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AN EXAMPLE OF BRUNS-GUBELADZE K-THEORY
DEFINED BY THREE DIMENSIONAL POLYTOPE

Th. Yu. Popelensky

ABSTRACT. For the Bruns—Gubeladze polytopal K-theory, we describe a new
series of three dimensional balanced Col-divisible polytopes. Also we calculate
the corresponding elementary groups and as a corollary obtain an expression
of the polytopal K-groups in terms of the Quillen K-groups.

1. Introduction

In the series of papers [IH4] Bruns and Gubeladze have investigated polytopal
algebras k[P] where k is a field and P is a lattice polytope. The group of graded R-
automorphisms gr.auty (k[P]) of the algebra k[P] is an analog of the group GL,, (k).
The paper [1] introduces elementary automorphisms of k[P] and establishes an im-
portant fact that every graded automorphism can be diagonalized by a sequence of
elementary automorphism. In [2] it was shown that many graded retractions are
conjugates of diagonal idempotents. So the natural question arises: is it possible
to find polytopal analogs of the higher algebraic K-groups (for rings). The answer
is positive and has been given by Bruns and Gubeladze in [3L4] for a wide class
of balanced polytopes. For a commutative ring R and a balanced polytope P the
group Er(P) generated by elementary graded automorphisms is not perfect in gen-
eral. Bruns and Gubeladze established a highly nontrivial stabilization procedure
which on polytopal level works as “doubling along a facet”. As an outcome of the
stabilization procedure one obtains the stable elementary group E(R, P). It is im-
portant that the stable group E(R, P) in general is not a union of corresponding
unstable groups, hence the “polytopal part” of the stabilization is essential. The
group E(R, P) is perfect. In [3L[4] the (stable) Steinberg group St(R, P) was de-
fined and it was shown that for a balanced polytope P the natural homomorphism
St(R, P) — E(R, P) is a universal central extension. Higher polytopal K-groups
are defined by

Ki(R,P) = m;(BE(R,P)"), i>2.
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If P coincides with the standard simplex AF one obtains the Quillen K-theory.
More detailed account on history of the question and on the motivation can be
found in [1L21[5].

Some natural questions arise about the polytopal generalization of K-theory.
First of all it is important to know equivalence relations on polytopes which lead to
naturally equivalent polytopal K-theory. The projective equivalence of polytopes
is obvious, but the E-equivalence (see [3,[4] for definition) is more convenient.
Also it is interesting to calculate K;(R,P) for various polytopes P. The case
of 2-dimensional polytopes (i.e., polygones) was completely solved by Bruns and
Gubeladze [3L4]. They proved that there are 6 classes of E-equivalence of the
polygones and also they calculated the corresponding K-groups. The case of 3-
dimensional polytopes was investigated in [6]. In that work a classification of the
balanced 3-dimensional polytopes up to E-equivalence was proposed and the stable
elementary groups of Col-divisible 3-dimensional polytopes were identified. In [§]
the case of the pyramid over the unit square (it is balanced, but not Col-divisible)
was investigated. This polytope appears in [3|[4] several times as a polytope not
satisfying some natural conditions (see also [5]). Some calculations for balanced,
but not Col-divisible polytopes, can be found in [9].

Bruns and Gubeladze conjectured [5, Conjecture 8.3] that for a commutative
ring R and a Col-divisible (balanced) polytope P of arbitrary dimension one has
K;(R,P) = K;(R)®--®K;(R) (¢(P) summands), where ¢(P) < dim P is a natural
number explicitly defined by P (for some polytopes P a technical condition on the
ring R is involved). In all known examples the conjecture holds even for balanced
not Col-divisible polytopes.

