
ping.

This problem has been studied by some authors in Theory of k-networks. The
difficulty in solving this problem is that each member P of a wcs∗-network P may
not contain the limit point of certain sequence which is frequently in P . Around this
problem, Cai and Li [5] established a relation between spaces with point-countable
wcs∗-networks of certain properties and images of locally separable metric spaces;
Lin and Li [20] introduced the concepts of wks-mappings and wcs-mappings, and
them to characterize spaces with point-countable k-networks. Their main result is
as follows.
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Theorem 1.1. [20, Lemma 14] (1) A space with a point-countable k-network
is a weakly continuous wks-image of a metric space.
(2) A space with point-countable wcs∗-network is a weakly continuous wcs-image
of a metric space.

By this result, Lin and Li characterized spaces with point-countable wcs∗-
network by weakly continuous wcs-images of metric spaces in [20, Theorem 15],
which give a solution to Problem 1.

By the above, it is natural to ask the following questions.

Questions. (1) What are characterizations of wks-images and wcs-images of
locally separable metric spaces by spaces with certain networks?

(2) Can “weakly continuous” in Theorem 1.1 be replaced by “continuous”?

We introduce the ls-π-Ponomarev-system (f, M, M0, X, P) to give necessary
and sufficient conditions for f : (M, M0) → X to be a strong wc-mapping (wc-
mapping, wk-mapping) where M is a locally separable metric space. Then, we
systematically get characterizations of weakly continuous strong wc-images (wc-
images, wk-images) of locally separable metric spaces by means of certain networks,
which implies an answer to Question (1). Also, we give counterexamples to sharpen
some results on images of locally separable metric spaces in [5, 20], which give a
negative answer for Question (2) and some more.

All spaces are Hausdorff, all mappings are onto, N denotes the set of all natural
numbers, ω = N ∪ {0}, and a convergent sequence includes its limit point. Let
f : X → Y be a mapping, P a family of subsets of X , and K a subset of X ; we
write f(P) =

{

f(P ) : P ∈ P
}

,
⋃

P =
⋃

{

P : P ∈ P
}

,
⋂

P =
⋂

{

P : P ∈ P
}

,

P|K =
{

P ∩ K : P ∈ P
}

. For terms not defined here, please refer to [11] and [28].

2. The π-Ponomarev-system and images

of locally separable metric spaces

First, we recall some basic notions. Let S = {xn : n ∈ N} be a sequence
converging to x in X , and P be a subset of X . We say that S (or S ∪ {x}) is
eventually in P [28], if there exists n0 ∈ N such that {xn : n ≥ n0} ∪ {x} ⊂ P .
Also, S (or S∪{x}) is frequently in P [28] if there exists a subsequence {xkn

: n ∈ N}
of {xn : n ∈ N} such that {xkn

: n ∈ N} ∪ {x} ⊂ P .
Now, we present the notion of a network and their modifications. Let P be

a family of subsets of a space X , a point x ∈ X , and K be a subset of X . P is
a network at x in X [23], if x ∈ P for every P ∈ P , and whenever x ∈ U with
U open in X , then there exists P ∈ P such that x ∈ P ⊂ U . P is a network for
X [23], if for each x ∈ X , there exists P(x) ⊂ P such that P(x) is a network at
x in X . P is a strong network for X [9] if for each x ∈ X , there exists P(x) ⊂ P
such that P(x) is a countable network at x in X . P is a k-network for X [24],
if for each compact subset K of X and K ⊂ U with U open in X , there exists
a finite F ⊂ P such that K ⊂

⋃

F ⊂ U . P is a cs-network for X [16] (resp.,
cs∗-network for X [12]), if for each sequence S converging to x ∈ U with U open in
X , there exists P ∈ P such that S ∪ {x} is eventually (resp., frequently) in P ⊂ U .
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P is a wcs-network (resp., wcs∗-network) for K in X , if for each sequence S in K
converging to x ∈ U with U open in X , there exists P ∈ P such that S is eventually
(resp., frequently) in P ⊂ U . If K = X , then P is a wcs-network for X (resp.,
wcs∗-network for X [22]). P is a strong wcs-network (resp., strong wcs∗-network)
for X , if for each convergent sequence S in X , there exists PS ⊂ P such that PS

is a countable wcs-network (resp., wcs∗-network) for S in X . P is a π-network at
x in X [20], if for each neighborhood U of x, there exists P ∈ P such that P ⊂ U .
P is a strong π-network for X , if for each x ∈ X , there exists P(x) ⊂ P such that
P(x) is a countable π-network at x in X .

