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ON SOME CLASS OF INTEGRAL OPERATORS

RELATED TO THE BERGMAN PROJECTION

Djordjije Vujadinović

Abstract. We consider the integral operator

Cαf(z) =

∫

D

f(ξ)

(1 − zξ̄)α
dA(ξ), z ∈ D,

where 0 < α < 2 and D is the unit disc in the complex plane. and investigate
boundedness of it on the space Lp(D, dλ), 1 < p < ∞, where dλ is the Möbius
invariant measure in D. We also consider the spectral properties of Cα when
it acts on the Hilbert space L2(D, dλ), i.e., in the case p = 2, when Cα maps
L2(D, dλ) into the Dirichlet space.

1. Introduction and notation

Throughout the paper let D = {z : |z| < 1} be the open unit disc in complex
plane C and let dA(z) = 1

π dx dy, z = x+iy stands for the normalized area measure
in C. For 1 < p < ∞ we consider the Besov space Bp of D, 1 < p < ∞, which is
defined to be the space of all analytic functions f in D such that

‖f‖Bp
=

(

∫

D

|f ′(z)|p(1 − |z|2)pdλ(z)
)1/p

< ∞,

where dλ(z) = dA(z)
(1−|z|2)2 is the Möbius invariant measure on D. It is known that

‖·‖Bp
is complete seminorm on Bp. It should be pointed that Bp is a Banach space

with norm ‖f‖ = |f(0)| + ‖f‖Bp
. For p = 2 the space B2 is the classical Dirichlet

space, and appropriate semi-inner product is given by the formula

(1.1) 〈f, g〉 =

∫

D

f ′(z) g′(z) dA(z), f, g ∈ B2.

The weighted Bergman projection Ps, −1 < s < ∞ represents a central oper-
ator which appears in the research concerning the analytic function spaces. It is
given by

Psf(z) = (s+ 1)

∫

D

(1 − |ω|2)s

(1 − zω̄)2+s
f(ω) dA(ω), z ∈ D.
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Particulary, the ordinary Bergman projection P = P0 arises as the orthogonal
projection from L2(D; dA) onto an analytic function subspace. It connects Bp and
Lp(D, dλ). This relation is expressed in the next theorem.

Theorem 1.1. Suppose f ∈ H(D) and 1 6 p 6 ∞. Then

f ∈ Bp ⇔ f ∈ P (Lp(D, dλ)).

The inclusion operator V from Bp into Lp(D, dλ) is given by

V f(z) = 3(1 − |z|2)2
∫

D

f(ξ) dA(ξ)

(1 − zξ̄)4
, z ∈ D.

More precisely we have the following lemma (see [8]).

Lemma 1.1. The operator V is an embedding from Bp into Lp(D, dλ) for all
1 < p < ∞ if on Bp = P (Lp(D, dλ)) is given the quotient norm.

In this paper we consider the class of the operators

Cαf(z) =

∫

D

f(ξ)

(1 − zξ̄)α
dξ, z ∈ D,

where 0 < α < 2. For α = 2 we have the Bergman projection. The norm of the
Bergman projection from Lp(D, dλ) onto Bp was estimated in [7]. In Theorem 1.3
we prove that Cα is a bounded mapping from Lp(D, dλ) into Bp for all 0 < α < 2
and 1 < p < ∞. We investigate in the next section some of its spectral properties
in the context of the Lebesgue space L2(D, dλ) and the Besov space B2.

By boundedness of an operator T : Lp(D, dλ) → Bp we mean that there exists
a constant C > 0 such that ‖Tf‖Bp

6 C‖f‖Lp(D,dλ).
In this section we observe boundedness of Cα defined on Lp(D, dλ). We firstly

state a technical lemma and a proposition (the Schur test).

Lemma 1.2. Suppose z ∈ D, c is real, t > −1, and

Ic,t(z) =

∫

D

(1 − |ω|2)t

|1 − zω̄|2+t+c
dA(ω).

Then we have

(a) If c < 0, then Ic,t(z) is bounded in z.
(b) If c > 0, then Ic,t(z) ∼ 1

(1−|z|2)c , |z| → 1−.

(c) If c = 0, then I0,t(z) ∼ log 1
1−|z|2 , |z| → 1−.

