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INTEGRAL PROPERTIES OF RAPIDLY AND
REGULARLY VARYING FUNCTIONS

Nebojsa Elez and Vladimir Vladicié¢

ABSTRACT. Regularly and rapidly varying functions are studied as well as
the asymptotic properties related to several classical inequalities and integral
sums.

1. Introduction

Regular and rapid variation of functions was initiated by Karamata [3]. It is
sometimes called Karamata theory. Nowadays, it is a well developed theory used
in asymptotic analysis of functions, Tauberian theorems, probability and analytic
number theory.

Recall that a measurable function f : [a,00) — (0,00), a > 0 is called regularly
varying in the sense of Karamata if for some a € R it satisfies

L0

z—oo f(x)
for every A > 0, and we denote f € R,. The classes R, o € R were introduced
in [3], where it is proved (see also [1]) that if a function f € R,, a > 0, is locally

bounded, then

/:f(t)dtw aiﬂf(ac), T — 00.

We will use Potter’s theorem (see e.g., [1]): If f € Ry, o > 0, then for every u > 1
and € > 0 there exists xg > 0 such that
f(y) y\ote
M (U <<y
f(@) x
Recall [1], a measurable function f : [a,00) — (0,00), a > 0, is called rapidly
varying in the sense of de Haan, with the index of variability oo, if it satisfies
lim Fz) =00
z—oo f(x)
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for every A > 1. This functional class is denoted by R, (see e.g., [1]). Example: If
f(z) =2"@® r(z) = oo, and 7 is a nondecreasing function, then f € Ry,

Here we consider functions f € R, defined on the interval [0, c0). Analogous
results can be obtained if the domain of a function f is [a,00), a > 0. Let f € Roo
if f(z) = O(f(x)), * — oo, where f(x) = inf{f(t) | x < t}, then we say f € MR,
In this case we also know that f is a nondecreasing function and f < f. We W111

use the following properties of rapidly varying functions:

(1) If f € Roo, then lim, o f((A;;) =o0 and f € Re

(2) Using (1) we have: for f € Roo limg— oo ;giggg = oo, if ¥(x) — oo and

liminf, igfc; > 1.

(3) If A\ > 1 and f € Ry is locally bounded on [0, 00), then

/Oxf(t)dtw/: fydt, x— oo.

(4) If f € Reo, ¢ € Ry and f, ¢ are locally bounded on [0, o), then

/0 " H()e(t)dt ~ () / CHdt, @ .

(5) If f € MR is locally bounded on [0, c0), then

/f (f(2)), = o0,

We use notation (f(x) > g(x), z — a for g(z) = o(f(x)), z — a.

2. Results

Our first theorem is connected with Chebyshev’s inequality: if f,g: [a,b] = R
are monotonic functions of the same monotonicity, then

b b
/ F(t)g(tydt > / o(t) dt

If f, g are of different monotonicity, then the above inequality holds in the opposite
direction.

THEOREM 2.1. Let f,g € M Rs be locally bounded on [0,00). Then

g dts L xf(t)dt £ dt > f gt dt, 0.
0 x Jo

The following theorem is connected with Jensen s inequality: let f: R — R be
a convex function and ¢ : [a,b] — (0, 4+00) a nondecreasing function. Then

(55 [ ewar) < [ ety as

THEOREM 2.2. Let f € Roo, ¢ € Ro, a > 0 be locally bounded on [0,00). Then

f (% /Ox o(t) dt) < %/Ox fle®)dt, x— oc.
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THEOREM 2.3. Let f € Ry and € > 0. Then
n f+f2)+---+f(n)
f(1+5) < n

THEOREM 2.4. Let f € Ru be a locally bounded on [0,00). Then for every
p>1,

, N — 00.

X

2 ), f)dt < <5/0 f(t)pdt) , T — 0.

THEOREM 2.5. If f € Roo, 0 € Ry are locally bounded functions on [0, 00),
then

1

/Ox ft)pt) dt < (/: f(t)Pdt>% </Ox gp(t)th) Y 2o 00

wherei—l)+%:1,p>0,q>0.
Using Theorem 2.4 for the function f([z] + 1) € R on (0,n) we get:
COROLLARY 2.1. If f € Ry and p > 1, then

H SO+t o) o (U4 07+

, N — 00.
n n

..+f(n)p)%

THEOREM 2.6. Let f € Ry be a locally bounded function on [0,00) andn € N.
Then

T — 0.

)+ TG+t () 1
<<$/0 f(t)at

n

THEOREM 2.7. Let f € MRo be a locally bounded function on [0,00) and let

n € N. Then
x 2z z
FE)+fED) +-- -+ fla) >>l/ F)dt, @ — oo
n T Jo

3. Proofs

PRrROOF OF THEOREM 2.1. It is enough to prove that for every M > 1

M/o F(6) gt dt > 5/0 f(t)dt/o g(t)dt>M/O F(t) gz — 1) dt

for sufficiently large z. There exists m € (0,1) and x; > 0 such that
mf(z) < f( ).my(z) <g(x), x>0

Letl <A< 4A;MmQ, then 4M( ey > 1. Further on, there exists x5 > 0, such that
if x > x4, then from (1) and (3) we obtain

/f /f dt—/ g(t)dt</:g(t)dt.