This note appeared as a result of an attempt to find a counterexample to the
Bruns—-Gubeladze conjecture. In fact, we did not succeed, but instead we found a
series of balanced Col -divisible polytopes which had not been known before and was
omitted in the Faramarzi’s classification theorem [6, Theorem 3.2]. We calculate
the corresponding elementary groups and as a corollary obtain an expression of the
polytopal K-groups in terms of the Quillen K-groups. Despite [6], a classification
of balanced (and balanced Col-divisible) 3-dimensional polytopes remains open.

The author is grateful to the referee for his/her valuable suggestions and com-
ments.

2. Basic definitions

The details of the Bruns—Gubeladze construction can be found in their original
works [3L[4]. Here we present only an outline of necessary definition and construc-
tions.

Let P be a convex polytope in R™ with vertices in the integral lattice Z™. We
always suppose that n is minimal, that is the minimal affine subspace containing
P coincides with R™. Such a polytope is called a lattice polytope. For any facet
F there is a unique surjective homomorphism (F,—): Z" — Z, with the kernel
consisting of vectors parallel to the facet F' and such that (F,p — ¢) > 0 for any
pe Pandq€F.

A vector u € Z"™ is called a column vector for a lattice polytope P if there
exists a facet P, C P such that (P,,u) = —1 and for any other facet F' C P one
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has (F,u) > 0. In this case the facet P, is called the base facet for the column
vector u. For a given column vector the base facet is defined uniquely, but two
different column vectors can have the same base facet. A collection of all column
vectors with the base facet F' is denoted by Col (F). A collection of all column
vectors of the lattice polytope P is denoted Col (P).

Assume u € Col (F). Then for any point p € P N Z"™ there exists a unique
nonnegative integer k such that p + ku € F. This number is called a height of
the point p over the base facet F' and is denoted by htz(p). One has the equality
htp(p) = (F,p — q) where ¢ is an arbitrary point from F.

One can define a natural partial multiplication on the set Col (P). Suppose
u,v € Col(P), u+ v € Col(P) and P4, = P,. Then the product wv is defined
to be u + v. The product uv is defined not for any pair of column vectors u, v.
Obviously if uv exists, then vu is not defined.

As a basic example consider the simplex A™ in R™, with one vertex (0, ...,0) in
the origin and other n vertices of form (0,...,1,...,0). The description of column
vectors and their partial product is simple. For any two vertices p;, p; € A", there
are two column vectors 5{ = p; —p; and (5; = —(53 . The base facet of the column
vector 0% is A" N {x; = 0} for j # 0 and A" N{}_, xx = 1} for j = 0. The partial
product is described by the relation 517 5;“ = 6F. There are no other column vectors,
and no other product is defined.

Balanced polytopes. A lattice polytope P is called balanced if for any u,v €
Col (P) one has (P,,v) < 1. The simplex A™ is balanced while the triangle
conv {(0,0), (1,0), (0,2)} is not.

Note that for a balanced polytope and its base facet F' one has inequality
[(F,u)| <1 for any column vector v. Also (F,u) = —1 iff v € Col (F). Obviously
(F,u) =0 iff u is parallel to F.

Doubling along a facet. Like in the classical Quillen K-theory we need some
kind of a stabilization procedure. Let P be a lattice polytope. Choose its facet F.
Without loss of generality one can assume that the origin belongs to the facet F' and
that F' is contained in the hyperplane z,, = 0. Consider the standard embedding
of R C R™*! onto the hyperplane 2,1 = 0. Let us turn the polytope P by /2
around the plane x,, = x,.1 = 0 in R®*!. The image of P under the rotation is
denoted by P!.

The polytope P-F is defined as the convex hull of P and P! and is called
doubling of P along the facet F. If v € Col(F) then one can write PY instead
of P-F,

After doubling along F' the number of facets increases by 1. For any facet G
different from F' denote by G- the facet of P¥ which is the convex hull of G and
its image G! after rotation of the polytope P by 7/2. Let F-F = P! for the facet F.

Let us describe the structure of Col (P-"). Choose a column vector v € Col (P)
with base facet G. Then v is also a column vector for P*¥ with the base facet G-
(think of the inclusion P C P-F).