Proposition 1.1. Suppose K is a nonnegative measurable function on X×X,
where (X,µ) is a measure space. Let T be an integral operator induced by K, that is
Tf(x) =

∫

X
K(x, y) f(y) dµ(y), where 1 < p < ∞ and 1

p + 1
q = 1. If there exist

constants C1, C2 > 0 and a positive measurable function h on X such that
∫

X

K(x, y)h(y)qdµ(y) 6 C1h(x)q for µ-almost every x ∈ X,

∫

X

K(x, y)h(x)pdµ(x) 6 C2h(y)p for µ-almost every y ∈ X,

then T is bounded on Lp(X, dµ) with the norm less than or equal to C
1/q
1 C

1/p
2 .
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In the proof of Theorem 1.3 we will use the Gauss hypergeometric functions
and its basic properties. Following [1] we recall some facts for the sake of easy
reference.

The Gauss hypergeometric function 2F1(a, b; c; z) is defined by

2F1(a, b; c; z) =

∞
∑

n=0

(a)n(b)n

n!(c)n
zn for |z| < 1,

and by continuation elsewhere. Here (a)n = a(a + 1) · · · (a + n − 1) denotes the
shifted factorial, where a is any complex number.

The identity

(1.2) 2F1(a, b; c; z) = (1 − z2)c−a−b
2F1(c− a, c− b; c; z)

is known as Euler identity. The following properties of hypergeometric function are
also going to be of interest

∂

∂x
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z),(1.3)

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
for Re(c− a− b) > 0.

It is known that 2F1(a, b; c; z) diverges in general for z = 1 if Re(c− a− b) 6

0. The next theorem, due to Gauss, describes the asymptotic behaviour of the
hypergeometric functions as z → 1−.

Theorem 1.2. If Re(c− a− b) < 0, then

lim
x→1−

2F1(a, b; c; z)

(1 − z)c−a−b
=

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
.

For c = a+ b we have

lim
x→1−

2F1(a, b; c; z)

log ( 1
1−z )

=
Γ(a+ b)

Γ(a)Γ(b)
.

Theorem 1.3. For 0 < α < 2, Cα is a bounded mapping from Lp(D, dλ) into

Bp (1 < p < ∞). The norm may be estimated by ‖Cα‖Lp(D,dλ)→Bp
< αC

1/q
1 C

1/p
2 .

Here

C1 =



















pΓ(2+ 1
p

)Γ(α−1− 1
p

)

(p+1)Γ2( α+1

2
)

, α > 1 + 1
p ;

pqΓ(1+ 1
p

)
eπ(p+1) , α = 1 + 1

p ;
pΓ(2+ 1

p
)Γ(1+ 1

p
−α)

(p+1)Γ2( 3
2

+ 1
p

− α
2

) , α < 1 + 1
p ,

and C2 =



















qΓ(1+ 1
q

)Γ(α− 1
q

)

Γ2( α+1

2
)

, α > 1
q ;

pqΓ(1+ 1
q

)
π(p+1)e , α = 1

q ;
qΓ(1+ 1

q
)Γ( 1

q
−α)

Γ2( 1
2

+ 1
q

− α
2

) , α < 1
q ,

where 1
p + 1

q = 1.

Proof. First of all, it is easy to see that Cf is an analytic function for every
f ∈ Lp(D, dλ). Further, for f ∈ Lp(D, dλ) we have

(Cf)′(z) = α

∫

D

ξ̄

(1 − zξ̄)α+1
f(ξ) dA(ξ),
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‖Cf‖p
Bp

= αp

∫

D

∣

∣

∣

∣

(1 − |z|2)1−2/p

∫

D

ξ̄

(1 − zξ̄)α+1
f(ξ) dA(ξ)

∣

∣

∣

∣

p

dA(z).

Thus

‖Cf‖p
Bp

= αp

∫

D

∣

∣

∣

∣

(1 − |z|2)1−2/p

∫

D

ξ̄

(1 − zξ̄)α+1
f(ξ) dA(ξ)

∣

∣

∣

∣

p

dA(z)

= αp

∫

D

∣

∣

∣

∣

(1 − |z|2)

∫

D

ξ̄(1 − |ξ|2)2

(1 − zξ̄)α+1
f(ξ) dλ(ξ)

∣

∣

∣

∣

p

dλ(z)

Therefore, we should consider the operator

Tf(z) = (1 − |z|2)

∫

D

f(ξ)(1 − |ξ|2)2

|1 − zξ̄|α+1
dλ(ξ)

on Lp(D, dλ). We will prove that it is bounded there and we will estimate its
norm. Using the obvious relation ‖Cα‖Lp(D,dλ)→Bp

6 α‖T ‖Lp(D,dλ)→Lp(D,dλ) we
can estimate the norm of Cα.