Remark 2.1. (1) If P is a strong wcs∗-network for X , then for each x ∈ X ,
there exists P(x) ⊂ P such that P(x) is a countable π-network at x in X and P(x)
has the finite intersection property.

(2) If P is a network at x in X , then P is a π-network at x in X and x =
⋂

P .
It implies that P has the finite intersection property.

Let f : X → Y be a mapping, and X0 be a subspace of X . f is an s-mapping [3]
(resp., a compact mapping [4]), if f is continuous and for each y ∈ Y , f−1(y) is
a separable (resp., compact) subset of X . f is continuous about X0 [30], if for
each x ∈ X and each neighborhood U of f(x) in Y there exists a neighborhood
V of x in X such that f(V ∩ X0) ⊂ U . f : (X, X0) → Y is a ws-mapping [20],
if the restriction f0 = f |X0

: X0 → Y is an s-mapping and f is continuous about
X0. f is a semi-quotient mapping [20], if for each subset T of Y , T is closed

when and only when f−1
0 (T ) ⊂ f−1(T ). f is a weakly continuous mapping [18], if

f−1(U) ⊂ Int[f−1(U)] for each open subset U of Y .

Remark 2.2. (1) Every continuous mapping is a weakly continuous mapping.
(2) There exists a weakly continuous mapping which is not continuous, see [18,

Example 3].

Lemma 2.1. [20, Lemma 1] Suppose that f : X → Y and X0 ⊂ X. Then the
following statements are equivalent.

(1) f is continuous about X0.
(2) If a net {xd}d∈D in X0 converges to a point x in X, then a net {f(xd)}d∈D

converges to f(x) in Y .

(3) If T is a subset of Y , then f−1
0 (T ) ⊂ f−1(T ), where f0 = f |X0

.

Remark 2.3. It follows from Lemma 2.1 that a weakly continuous mapping
f : (X, X0) → Y preserves the convergence of a sequence {xn : n ∈ N} ⊂ X0 which
converges to x ∈ X .

Some properties of weakly continuous mappings are shown in the following
lemma.

Lemma 2.2. [20] Let f : X → Y be a mapping.

(1) f is weakly continuous if and only if for each x ∈ X and each neighborhood
U of f(x) in Y , there exists a neighborhood V of x in X with f(V ) ⊂ U .

(2) If f is continuous about X0, then the restriction f |
X0

is weakly continuous.
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Now we recall some notions of mappings in [20]. Let f : (X, X0) → Y be a
mapping which is continuous about X0. f : (X, X0) → Y is a wk-mapping [20]
if for each compact subset K of Y and for each sequence T in K, there exists a
sequence S in X0 such that S has an accumulation in X and f(S) is a subsequence
of T . f : (X, X0) → Y is a wc-mapping [20] if for each convergent sequence T
in Y , there exists a sequence S in X0 such that S has an accumulation x in X
and f(S ∪ {x}) is a subsequence of T . f : (X, X0) → Y is a wcs-mapping (resp.,
wks-mapping) [20] if it is a ws-mapping and a wc-mapping (resp., wk-mapping).

In the same way, we call f : (X, X0) → Y is a strong wc-mapping if for each
convergent sequence T in Y , there exists a sequence S in X0 such that S has an
accumulation x in X and f(S∪{x}) = T . f : (X, X0) → Y is a strong wcs-mapping
if it is a ws-mapping and a strong wc-mapping.

Let P be a family of subsets of space X . P is point-countable (resp., point-
finite) [15], if for each x ∈ X , {P ∈ P : x ∈ P } is countable (resp., finite).

It is similar in spirit to [20, Lemma 13] that the following lemma holds.

Lemma 2.3. Let B be a point-countable base for a space X.

(1) If f : (X, X0) → Y is a wks-mapping, then f(B|X0
) is a point-countable

k-network for Y .
(2) If f : (X, X0) → Y is a wcs-mapping, then f(B|X0

) is a point-countable
wcs∗-network for Y .

(3) If f : (X, X0) → Y is a strong wcs-mapping, then f(B|X0
) is a point-

countable wcs-network for Y .