Describe new column vectors which arise after doubling. First of all there
are two column vectors 6+ and 6~ = —¢1 with the base facets Pl and P~ = P
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correspondingly. Secondly, for a column vector v € Col (P) the vector vl (the image
of v after rotation of P by 7/2) is a column vector for P~¥". If the vector v is parallel
to the facet F, then v! coincides with v. If v is not parallel to F then v # vl and
we have two possibilities. Namely, if v € Col (F'), then one has the relations

(1) sv=ul, §tvl =0,
and if v ¢ Col (F)) (therefore (F,v) > 0), then one has another relations
(2) v6t =l Wl =

One can show that for a balanced polytope P its doubling P~f" is also balanced
and that the set Col (P-") is a union (not necessarily disjoint)

Col (P*F") = Col (P) U Col (P)l U {67,657 }.

A sequence of polytopes P = (P =Py C P, C P, C ...) is called a doubling
spectrum if (1) Pxy1 is a doubling of Py along a base facet and () for any i € Z,
v € Col (P;) there exists j > 4, such that Pj1; = Pv.

For any doubling spectrum there is a natural inclusion Col (P;) C Col (P;41),
therefore the direct limit Col () = lim Col (P;) is defined.

Elementary automorphisms and Steinberg group. Consider a lattice
polytope P. Let S(P) be the additive semigroup generated by pairs (p,1) € R*+!
where p € PNZ". For a given associative commutative ring R with unit consider the
semigroup ring R[P] = R[S(P)]. It has natural grading defined on the generators
of the ring by formula deg(p,d) = d.

Denote by gr.auty (R[P]) the group of graded R-automorphisms of R[P]. An
element ¢ € gr.auty (R[P]) is called an elementary automorphism if there exist a
column vector v € Col (P) and an element A € R such that for every x € S(P),
one has

o(x) = (14 Ao)Mtr @)y,
Denote this automorphism by e}. The subgroup of gr.auty (R[P]) generated by
elementary automorphisms is denoted by Er(P).

For any v € Col () there exists ¢ € N such that v € Col (P;) for all j > i.
Hence elementary automorphisms e;j\ € Egr(P;), j > i, form a compatible system.
Therefore they define a graded automorphism of R[], which we call “elementary”
and denote by e). The group E(R,B) is the subgroup of gr.auty (R[}]) generated
by elementary automorphisms.

In [31/4] it was shown that the group E(R,*B) does not depend on a choice of
a doubling spectrum of the polytope P, hence one uses notation E(R, P) instead
of E(R,). The group E(R, P) is perfect. For a balanced lattice polytope P ele-
mentary automorphisms satisfy relations which are similar to the relations between
elementary matrices:

(i) epet = e) T+ for all v € Col (P) and A\, u € R;

v

(ii) for all u,v € Col (P) and A\, p € R

(e}, eh] ez, if uv is defined,
ur v

1, if u+v & Col (P)U{0}.
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Fix a doubling spectrum B of P. Define the Steinberg group St(R, P) to be
the group generated by symbols x), v € Col (), A € R, and relations

(3) izt = ) for all v € Col (P), A pu€ R;
@) [:c”\ o] = M, if product uw is defined,
w0, if u+ v ¢ Col (P) U {0}

for all u,v € Col (B) and A\, € R.

The group St(R, P) does not depend on a choice of a doubling spectrum 3
of P. For a balanced polytope P the natural epimorphism St(R, P) — E(R, P) is
a universal central extension.

Example: For P = A™ the groups E(R, P) and St(R, P) are isomorphic to
usual E(R) and St(R).