We use Proposition 1.1 and test function h(z) = (1 − |z|2)1/pq for the kernel

K(z, ξ) = (1−|z|2)(1−|ξ|2)2

|1−zξ̄|α+1
. We have to prove existence of the constants C1, C2 such

that
∫

D

K(z, ξ)hq(ξ) dλ(ξ) 6 C1h
q(z), z ∈ D,

∫

D

K(z, ξ)hp(z) dλ(z) 6 C2h
p(ξ), ξ ∈ D,

which is equivalent with

(1.4)

(1 − |z|2)1/q

∫

D

(1 − |ξ|2)1/p

|1 − zξ̄|α+1
dA(ξ) 6 C1, z ∈ D,

(1 − |ξ|2)1+1/p

∫

D

(1 − |z|2)1/q−1

|1 − zξ̄|α+1
dA(z) 6 C2, ξ ∈ D.

From Lemma 1.2 we can easily check that both functions on the left-hand side in
(1.4) are bounded and consequently relations (1.4) are true for some constants C1

and C2. In the sequel we will determine the upper bounds for the constants C1 and
C2.

By using the uniform convergence and orthogonality we have

(1−|z|2)1/q

∫

D

(1 − |ξ|2)1/p

|1 − zξ̄|α+1
dA(ξ) = (1−|z|2)1/q

∞
∑

n=0

Γ( 1
p + 1)Γ2(α+1

2 + n)

Γ(n+ 1
p + 2)Γ2(α+1

2 )n!
|z|2n

=
p

1 + p
(1 − |z|2)1/q

2F1

(α+ 1

2
,
α+ 1

2
; 2 +

1

p
, |z|2

)

.

In a similar way we obtain that

(1 − |ξ|2)1+1/p

∫

D

(1 − |z|2)1/q−1

|1 − zξ̄|α+1
dA(z)
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= q(1 − |ξ|2)1+1/p
2F1

(α+ 1

2
,
α+ 1

2
; 1 +

1

q
, |ξ|2

)

.

Let us denote

C1 =
p

1 + p
sup
|z|<1

(1 − |z|2)1/q
2F1

(α+ 1

2
,
α+ 1

2
; 2 +

1

p
, |z|2

)

,

C2 = q sup
|ξ|<1

(1 − |ξ|2)1+1/p
2F1

(α+ 1

2
,
α+ 1

2
; 1 +

1

q
, |ξ|2

)

.

Then the Schur test implies ‖Cα‖Lp(dλ)→Bp
6 αC

1/q
1 C

1/p
2 . By using the Euler

transformation (1.2) for the hypergeometric functions, we obtain

C1 =
p

1 + p
sup

|z|<1
(1 − |z|2)2−α

2F1

(3

2
+

1

p
− α

2
,

3

2
+

1

p
− α

2
; 2 +

1

p
, |z|2

)

,

C2 = q sup
|ξ|<1

(1 − |ξ|2)2−α
2F1

(1

2
+

1

q
− α

2
,

1

2
+

1

q
− α

2
; 1 +

1

q
, |ξ|2

)

.

Both functions

2F1

(3

2
+

1

p
− α

2
,

3

2
+

1

p
− α

2
; 2 +

1

p
, |z|2

)

,

2F1

(1

2
+

1

q
− α

2
,

1

2
+

1

q
− α

2
; 1 +

1

q
, |ξ|2

)

are increasing in |z| and |ξ|, respectively (see (1.3)).
We distinguish the following five cases:
1) If α > 1 + 1

p , then

C1 <
p

p+ 12
F1

(3

2
+

1

p
− α

2
,

3

2
+

1

p
− α

2
; 2 +

1

p
, 1

)

=
pΓ(2 + 1

p )Γ(α− 1 − 1
p )

(p+ 1)Γ2(α+1
2 )

,

C2 < q2F1

(1

2
+

1

q
− α

2
,
1

2
+

1

q
− α

2
; 1 +

1

q
, 1

)

=
qΓ(1 + 1

q )Γ(α− 1
q )

Γ2(α+1
2 )

.