A
Now for x > xy = max{z1, 22}, by Chebyshev’s inequality for the nondecreasing
functions f, g on the interval (%, :L'), we have
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/ 2%/xi(t)g(t > 37 [ 1040
> 1o /gt) t>xﬁi/i()dt/mg(1ﬁ)dt.

>mm2/o f(t)dt/ t)dt > — /f dt/gt)dt

In a similar way we can show < [* f(¢)dt [ g(t)dt > M [T f(t)g(x — t)dt for
sufficiently large x. (I

PROOF OF THEOREM 2.2. If ¢ € R,, then for every A > 0

e(Az) ~ A%(z), T — oo / t)dt ~ ?go( x), T — o0.
Let 7 : [0, +oo) — (0, 00) be a locally integrable function such that lim,_,o i(z) =
and 1 [ o = H%aga(:c)( x), for every £>0 Letl< X< (1+a)s; then

a+1

> 1. For sufﬁ(nently large z and t > \/X’ using f o p € Ry, we have

e [ sz (- ) ree ()

Now by (1), we obtain

There is a function j : (0,400) — R, lim,_,o j(x) = 1 such that, for every z > 0

Using
1 .
lim inf ar¢(0)i() Lta 1,
oo TLo(myi(e) | A
and (2), we have
S LG9 ) . [ (5=p(2)j(x))
e F G I e0 )~ (i)
Finally
f(é/o go(t)dt) <<é/O Flo@)dt, - oc. 0

PROOF OF THEOREM 2.3. Let k € N so that (142k)% < 1+4¢, g(z) = f(¥/z)
and ¢(x) = [z + 1]¥ (where [] denotes the integer part). Obviously ¢ € Ry and
g € Ry. Using Theorem 2.2 we get

L[ atenaes o (2 [Cewar). 0o
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This leads to

1 9ok k 14+92F 4 ... k
9(1) +9( >n+ +g<n)>>g( P2 +n)7 s

k k
(142 +..A:+n1 Y(A+2k) _ 2}5:11 > 1, by (2) we have

n
1425440k
()

Since lim,,

lim = .
k
e 9(11%)
Finally
Dt Ky 4 ... k k
fW+--+fn) _ g(1) +9(2%) + +9(n)>>g L D
n n 1+ 2k

and now by (2) and (1+ 2k)¥ < 1+ & we obtain

nk n n
g<1+2k>f<(1+2k)%)>>f<1+e>’ noee -

ProoF oF THEOREM 2.4. We will use the inequality

*) b_a/ 1) <b_ /f pdt)

where p > 1 and f is a nonnegative function. Let M > 1 be an arbitrary number

_1
and p > 1. Let 1 < A < ﬁ; then 2M (1 — %)1 » < 1. For sufficiently
1—(547) 7
large z, using (3) and (*), we get
M 2M * A—1 1 x
/ £(t) / f@yde ==t 1 [ ryar
z A rT—xJz
A A
A—1 1 *
< 2MT< — [ f(t)pdt>
AYX

O

(52 2 o) < [ ora)

ProOOF oF THEOREM 2.5. Note that ¢

()
/x o(t)1dt ~ ()q T — 00

/f t)dt ~ p(z /f T — 00.

Now we apply Theorem 2.4 and obtain

x)/:f(t)dt /f )dt < zp(x ( /f Pdt) . 2 — 0.

Finally
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o) (% /ol f(t)pdt> ' v p(a) (/ox f (t)pdt) %

1

([ ) o () (o) oo

/Ox Fe(t)dt < (ag+1)7 (/Oxf(t)f’f (/01 ga(t)th>; . z—o00. O

n—

Q=

ro]—

PROOF OF THEOREM 2.6. Let M > 0, n € N and A =

sufficiently large x we have
1 k—1
:L'> >2Mf < :L'>
n

s 2 (08
1 [* 1gs [ 1ga [
5/0 f(t)dt:Eé/wa(t)dDEkzzgﬁﬁxf(t)dt

for every k € {2,3,...,n}. Now it follows
I~z ,k—3 1 « k—1 FE) +-- 4 f(2La)
>-% L 20) > o= > M (=) = M= n O
ac];%zi( n v 2”1;2 / n v n

> 1. For a

[

n—

PROOF OF THEOREM 2.7. Let n € N and M > 1. Then for a sufficiently large
x and every k € {1,2,...,n} we have by (5),

k k
k , k[T Mn [=°
Ye) > - > .
f(n:c) > Mn mU/O ft)ydt> = /qile(t)dt
Summing by k£ € 1,2,...,n we have
fG) G+ +f(x)>Ml/ f(t)dt. O
n z Jo
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