3. Polytopes F'(t, s)

For integers t > s > 1 define the polytope F(t,s) to be the convex hull of the
points (0,0,0), (2¢,0,0), (1,2,0), (t+1,1,0),(0,0,1),(1,0,2), (2t —s+1,0,1) € R3.
The Col-structure of F(t,s) can be described as follows. There are two base
facets: Fy, = F(t,s) N{y = 0} with the column vectors v, = (r — 1,—-1,0),
T =1,...,t, and w = (0,—1,1) and F, = F(t,s) N {z = 0} with the column
vectorsv, = (0 —1,0,—1), 0 = 1,...,s. The only relations between the column
vectors are wuy, = vy, 0 = 0,...,s. If t > s, then the column vectors vsy1,..., v
cannot be decomposed as a product of other column vectors.
From this description it follows that the polytopes F(t,s) are balanced and
Col-divisibe. Note that
(1) for t = s > 1 the polytope F(t,t) is E-equivalent to the polytope P, (t),
(2) for t > 1 the polytope F(t,1) is E-equivalent to the polytope P.(t,1) (for
definition of P, (t) and P.(t,1) see [6]),
(3) the polytope F(1,1) (though it is three dimensional) is E-equivalent to the
polygon of type (c) (for definition see [4]).

It appears that the condition ¢ > s is essential.

PROPOSITION 1. Suppose P is a polytope such that there are at least two base
facets Fy, and F,,. Assume that for the base facet F, there are s column vectors
Uy, 1 < o < s, which are parallel to F,, and that for the base facet F,, there is a
column vector w which is not parallel to the F,,. Then the vectors v, = w + uy, are
column vectors for the base facet F,.

In other words, in assumptions of the proposition there are at least s column
vectors for the base facet F,, such that wu, = v,.

PrROOF. Fixo =1,...,s. Asw and u, are column vectors, one has (G, w + u,)
= (G,w) + (G, uy,) > 0 for any facet G of the polytope P different from F;, and
F,. For the facet F, one has (F,,w + u,) = (Fy,w) —1 > 0 and for the facet
Fy: (Fy,w+u,) = —1+4+0= —1. Hence w + u, is a column vector for the base
facet F,. O
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Fix integers ¢t > s > 1 and consider a doubling spectrum Py, P;, Ps, ... of the
polytope Py = F(t,s). Let us describe the column structure of the polytopes P; (by
induction on j). From this we obtain the description of the elementary group and
the Steinberg group for the polytope Py and identify the corresponding K-theory.

First of all we describe the structure of the base facets of the polytopes P;.
For every polytope P; we divide its base facets into two families A(0), A%(0) and
enumerate the facets in the families. For the polytope P define A'(0) = {F,},
A2(0) = {F,}.

Suppose Pji; is a doubling of P; along a facet F, which belongs to Al(j).
Assume A'(j) = {A1, Az,..., An}. Define A'(j+1) to be {A, A5, ... AL AL LT,
where A}, = P; (recall that P; is a facet of Pj41) and A} = AjF for j < n.
Assume A2(j) = {Bi,Ba,...,By}. Define A2(j + 1) to be {B},B5,...,B..},
Bj = B]J-F. Definition of A" (j + 1) for the case F' € A?(j) is analogous.

Now describe the structure of Col-vectors. We shall do it in two steps.

First of all we describe what happens to the vectors u,, v, w under consecutive
doublings. Let a,(j) = #A"(j)

LEMMA 1. For the polytope P; there are the column vectors wf, Ug ks Uri,
where 1 <1i < ai(j), 1 <k < az(j) such that:
(1) wiug ) = vy4, for allk and 1 < o < s,
(2) vri is a column vector for the i-th base facet from Al(j),
and it is parallel to all other base facets,
(3) ugk is a column vector for the k-th base facet from A%(j),
and it is parallel to all other base facets,
(4) w¥ is a column vector for the i-th base facet from A'(j), it has height 1 over

?

the k-th base facet from A%(j) and it is parallel to all other base facets.

PrROOF. The case of P, is obvious.

By induction assume that doubling of P; was made along the facet 4; € A(j).

