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CONFORMAL AND GEODESIC MAPPINGS
OF GENERALIZED EQUIDISTANT SPACES

Marija S. Najdanovié, Milan Lj. Zlatanovié,
and Irena Hinterleitner

ABSTRACT. We consider conformal and geodesic mappings of generalized equi-
distant spaces. We prove the existence of mentioned nontrivial mappings and
construct examples of conformal and geodesic mapping of a 3-dimensional gen-
eralized equidistant space. Also, we find some invariant objects (three tensors
and four which are not tensors) of special geodesic mapping of generalized
equidistant space.

1. Introduction

Equidistant spaces are defined by the existence of concincular vector fields
which are characterized by the property that their covariant derivative is pro-
portional to the unity tensor. Examples of Riemannian spaces with concincular
vector fields are the well known spatially homogeneous and isotropic cosmological
models of space-time (pseudo-Riemannian manifolds with Friedmann-Lemaitre—
Robertson—Walker metric) [7]. Equidistant spaces were studied in [1}2}[6H11][20]
211[23124], etc.

The investigation of conformal and geodesic mapping theory for special spaces is
an important and active research topic. Conformal mappings of Riemannian spaces
with concincular vector fields were studied in the works of Brinkmann, Fialkov,
Yano, de Vries. On the other hand, geodesic mappings of equidistant Riemannian
spaces appeared in the papers of Sinjukov, Solodovnikov, Rosenfeld, Mikes, Kiosak,
Hall and many others.

In recent times, it has become very interesting to investigate spaces with non-
symmetric affine connection. The beginning of the study of general (nonsymmetric)
affine connection spaces is especially related to the works [3//4] of Einstein on Unified
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Field Theory. Many new and interesting results related to generalized Riemann-
ian spaces and, in general, nonsymmetric affine connection spaces, appeared in the
papers of Eisenhart, Minc¢ié¢, Nitescu, Prvanovié, Stankovié¢, Bohner, Yano, etc.

For the first time, equidistant generalized Riemannian space was defined in [1]
where geodesic mappings of such defined spaces were discussed. In the present
paper we continue our previous investigations, primarily from [1] and [6], studying
conformal and geodesic mappings of generalized equidistant spaces. Note that the
study is of a local character. All functions considered are assumed to be sufficiently
smooth.

1.1. Generalized Riemannian spaces. A generalized Riemannian space
GRy in the sense of Eisenhart’s definition [5] is a differentiable N-dimensional
manifold, equipped with a nonsymmetric basic tensor g;;(z), z = (x!,...,2")
where det(g;;) # 0. We can write g;; = ¢;; + g;; where ij denotes symmetriza-

)

A\
tion and ¢j antisymmetrization with division by indices ¢ and j. The Riemannian

v
space Ry determined by the symmetric part of the metric tensor of generalized
Riemannian space GRy, is adjoint space of the space GRy.

Generalized Christoffel symbols of the first kind of the space GRy are given by

1 .
_(gji,k — Gjk,i +gik,j)al7.77k = 1)' "7N7

Tijk = >

where g;; = 994 The connection coeﬂi(:lents of this space are generalized Christof-
Js 6z

fel symbols of the second kind I' i = = ¢“T, ji, where (g2) = (gij)~t, supposing
det(gij) # 0. Generally, it is I”- £ Tt kj- Therefore, one can define the symmetric
and anti-symmetric part of I'Z e respectively

. 1. , 1 ,
F;’_k:§( i+ k), ;kZQ( i — T
A\
The magnitude F; i is torsion tensor of the spaces GRy. Obviously, 3 E= F;_kJrFé k-
A\ A\
Notice that in GRy we have I, = 0 (eq. (2.10) in [15]).
A\

Using the nonsymmetry of the connection F; > in the generalized Riemannian

space, one can define four kinds of covariant derivatives (see [12H19]). For example,

for a tensor a], we have

i i TP 4t i i TP 4t
Qjlm = JermaJ FJm pr Ljim = +Fmpa] Fm] P’
1 2
1.1 . ) ) )
( ) ap — +Fz F;D ) az‘ — —I—F’L Fl) 7
jlm pm ] mjdp s jlm mp@ J jm%p-
3 4

Also, we can consider covariant derivative in GRy with respect to the symmetric
part of the connection "% Thus,

(1.2) at, o+ 6 T2 al

Jim = pm=j Jm p
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In the Riemannian space (T'%;, = 0) all types of covariant derivates at (ILT)) reduce

\%
to (I2).