Let P be a strong network for a space X . We may assume that P is closed
under finite intersections. Put P = {Pα : α ∈ A}. For every n ∈ N, put An = A
and endow An with a discrete topology. Put

M =
{

a = (αn) ∈
∏

n∈N
An : {Pαn

: n ∈ N} forms a network at some xa in X
}

.

Then M , which is a subspace of the product space
∏

n∈N
An, is a metric space,

xa is unique, and xa =
⋂

n∈N
Pαn

for every a ∈ M . We define f : M → X by setting
f(a) = xa for every a ∈ M . The system (f, M, X, P) is called a Ponomarev-system
[13, Definition 2.2]. This notion plays an important role in characterizing images of
metric spaces by spaces with certain networks. In the spirit of Ponomarev-system
(f, M, X, P) and the proof of [20, Lemma 14], we introduce the π-Ponomarev-
system (f, M, M0, X, P) as follows.

Let P be a strong wcs∗-network for a space X . Assume that P is closed under
finite intersections. Put P = {Pα : α ∈ A}. For every n ∈ N, put An = A and
endow An with a discrete metric. Put

M =
{

a = (αn) ∈
∏

n∈N
An : {Pαn

: n ∈ N} has the finite intersection property

and it forms a π-network at some xa in X
}

.

Then M , which is a subspace of the product space
∏

n∈N
An, is a metric space,

xa is unique. We define f : M → X by setting f(a) = xa for every a ∈ M . Put

M0 =
{

a = (αn) ∈
∏

n∈N
An : {Pαn

: n ∈ N} forms a network at some xa in X
}

.
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The system (f, M, M0, X, P) is called a π-Ponomarev-system.

Remark 2.4. For a π-Ponomarev-system (f, M, M0, X, P), notations in the
above definition are used in what follows unless otherwise specified. Moreover, we
have

(1) M0 ⊂ M .
(2) (f, M0, X, P) is a Ponomarev-system, then xa =

⋂

n∈N
Pαn

and f : M0 →
X is continuous and onto.

For a π-Ponomarev-system (f, M, M0, X, P), we have the following.

Lemma 2.4. Let (f, M, M0, X, P) be a π-Ponomarev-system. Then the follow-
ing statements hold.

(1) f : M → X is weakly continuous.
(2) f : (M, M0) → X is continuous about M0.

Proof. (1) Let a = (αn) ∈ M and U be an open neighborhood of f(a) in X .
Then there exists k ∈ N such that Pαk

⊂ U . Put V = {b = (βn) ∈ M : βk = αk}.
Then V is an open neighborhood of a in M . We shall prove that f(V ∩M0) ⊂ U . In
fact, if b = (βn) ∈ V ∩ M0, then βk = αk and f(b) ∈

⋂

n∈N
Pβn

⊂ Pβk
= Pαk

⊂ U.

(2) Using the notations in (1) again, we shall prove that f(V ) ⊂ U ; then f is
weakly continuous by Lemma 2.2. In fact, for each c = (γn) ∈ V and each open
neighborhood W of f(c) in X , we have that Pγi

⊂ W for some i ∈ N. So

W ∩ U ⊃ Pγi
∩ Pαk

= Pγi
∩ Pγk

6= ∅.

It implies that f(c) ∈ U . �

The next technical lemma plays an important role in the arguments.

Lemma 2.5. Let (f, M, M0, X, P) be a π-Ponomarev-system. For each a =
(αn) ∈ M0 and n ∈ N, put

Ba,n =
{

b = (βi) ∈ M0 : βi = αi if i 6 n
}

,

Ba = {Ba,n : n ∈ N}, Bn = {Ba,n : a ∈ M0}, B =
⋃

{Bn : n ∈ N}.

Then the following statements hold.

(1) Ba is a base at a in M0, and Bn is discrete.
(2) f(Ba,n) =

⋂n

i=1 Pαi
, and f(B) = P.

Proof. (1). This is clear.
(2). For each n ∈ N, let x ∈ f(Ba,n). Then x = f(b) for some b = (βi) ∈ Ba,n.

This implies that x =
⋂

i∈N
Pβi

⊂
⋂n

i=1 Pβi
=

⋂n

i=1 Pαi
. Then f(Ba,n) ⊂

⋂n

i=1 Pαi
.