Then besides the vectors 6= we obtain new vectors (w¥ lT

k) and v

; for all £ and 7.
Denote them by wsl ()41 and v; 4, (j)+1 correspondingly. All these vectors are
column vectors for the new base facet A, (j)41-

Assume doubling of P; was made along the facet By € A%(j). Then besides

the vectors 6% we obtain new vectors (w¥) and uL i for all i and 7. Denote them

3

by wfz(J)H and v, q,(j)41 correspondingly.
Statement (1) is a straightforward consequence of the relation wu, = v,. Also

note that there is no such relation for the vectors vgi1,i,..., 7. O

Secondly, we describe column vectors which appear as the §*-vectors or vectors
they produce under doublings.

LEMMA 2. For any P; and for any two different facets Ay, Ay € A7(j) there
is a column vector 52(7’) for the base facet Ay, which has height 1 over the facet

A; and is parallel to all other base facets. The vectors §%(r) satisfy the relations
§L(r)ov (r)y = &2 (r) for all v, k1, p.
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PRrROOF. For j = 0 the statement is trivial.

Assume by induction that doubling of P; was made along the facet A4; € A(j).
Then we have new column vectors 6% and 6% (1)l, 6% (1)! for all k # i. Denote 6¥(1)!
by 521(j)+1(1), 5 (1) by 5Z1(J)+1(1), 5F by 551(])“, and 6~ by 521(j)+1. If one of the
indices k, [, p coincides with a1 (j) + 1, then the relation &, (r)é7 (r) = 8% (r) follows
from one of relations (), (). For example relation (@) (§%)/6~ = &% is the same as
5L ) = 6% and relation () 07 (6F)! = 6 is the same as 6716k || = oF.

The collection of the vectors §¢(2) is unchanged as all of them are parallel to
the facet A;.

The case of doubling along the facet from A2(j) is analogous. O

LEMMA 3. The vectors ¥ (r), uy p, vr,i, wE satisfy the relations

(5) 0, (1)vri = vrp
(6) 9q(2)top = Uoq
(7) 8, (Dw} = wy
(8) w; 3(2) = w

for all i,k,p,q,r.
The relations ({)-([7) follow from (), and the relation (§]) follows from ().

4. Representation of St(R, F(t, s))

The purpose of this section is to construct a kind of a matrix representation of
St(R, F(t,s)) and to deduce from it the description of E(R, F(t,s)). From now on
fix t > s > 1 and choose a doubling spectrum B of Py = F(t, s).

Denote by St(n), n > 0, a group generated by the symbols x7 and the Steinberg
relations (3], @) where v € Col P, and A € R. There is a canonical homomorphism
¢n : St(n) = St(n + 1). It can be shown that St(R, Py) = lim St(n).

Let a,(n) = #A"(n) (for simplicity we write a,). Denote by My; (or My (R))
a set of all matrices (with k rows and ! columns) with entries in R. Let M (n) be a
set, of block matrices of the form

Malal Ma1a2 @1§T§t Ma11
0 Ma2a2 ®1§a§s M‘121
0 0 1

(here My, q, acts on . M,,: diagonally, etc.).
We define the map ), : St(n) — M (n) as follows. Consider the “scheme”

01) w v,
0 402 ues
0 0 1

Let v be one of the column vectors 5{(7’), w{, Vri OF Ug,; (1 =1,2) of the polytope
P,. Define v, on the generator = to be the matrix from M (n) with zero entries
except 1 on the diagonal and A placed in the block with the same “name” as the
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J

i

vector v at the intersection of i-th row and j-th column if v is 5{(7’) or w
in i-th row if v = us,; or v = v, 4.

, or just

PROPOSITION 2. The map ), is an epimorphism of St(n) onto the group

Eal (R) Malaz (R) @7— Mall(R)
E(n) = 8 EaQO(R) @a ]\41G21(R)

The proof is straightforward.