2) If α < 1
q , then according to Theorem 1.2 we have

C1 6
p

p+ 1
lim sup
|z|→1−

(1 − |z|2)2−α 2F1
(

3
2 + 1

p − α
2 ,

3
2 + 1

p − α
2 ; 2 + 1

p , 1
)

(1 − |z|2)α−1− 1
p

<
pΓ(2 + 1

p )Γ(1 + 1
p − α)

(p+ 1)Γ2(3
2 + 1

p − α
2 )

,

C2 6 q lim sup
|ξ|→1−

(1 − |ξ|2)2−α 2F1
(

1
2 + 1

q − α
2 ,

1
2 + 1

q − α
2 ; 1 + 1

q , 1
)

(1 − |ξ|2)α−1/q

<
qΓ(1 + 1

q )Γ(1
q − α)

Γ2(1
2 + 1

q − α
2 )

.
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3) If α = 1 + 1
p , then

C1 6
p

p+ 1
lim sup
|z|→1−

(1 − |z|2)1/q log
1

1 − |z|2
2F1

(

3
2 + 1

p − α
2 ,

3
2 + 1

p − α
2 ; 2 + 1

p , 1
)

log 1
1−|z|2

<
pq

e(p+ 1)

Γ(3 + 2
p − α)

Γ2(3
2 + 1

p − α
2 )

=
pqΓ(1 + 1

p )

eπ(p+ 1)
, C2 <

qΓ(1 + 1
q )Γ( 2

p )

Γ2(α+1
2 )

,

since the maximal value of the function φ(x) = (1 − x)1/q log 1
1−x , x ∈ (0, 1) is q

e .

4) If α = 1
q , then

C1 <
pΓ(2 + 1

p )Γ( 2
p )

(p+ 1)Γ2(3
2 + 1

p − α
2 )
, C2 <

pqΓ(1 + 1
q )

π(p+ 1)e
.

5) If 1
q < α < 1 + 1

p , then

C1 <
pΓ(2 + 1

p )Γ(1 + 1
p − α)

(p+ 1)Γ2(3
2 + 1

p − α
2 )

, C2 <
qΓ(1 + 1

q )Γ(α− 1
q )

Γ2(α+1
2 )

. �

2. Hilbert case and spectral properties

Folowing [6] let us recall some basic facts from spectral-operator theory. Let
us firstly recall that for the bounded measurable function A(z, ξ) the operator

Af(z) =

∫

D

A(x, ξ)f(ξ)

|z − ξ|α dA(ξ), z ∈ D

is compact on L2(D, dA), where 0 < α < 2.
For a compact operator T defined on a separable Hilbert space H , let sn(T ),

n > 1 denote the eigenvalues of the operator (T ∗T )1/2 arranged in nondecreasing
order [4]. In general, if T is a compact operator on a separable Hilbert space H ,
then there exist orthonormal sets {en} and {σn} in H such that

Tx =
∑

n

λn〈x, en〉σn, x ∈ H,

where λn is n-th singular value of T .
For 0 < p < ∞, we define the Schattene p-class of H denoted by Sp(H), or

simply Sp, to be the space of all compact operators T on H with singular value
sequence {λn} belonging to lp (p-summable sequence space). The Schattene class
Sp is a Banach space for the range 1 6 p < ∞, and appropriate norm of the

operator T ∈ Sp is given by ‖T ‖p =
(

∑

n |λn|p
)1/p

.

Theorem 2.1. Let A be a compact operator. Then A has the norm convergent
expansion

(2.1) A =

N
∑

n=1

µn(A)〈φn, ·〉ψn
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(where N is a finite non-negative integer or infinity), each µn(A) > 0, µ1(A) >

µ2(A) > · · · , and (φn) and (ψn) are (not necessarily complete) orthonomal sets.
Moreover, µn(A) are uniquely determined and φ’s and ψ’s are essentially uniquely
determined.

Here µn(A) are singular values of A and formula (2.1) is called canonical ex-
pansion for A.

Now we state a known result related to minimax properties of eigenvalues for
compact nonnegative operators [4].

Theorem 2.2. Let A (6= 0) be a nonnegative compact operator and let ϕj

(j = 1, 2, . . .) be an orthonomal system of its eigenvalues which is complete in the
range of A, so that Aϕj = λj(A)ϕj , j = 1, 2, . . . where λ1(A) > λ2(A) > · · · . Then
its eigenvalues have the following minimax properties

(2.2) λ1(A) = max
ϕ∈H

〈Aϕ,ϕ〉
〈ϕ,ϕ〉

where the maximum in (2.2) is attained only for those eigenvalues of A that corre-
spond to λ1(A).