Conversely, let x ∈
⋂n

i=1 Pαi
, where x = f(b) for some b = (βi) ∈ M . For each

i ∈ N, there exists γn+i ∈ An+i such that γn+i = βi. Put c = (γi), where γi = αi if
i 6 n. Then we get c ∈ Ba,n and f(c) = x. This implies that

⋂n
i=1 Pαi

⊂ f(Ba,n).
By above inclusions, we get f(Ba,n) =

⋂n
i=1 Pαi

. It follows from P being closed
under finite intersections that f(B) = P . �

By Remark 2.4.(2) and [13, Proposition 2.8], we have the following proposition.
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Proposition 2.1. Let (f, M, M0, X, P) be a π-Ponomarev-system. Then f :
M0 → X is an s-mapping (resp., a compact mapping) if and only if P is point-
countable (resp., point-finite).

In [13,14], the necessary and sufficient conditions for f to be an s-mapping with
covering-properties have been obtained in a Ponomarev-system (f, M, X, P) where
P is some network except for a point-countable wcs∗-network (k-network, wcs-
network). The reason of this exception is that each member P of a wcs∗-network
(k-network, wcs-network) P may not contain the limit point of certain sequence
which is frequently in P , then the mapping f may not be a covering-mapping.
In hat follows, by means of wcs-network (wcs∗-network, k-network), we obtain the
necessary and sufficient conditions for f : (M, M0) → X to be a strong wc-mapping
(wc-mapping, wk-mapping) in a π-Ponomarev-system (f, M, M0, X, P).

Lemma 2.6. [8, Lemma 2.6] Let P be a cs-network for X and S be a convergent
sequence such that S ⊂ U with U open in X. Then there exists F ⊂ P satisfying

(1) F is finite.
(2) For each F ∈ F , ∅ 6= F ∩ S ⊂ F ⊂ U .
(3) For each x ∈ S, there exists a unique F ∈ F such that x ∈ F .
(4) If F ∈ F contains the limit point of S, then S − F is finite.

Such an F is called to have property cs(S, U).

Theorem 2.1. Let (f, M, M0, X, P) be a π-Ponomarev-system. Then the fol-
lowing statements hold.

(1) f : (M, M0) → X is a strong wc-mapping if and only if P is a strong
wcs-network for X.

(2) f : (M, M0) → X is a wc-mapping if and only if P is a strong wcs∗-
network for X.

(3) f : (M, M0) → X is a wk-mapping if and only if P is a strong k-network
for X.

Proof. (1) Necessity. Let f be a strong wc-mapping. For each convergent
sequence S of X , there exists a sequence L of M0 which has an accumulation a0

in M and f(L ∪ {a0}) = S. By using notations in Lemma 2.5 again, we have that
B is a base for M0. In spirit of the proof of Lemma 2.3(3), P = f(B) is a strong
wcs-network for X .

Sufficiency. Let P be a strong wcs-network for X . We shall prove that f :
(M, M0) → X is a strong wc-mapping by the following two claims.

Claim 1. f : (M, M0) → X is continuous about M0.
It follows from Lemma 2.4.
Claim 2. f : (M, M0) → X is a strong wc-mapping.
For each convergent sequence S = {xm : m ∈ ω} converging to x0 in X . We

may assume that xn 6= xm for every n 6= m. Since P is a strong wcs-network for
X , there exists PS ⊂ P such that PS is a countable wcs-network for S in X . Put
P0

S =
{

P ∈ PS : S is eventually in P
}

. Then P0
S is countable. Pick some P0 ∈ P0

S ,
we have that S − P0 is finite. For each x ∈ S − P0, there exists Px ∈ PS such that
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Px ⊂ X − (S − {x}). Put

F =
{

Px : x ∈ S − P0
}

∪
{

P0
}

, F0 =
{

Px : x ∈ S − P0
}

∪
{

P0 ∪ {x0}
}

.

Then F0 has the property cs(S, X) (see Lemma 2.6). It implies that
{

F ⊂ PS : F0 has property cs(S, X)
}

6= ∅.

So we can put
{

F ⊂ PS : F0 has property cs(S, X)
}

=
{

Fn : n ∈ N
}

.
For each n ∈ N, put Fn = {Pα : α ∈ Bn}, where Bn is a finite subset of An.