While passing from P, to P,+1 one of the numbers a, as increases by 1. So
we have obvious stabilization maps 7, : M(n) — M(n + 1) and their restrictions
Mn : E(n) = E(n+1). The diagram

St(n) —2"— St(n+ 1)

J{dm J{¢n+1

E(n) —— E(n+1)

commutes, hence we have a homomorphism of the stable groups ¢ : St(R, Py) —
E(00), where E(o0) is the group

E(R) M(R) @D.V(R)
0 ER) D,V(R)|,
0 0 1

E(R) = limy, E,(R), M(R) = limy, p, My (R), V(R) = lim,, M,,1(R).

5. Elementary group E(R, F(t,s)) and K-theory
The representation v of St(R, F'(t, s)) is not exact.
PROPOSITION 3. kerty = Z(St(R, Fy)).

PRrROOF. The inclusion ker C Z(St(R, Py)) is obvious since Z(E(o0)) = 0.
For the inverse inclusion we need the following statement, which generalizes
Milnor’s arguments from [7), Theorem 5.1].

PROPOSITION 4. [4] proof of Proposition 8.2] Assume that Q = (Q = Qo C
Q1 C Q2 C ...) is a doubling spectrum of a polytope Q. For everyi € NU{0} define
two sets of column vectors Ut = {u € Col(Q;+1) | (Qi,u) = 1} and Vi+! =
{v € Col(Qit+1) | (Qi,v) = —1}. Consider subgroups U+ U1 C St 4 (R, Q)
generated by all x) and x* correspondingly (here w € Ut andv € V1 X\ € R).
Suppose for a group G, there is given an epimorphism w: St(R,Q) — G which is
injective on UL and VL. Then kerm C Z(St(R,Q)).

Apply this proposition to the doubling spectrum P of Py, G = E(o0) and
7 = 1. From Lemmas [I] and 2] we can identify the sets U™ and V™.

First of all suppose that doubling P,_1 C P, was done along a facet A; € Al.
Then the set U™ consists of the vectors 5;(1), j=1,...,a1(n), j #i. The set V"
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k

consists of the vectors v ;, 5{(A1), j=1,...,a1(n), j # i, and the vectors w;,

kE=1,...,az2(n).

Image of U™ consists of the matrices in E(n) C E(oo) with 1 on the diagonal
and other nonzero entries in the i-th rows of the blocks 6(1), w and @v,. Image of
U™ consists of matrices in F(n) C E(oo) with 1 on the diagonal and other nonzero
entries in the i-th column of the block §(A%).

To prove the injectivity one should note that from the Steinberg relations,
it follows that U™ are U™ are abelian groups. Moreover, using arguments from
Lemma 5.2 of [7] or from Proposition 8.2 of [4] one can show that these abelian
groups are isomorphic to R for suitable numbers N € N. Then simple counting
of dimensions shows that v is injective on U™ and U".

The case of doubling P,_; C P, along a facet from A? is analogous. O

THEOREM 1. The groups E(c0) and E(R, P) are naturally isomorphic.

PRrROOF. The kernel of the natural homomorphism St(R, Py) — E(R, Py) coin-
cides with Z(St(R, Py)) as St(R, Py) is the universal central extension of E(R, Pp).
It Proposition B it was shown that ker(¢ : St(R,Py) — E(co)) also coincides
with Z(St(R, Py)). Therefore there exists a natural isomorphism of E(co0) and
E(R, P). O

Recall that a ring R is called an S(n)-ring if there exist elements x1, ..., x, € R*
such that sum of any subset of them is a unit. The ring R has many units if R is
an S(n)-ring for any n € N.

COROLLARY 1. There is a natural isomorphism

Kl(Ra F(ta 5)) = Kz(R) @ Kﬁ(R)v i > 2,
provided R has many units.

The proof can be done in the same way as the proof of Theorem 9.2 from [3]
with suitable minor changes.
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