(2.3) λj+1(A) = min
L∈Nj

max
ϕ∈LT

〈Aϕ,ϕ〉
〈ϕ,ϕ〉 , j = 1, 2, . . .

where Nj is the set of all j-dimensional lineals of H, and the minimum in (2.3) is at-
tained when L coincides with the linear hull Lj of the eigenvectors ϕ1, ϕ2, . . . , ϕj , . . .

so that

λj+1(A) = max
ϕ∈LT

j

〈Aϕ,ϕ〉
〈ϕ,ϕ〉 .

We note that

(2.4) s1(A) = ‖A‖.
Dostanić [3] investigated the singular values of the operator S : L2(D) → L2(D)
defined by

Sf(z) =
1

π

∫

D

ξ̄

1 − zξ̄
m(ξ) f(ξ) dA(ξ),

where m ∈ C(D̄). He obtained that sn(S) ∼ 1
2nπ

∫ 2π

0 |m(eiθ)| dθ.
The next theorem is our second main result and is related to finding singular

numbers of the operator V Cα.

Theorem 2.3. The operator V Cα : L2(D, dλ) → L2(D, dλ) is compact for
0 < α < 2. The following asymptotic formula holds

sn(Cα|L2(D,dλ)) = sn(V Cα) =
Γ(n+ α)

12Γ(α) Γ(n+ 2)
∼ 1

n2−α
, n → ∞.

In the proof we will need the following inequalities for Γ function (see [2]).

Proposition 2.1. Let m, p and k be real numbers with m, p>0 and p>k>−m.
If k(p−m− k) > 0 (6 0), then Γ(p)Γ(m) > (6)Γ(p− k) Γ(m+ k).
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Proof. From Theorem 1.3 and properties of the operator V we have that V Cα

maps L2(D, dλ) into itself. Let H(·, ·) be appropriate kernel of V Cα, i.e.,

V Cαf(z) =

∫

D

H(z, ξ) f(ξ) dA(ξ).

The the kernel H(·, ·) is given by

H(z, ξ) = (1 − |z|2)2
∫

D

dA(t)

(1 − zt̄)4(1 − ξ̄t)α
.

On the other hand

H(z, ξ) = (1 − |z|2)2
∫

D

dA(t)

(1 − zt̄)4(1 − ξ̄t)α

= (1 − |z|2)2
∫

D

∞
∑

n=0

Γ(n+ 4)

Γ(4)n!
(zt̄)n

∞
∑

k=0

Γ(α+ k)

Γ(α)k!
(ξ̄t)kdA(t)

= (1 − |z|2)2
∞

∑

n=0

Γ(n+ 4)Γ(n+ α)

12Γ(α)n!(n+ 1)!
znξ̄n.

So,

V Cαf(z) =

∞
∑

n=0

Γ(n+ 4)Γ(n+ α)

12Γ(α)n!(n+ 1)!
(1 − |z|2)2zn

∫

D

f(ξ)ξ̄ndA(ξ)

=
∞

∑

n=0

Γ(n+ 4)Γ(n+ α)

12Γ(α)n!(n+ 1)!
(1 − |z|2)2zn

∫

D

f(ξ)(1 − |ξ|2)2ξ̄ndλ(ξ).

Let us note that en(z) =
√

1
2 (n+ 3)(n+ 2)(n+ 1)(1 − |z|2)2zn, n = 0, 1, 2, . . .

represents orthonomal set in L2(D, dλ), which implies that

V Cαf(z) =

∞
∑

n=0

Γ(n+ α)

6Γ(α)Γ(n+ 2)
en(z)〈f, en〉, z ∈ D.

Since, Stirling’s formula implies sn(V Cα) ∼ 1
n2−α , as n → ∞, and by using the fact

‖V Cαf‖2
2 =

∞
∑

n=0

( Γ(n+ α)

6Γ(α)Γ(n+ 2)

)2
|〈f, en〉|2, f ∈ L2(D, dλ),

we conclude that V Cα is compact for 0 < α < 2. The sequence
( Γ(α+n)

Γ(α)(n+1)!

)

is

decreasing in n, and this is a consequence of Proposition 2.1 with p = α + n + 1,

m = n+ 2, k = 1. Then by Theorem 2.1 we get sn(V Cα) = Γ(n+α)
6Γ(α)Γ(n+2) . �

The next corollary is a direct consequence of the previous theorem.

Corollary 2.1. For 0 < α < 2, V Cα ∈ Sp holds, where p > 1
2−α and

‖V Cα‖p =
1

12Γ(α)

( ∞
∑

n=0

(Γ(n+ α)

Γ(n+ 2)

)p
)1/p

.
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According to (2.4) and Theorem 2.3 we easily obtain the following result.