For each n ∈ N and m ∈ N, by the definition of property cs(S, X), there exists
unique αm,n ∈ Bn such that xm ∈ Pαm,n

∈ Fn, and unique α0,n ∈ An such that S
is eventually in Pα0,n

. Put am = (αm,n) for every m ∈ ω, then am ∈ M0 for every
m ∈ N and a0 ∈ M . We shall prove that am → a0 in M . In fact, for each n ∈ N,
by the definition of property cs(S, X), there exists kn ∈ N such that xm ∈ Pα0,n

for
every m ≥ kn. Then αm,n = α0,n for every m ≥ kn. It implies that am → a0 in M .
To complete the proof, we need only to prove f(am) = xm for every m ∈ N. Let
xm ∈ U with U open in X . Then S − {xm} is a convergent sequence converging to
x0 in X and S − {xm} ⊂ X − {xm} where X − {xm} is open in X . By Lemma 2.6,
there exists F ⊂ PS such that F0 has the property cs(S − {xm}, X − {xm}). Since
U − (S − {xm}) is an open neighborhood of xm in X , there exists Pm ∈ PS such
that xm ∈ Pm ⊂ U − (S − {xm}). Then F0 ∪ {Pm} has the property cs(S, X).
There exists k ∈ N such that F0 ∪ {Pm} = F0

k ; it means F ∪ {Pm} = Fk. Then
xm ∈ Pαm,k

= Pm ⊂ U . It implies that {Pαm,n
: n ∈ N} forms a network at xm in

X , so f(am) = xm for every m ∈ N.

(2) Same as the proof of (1).

(3) Necessity. Same as the necessity of (1).
Sufficiency. By the sufficiency of (1), we only need to prove that f is a wk-

mapping. For a compact subset K of X and each sequence T = {xn : n ∈ N} in K,
we can assume that the sequence {xn : n ∈ N} converges to a point x ∈ K − {xn :
n ∈ N} by [20, Lemma 12]. It follows from the proof of Claim 2 in the sufficiency
of (1) above, there exists a sequence S in M such that S converges to x in M and
f(S ∪ {x}) is a subsequence of T . Then f is a wk-mapping. �

From Proposition 2.1 and Theorem 2.1, we have the following corollary.

Corollary 2.1. Let (f, M, M0, X, P) be a π-Ponomarev-system. Then the
following statements hold.

(1) f : (M, M0) → X is a strong wcs-mapping if and only if P is a point-
countable wcs-network for X.

(2) f : (M, M0) → X is a wcs-mapping if and only if P is a point-countable
wcs∗-network for X.

(3) f : (M, M0) → X is a wks-mapping if and only if P is a point-countable
k-network for X.

In [20, Lemma 14], Lin and Li proved that spaces with point-countable k-
networks (resp., wcs∗-network) are weakly continuous wks-(resp., wcs-)images of
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metric spaces. By using their method, we characterize the strong wcs-image of a
metric space by a space with a point-countable wcs-network as follows.

Proposition 2.2. A space has a point-countable wcs-network if and only if it
is a weakly continuous strong wcs-image of a metric space.

In the following, we prove that “weakly continuous” in the result of Lin and
Li, and Proposition 2.2 can not be replaced by “continuous”.

Lemma 2.7. [1, Lemma 12(3)] Let f : X → Y be a sequentially-quotient
mapping. If P is a cs∗-network for X, then f(P) is a cs∗-network for Y .

Lemma 2.8. Let f : (X, X0) → Y be a weakly continuous wcs-mapping and X
be a metric space. If f is continuous, then Y has a point-countable cs∗-network.

Proof. Let B be a σ-locally finite base of X . Then C = B|
X0

is a σ-

locally finite base of X0. Since f : (X, X0) → Y is a wcs-mapping, f |
X0

is a

sequentially-quotient mapping. Put P = f |
X0

(B|
X0

), then P is a cs∗-network for

Y by Lemma 2.7. On the other hand, B|
X0

= B|X0
and f |X0

is an s-mapping, then
P is point-countable. It implies that P is a point-countable cs∗-network for Y . �

Example 2.1. There exists a space which has a point-countable wcs-network
and k-network, and has not any point-countable cs∗-network.

Proof. Let Sω1
be the quotient space of the sum of uncountably many con-

vergent sequences Sλ = {xλ,n : n ∈ ω}, λ ∈ Λ, by identifying all limit points
xλ,0 to a point x0. Then Sω1

does not have any point-countable cs∗-network. Put
P =

{

{x0}
}

∪
{

{xλ,i : i ≥ n} : n ∈ N, λ ∈ Λ
}

. We have that P is a point-countable
wcs-network and k-network for X . �

Remark 2.5. By Example 2.1, Sω1
does not have any point-countable cs∗-

network. Then Sω1
is not any continuous wcs-image of a metric space by Lemma 2.8.

Note that Sω1
has a point-countable wcs-network, then it has a point-countable

wcs∗-network. Also, Sω1
has a point-countable k-network. Therefore, “weakly con-

tinuous” in the result of Lin and Li, and Proposition 2.2 can not be replaced by
“continuous”.

3. Further results on images of locally separable metric spaces

A space X is an ℵ0-space if X is regular and it has a countable cs-network [23].
Cai and Li [5] established the mapping relation between a space with a point-
countable wcs∗-network and a locally separable metric space. The main result is
as follows.

Proposition 3.1. [5, Theorem 2.6] If a space X has a point-countable wcs∗-
network P and the closure of each element of P is an ℵ0-subspace, then X is the
pseudo-sequence-covering image of a locally separable metric space.

By this result, it is natural to ask whether the inverse implication is true? The
answer is negative by the following Example 3.1. Note that every sequence-covering
mapping is a pseudo-sequence-covering mapping.
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Example 3.1. There exists a sequence-covering image of a locally separable
metric space which does not have any point-countable wcs∗-network.

Proof. Consider the butterfly space Y of McAuley [23, page 999], which is
defined as follows: Let Y be the upper half-plane, and let A ⊂ Y denote the x-axis.
Points in Y − A have ordinary plane neighborhoods. A base for the neighborhoods
of a point p ∈ A consists of all sets Nε(p) where Nε(p) consists of p together with
all points q ∈ Y having distance < ε from p and lying underneath the union of the
two rays in Y which emanate from p and have slopes ε and −ε, respectively. Such
an Nε(p) is called a butterfly neighborhood of p.

It follows from [23, Example 12.1] that Y is regular and Fréchet, and not an
ℵ0-space. By [15, Theorem 5.2] and [28, Remark 1], Y has not any point-countable
wcs∗-network. On the other hand, Y is a sequence-covering image of a metric space
by [6, Theorem 5]. �

In [1], an ls-Ponomarev-system (f, M, X, {Pλ}) was introduced to give neces-
sary and sufficient conditions for f to be an s-mapping with covering-properties
from a locally separable metric space M onto a space X with a double cover.

Let {Xλ : λ ∈ Λ} be a cover for a space X such that each Xλ has a network
Pλ which is closed under finite intersections. {(Xλ, Pλ) : λ ∈ Λ} is a double cover
for X [1], if each Pλ is countable. {(Xλ, Pλ) : λ ∈ Λ} is point-countable [1] (resp.,
point-finite), if {Xλ : λ ∈ Λ} is point-countable (resp., point-finite).

Let {(Xλ, Pλ) : λ ∈ Λ} be a double cover for a space X and (fλ, Mλ, Xλ, Pλ)
be a Ponomarev-system for every λ ∈ Λ. Since Pλ is countable, Mλ is a separable
metric space. Put M =

⊕

λ∈Λ Mλ and f =
⊕

λ∈Λ fλ. Then M is a locally separable
metric space and f is a mapping from M onto X . The system (f, M, X, {Pλ}) is
an ls-Ponomarev-system [1].

Now, we introduce a notion of an ls-π-Ponomarev-system as follows. Let
{(Xλ, Pλ) : λ ∈ Λ} be a double cover for X and (fλ, Mλ, Mλ,0, Xλ, Pλ) be the
π-Ponomarev-system for every λ ∈ Λ. Since Pλ is countable, Mλ is a separable
metric space. Put M =

⊕

λ∈Λ Mλ, M0 =
⊕

λ∈Λ Mλ,0, f =
⊕

λ∈Λ fλV . Then M
is a locally separable metric space and f is a continuous mapping from M onto X .
The system (f, M, M0, X, {Pλ}) is called an ls-π-Ponomarev-system.

Remark 3.1. For an ls-π-Ponomarev-system (f, M, M0, X, {Pλ}), notations
in the above definition are used in what follows next unless otherwise specified.
Moreover, we have

(1) M0 ⊂ M . (2) Xλ = f(Mλ,0) = f(Mλ) for every λ ∈ Λ.
(3) (f, M0, X, {Pλ}) is an ls-Ponomarev-system, then f : M0 → X is continu-

ous and onto.