Theorem 2.4. If V Cα : L2(D, dλ) → L2(D, dλ), 0 < α < 2, then

‖V Cα‖L2(dλ)→L2(dλ) =
Γ(1 + α)

12Γ(α)
.

In the next theorem we will consider the operator Cα defined on the Dirichlet
space B2.

Theorem 2.5. The operator Cα : B2 → B2 is compact for 0 < α < 2 and

sn(C|B2
) =

Γ(α+ n)

Γ(α)(n+ 1)!
∼ 1

n2−α
, n → ∞.

Proof. Let us note that the sequence en(z) = zn

√
n

, n > 1 is orthonomal in B2

according to the invariant integral pairing defined in (1.1). Then, for the function
f ∈ B2, f(z) =

∑∞
n=0 anz

n, where we can add the condition a0 = 0, we have

〈f, en〉 =
√
n

∫

D

∞
∑

k=1

kakz
k−1z̄n−1dA(z) =

√
nan,

Cαf(z) =

∫

D

f(ξ)

(1 − zξ̄)α
dA(ξ) =

∞
∑

n=1

Γ(α+ n)an

Γ(α)(n+ 1)!
zn =

∞
∑

n=1

Γ(α+ n)en(z)

Γ(α)(n+ 1)!
〈f, en〉.

By Stirling’s formula we obtain Γ(n+α)
Γ(α)Γ(n+2) ∼ 1

n2−α , n → ∞. On the other hand,

‖Cαf‖2
B2

=

∞
∑

n=0

(

Γ(n+ α)

Γ(α) Γ(n+ 2)

)2

|〈f, en〉|2

So, we conclude that Cα is a compact operator on B2 and Theorem 2.1 implies

sn(Cα|B2
) = Γ(α+n)

Γ(α)(n+1)! . �

Corollary 2.2. For the operator Cα : B2 → B2, (0 < α < 2) holds Cα ∈ Sp,
where p > 1

2−α , and

‖Cα‖p =
1

Γ(α)

( ∞
∑

n=0

(Γ(n+ α)

Γ(n+ 2)

)p
)1/p

.

A direct consequence of Theorem 2.5 is that ‖Cα‖B2→B2
= s1(Cα|B2

), i.e.,

‖Cα‖B2→B2
=

Γ(α+ 1)

2Γ(α)
.

However, we present here a direct way for finding the norm of Cα on B2 without
using singular numbers.

Theorem 2.6. The operator Cα : B2 → B2, 0 < α < 2 is bounded and

‖Cα‖B2→B2
=

Γ(α+ 1)

2Γ(α)
.
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Proof. Every function in B2 can be approximated in norm by a sequence of
polynomials. It is enough to find the norm of Cα on the set of polynomials pm(z) =
∑m

k=0 akz
k, where m is a nonnegative integer. From the proof of Theorem 2.5 we

get

Cαf(z) =

∞
∑

n=1

Γ(α+ n)en(z)

Γ(α)(n+ 1)!
〈f, en〉.

Thus,

Cαpm(z) =

m
∑

k=1

Γ(α+ n)anz
n

Γ(α)(n + 1)!
,

‖Cαpm‖2
B2

=

m
∑

n=1

n|Γ(α+ n)|2|an|2
|Γ(α)(n + 1)!|2 , ‖pm‖2

B2
=

m
∑

n=1

n|an|2.

We want to find the minimal constant A such that

(2.5)
m

∑

n=1

n|Γ(α+ n)|2|an|2
|Γ(α)(n+ 1)!|2 6 A2

m
∑

n=1

n|an|2,

for every polynomial pm. In the above inequality we can treat the sequences (n|an|2)

and
( |Γ(α+n)|2

|Γ(α)(n+1)!|2

)

as elements of l1 and l∞, respectively, so (2.5) can be rewritten
as

〈

(n|an|2),

( |Γ(α + n)|2
|Γ(α)(n+ 1)!|2

)〉

6 A2‖(n|an|2)‖l1 ,

where 〈(ξn), (ηn)〉 =
∑∞

n=1 ξnηn. By using the duality argument (l1)∗ = l∞ we
obtain

(2.6) A2 = sup
n>1

Γ2(α + n)

Γ2(α)((n + 1)!)2 =
Γ2(α+ 1)

4Γ(α)2 ,

i.e.,

‖Cα‖B2→B2
=

Γ(α+ 1)

2Γ(α)
.

In (2.6) we used again the fact that the sequence
( Γ(α+n)

Γ(α)(n+1)!

)

is decreasing in n. �
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