By Lemma 2.4, we have the following lemma.

Lemma 3.1. Let (f, M, M0, X, {Pλ}) be an ls-π-Ponomarev-system. Then the
following statements hold.

(1) f : M → X is weakly continuous.
(2) f : (M, M0) → X is continuous about M0.
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It follows from Remark 3.1 and [1, Theorem 2.14] that the following result
holds.

Proposition 3.2. Suppose that (f, M, M0, X, {Pλ}) is an ls-π-Ponomarev-
system. Then f : M0 → X is an s-mapping (resp., a compact mapping) if and only
if {(Xλ, Pλ) : λ ∈ Λ} is point-countable (resp., point-finite).

We give a necessary and sufficient condition for the mapping f : (M, M0) → X
to be a strong wc-mapping in an ls-π-Ponomarev-system (f, M, M0, X, {Pλ}).

Proposition 3.3. Suppose that (f, M, M0, X, {Pλ}) is an ls-π-Ponomarev-
system. Then following statements are equivalent.

(1) f : (M, M0) → X is a strong wc-mapping.
(2) For each sequence S converging to x in X, there exists λ ∈ Λ such that

(a) S ∪ {x} is eventually in Xλ.
(b) For each open neighborhood U of x in Xλ, there exists P ∈ Pλ such

that S ∩ Xλ is eventually in P ⊂ U .

Proof. (1) ⇒ (2). For each sequence S converging to x in X , we need only
to prove the following two claims. Assume that x /∈ S, if necessary.

Claim 1. There exists λ ∈ Λ such that S ∪ {x} is eventually in Xλ.
Since f : (M, M0) → X is a strong wc-mapping, there exists a sequence L

converging to a in M such that f(L) = S and L ⊂ M0. Since L ∪ {a} is a
convergent sequence in M , there exists λ ∈ Λ such that L is eventually in Mλ. It
implies that S is eventually in Xλ.

Claim 2. For S and λ in Claim 1, if x ∈ U with U open in Xλ, then there
exists P ∈ Pλ such that S ∩ Xλ is eventually in P ⊂ U .

By using notations in the proof of Claim 1 again, we have that L converges to
a ∈ f−1

λ (U) with f−1
λ (U) open in Mλ. Put a = (αi), and

Aa,n =
{

b = (βi) ∈ Mλ : βi = αi for every i 6 n
}

,

Ba,n =
{

b = (βi) ∈ Mλ,0 : βi = αi for every i 6 n
}

,

for every n ∈ N. Then {Aa,n : n ∈ N} is a base at a in Mλ. So, there exists

n ∈ N such that L ∪ {a} is eventually in Aa,n ⊂ f−1
λ (U). Then L is eventually in

Aa,n ∩ Mλ,0 ⊂ f−1
λ (U) ∩ Mλ,0. Note that Aa,n ∩ Mλ,0 = Ba,n. So L is eventually

in Ba,n ⊂ f−1
λ (U). Then S is eventually in P ⊂ U where P = fλ(Ba,n) ∈ Pλ by

Lemma 2.5.
(2) ⇒ (1). We need only to prove the following two claims.
Claim 1. f : (M, M0) → X is continuous about M0.
This follows from Lemma 3.1.
Claim 2. f : (M, M0) → X is a strong wc-mapping.
Let S be a sequence converging to x in X . Then S ∪ {x} is eventually in Xλ

for some λ ∈ Λ. Put Sλ = S ∩Xλ and Hλ = S −Xλ. Then Sλ ∪{x} is a convergent
sequence converging to x in Xλ and Hλ is finite. As in the proof of Claim 2 in the
sufficiency of Theorem 2.1(1), there exists a sequence Lλ ⊂ Mλ,0 converging to a
in Mλ such that fλ(Lλ) = Sλ. On the other hand, there exists a finite subset G of
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M0 such that Hλ = f(G). Then L = G ∪ Lλ is a sequence converging to a in M ,
L ⊂ M0, and f(L) = S. This proves that f is a strong wc-mapping. �

Being similar in spirit to the proof of Proposition 3.3, we get the following
propositions which are necessary and sufficient conditions for f : (M, M0) → X to
be a wc-mapping (wk-mapping) in an ls-π-Ponomarev-system (f, M, M0, X, {Pλ}).

Proposition 3.4. Suppose that (f, M, M0, X, {Pλ}) is an ls-π-Ponomarev-
system. Then the following statements are equivalent.

(1) f : (M, M0) → X is a wc-mapping.
(2) For each sequence S converging to x in X, there exists λ ∈ Λ such that

(a) S ∪ {x} is frequently in Xλ.
(b) For each open neighborhood U of x in Xλ, there exists P ∈ Pλ such

that S ∩ Xλ is frequently in P ⊂ U .

Proposition 3.5. Suppose that (f, M, M0, X, {Pλ}) is an ls-π-Ponomarev-
system. Then the following statements are equivalent.

(1) f : (M, M0) → X is a wk-mapping.
(2) For each sequence S in a compact subset K of X, there exists λ ∈ Λ such

that
(a) S ∪ {x} is frequently in Xλ.
(b) For each open neighborhood U of x in Xλ, there exists P ∈ Pλ such

that S ∩ Xλ is frequently in P ⊂ U .

It follows from Proposition 3.3 that we have a characterization of strong wc-
images of locally separable metric spaces as follows.

Corollary 3.1. For a space X, the following statements are equivalent.

(1) X is a weakly continuous strong wc-image (resp., wcs-image) of a locally
separable metric space.

(2) X has a double cover (resp., point-countable double cover) {(Xλ, Pλ) :
λ ∈ Λ} satisfying for each sequence S converging to x in X there exists
λ ∈ Λ such that
(a) S ∪ {x} is eventually in Xλ.
(b) For each open neighborhood U of x in Xλ, there exists P ∈ Pλ such

that S ∩ Xλ is eventually in P ⊂ U .

Proof. (1) ⇒ (2). Let f : (M, M0) → X be a weakly continuous strong
wc-mapping where M is a locally separable metric space. By [11, 4.4.F], M =
⊕

λ∈Λ Mλ where each Mλ is a separable metric space. For each λ ∈ Λ, let Bλ be
a countable base for Mλ. Put Pλ = f(Bλ) and Xλ = f(Mλ). As in the proof
(1) ⇒(2) of Proposition 3.3, we have that {(Xλ, Pλ) : λ ∈ Λ} satisfies the required
conditions.

For the parenthetic part, {(Xλ, Pλ) : λ ∈ Λ} is point-countable as in the
necessity’s proof of Proposition 3.2.

(2) ⇒ (1). Let {(Xλ, Pλ) : λ ∈ Λ} be a double cover for X which satisfies
conditions in statement (2). Then the ls-π-Ponomarev (f, M, M0, X, {Pλ}) exists.
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By Lemma 3.1 and Proposition 3.3, f : (M, M0) → X is a weakly continuous
strong wc-mapping and M is a locally separable metric space. Then X is a weakly
continuous strong wc-image of a locally separable metric space.

For the parenthetic part, f : (M, M0) → X is a ws-mapping by Proposition 3.2.
Then X is a weakly continuous strong wcs-image of a locally separable metric
space. �

Being similar in spirit to the proof of Corollary 3.1, we get the following corollar-
ies on characterizations of weakly continuous ws-images of locally separable metric
spaces.

Corollary 3.2. For a space X, the following statements are equivalent.

(1) X is a weakly continuous wc-image (resp., wcs-image) of a locally sepa-
rable metric space.

(2) X has a double cover (resp., point-countable double cover) {(Xλ, Pλ) :
λ ∈ Λ} satisfying for each sequence S converging to x in X, there exists
λ ∈ Λ such that
(a) S ∪ {x} is frequently in Xλ.
(b) For each open neighborhood U of x in Xλ, there exists P ∈ Pλ such

that S ∩ Xλ is frequently in P ⊂ U .

Corollary 3.3. For a space X, the following statements are equivalent.

(1) X is a weakly continuous wk-image (resp., wks-image) of a locally sepa-
rable metric space.

(2) X has a double cover (resp., point-countable double cover) {(Xλ, Pλ) : λ ∈
Λ} satisfying for each sequence S in a compact subset K of X, there exists
λ ∈ Λ such that
(a) S ∪ {x} is frequently in Xλ.
(b) For each open neighborhood U of x in Xλ, there exists P ∈ Pλ such

that S ∩ Xλ is frequently in P ⊂ U .
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