In the case of the space GRy, we have five independent curvature tensors [14]

(in [14] ]5% is denoted by 12%)

Ry =i = D+ oL = T

B rin =T = Tojom + Dy = T Do

Ry = T = g+ Tl = Ty T+ T, (T, = T

Ry = T = Tl + T Ty = T, Ty T (T, = T5,),

B = 5 (T + T = Do = Doy + Tl + T 1%
~ T, ~ T4, T)

These curvature tensors produce Ricci tensors of 0-kind, i.e., Je%?ma = ]e%jm, 0 €

{1,...,5}.

2. Generalized equidistant spaces

Let GRy be a generalized Riemannian space with a nonsymmetric metric tensor
Gij-
DEFINITION 2.1. A vector field ¢ is called concircular if
i osi
(2.1) @i = pd;.
where p is a function, (5;» is the Kronecker delta, (;) denotes covariant derivative
with respect to the symmetric part of the connection F; k-

If p = const, p is called convergent. A generalized Riemannian space GRy with
concircular vector field is called generalized equidistant space.

Condition (1)) can be presented as ¢;,; = pg;; which means that the covariant
derivative of ¢; (denoted by (;), (IL2))) is proportional to the symmetric part of the
metric tensor of the space GRy. Also, the previous condition can be presented as

wilj = pgij — Liop,  wilj = p9is — Thipp
1 v 2 2

where (]) denotes covariant derivative of the corresponding kind in the space GRy
and I ; is the torsion tensor of GRy.

It vis known that in equidistant space Ry with symmetric metric tensor g;;,
where the concircular vector fields are nonmisotropic (i.e., g;jo'¢’ # 0), we can
introduce a system of the so-called canonical coordinates (z°), where the metric is
of the form

(2.2) ds® = a(z')(dz')? + b(z')d3?,
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a,b € C! are nonzero functions, and d3*> = Gou(2?,. .. ,2N)dz? dz* is the metric
form of certain Riemannian spaces Ry_; (see [6]). Here, and in what follows, the
indices o, u, 0 ... take values from 2 to N.

Let us look at the metric form of the space GRy:

(2.3) ds® = gijda'da? = (9i5 + gij)dz'da?.
As it holds
gijdr'ds) = gjda’dr’ < (gi; — gji)dx'dr? =0 < g;jdx'da? =0,
we get that (Z3) becomes ds? = g;;dr'dz? = g;;dr'dz?. So, we conclude that the

basic metric form of GRy can also be presente(T as (Z2). The symmetric parts of
Christoffel symbols of the second kind satisfy:

1ad 10
Fh:a;a Iy, =T7, =0, Fﬂ:_ﬁzga’“
2 Ly % v Nz
FQ: 5?507 F% - Fo’/_/,? (O’,‘Ll,,l/ > 1);
where §,,, are arbitrary symmetric functions of z?,... sV, det(gopu) # 0, fgu is

Christoffel symbols of the second kind derived from g, (x").
Consider two generalized equidistant spaces GRy and GRy, where the space
GRy has a metric form (22), and the space GRy has an analogous metric

(2.4) ds? = A(z')(dz")? + B(z")§opda® dat,

where A, B € C! are nonzero functions, and §,,, are arbitrary symmetric functions
of 22,..., 2%, det(go,) # 0.

Let f : GRy — GRy be a mapping of two equidistant spaces. Consider the
map in a common coordinate system x, i.e. the point M € GRy and its image
f(M) € GRy have the same coordinates = = (x',22,...,2"). The corresponding
geometric objects in GRy will be marked with a bar. Then the symmetric part of

3

the deformation tensor Pjik = f]k - I‘;k of that mapping has the form
1 /A o 1 /B v
1 _ 1 _ po __ [ o
Pi=s (ZE)’ Ple=Fn=0, A,=3 (EX)‘sw

2.5
( ) 1 1 B/A b/~ o o o
Pﬂ:7§ Igaufggau ) PHGZFuei no

The antisymmetric part of the deformation tensor will be denoted by E;-k, ie.,

i _ pi T i
& =P =T — Ty

A\ \% "
The following lemma holds for an arbitrary mapping of an arbitrary generalized
Riemannian space.

LEMMA 2.1. Under a mapping [ of generalized Riemannian space GRy onto
generalized Riemannian space GRy, in the common coordinate system x with respect
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to the mapping, antisymmetric tensor f}k satisfies
(2.6) ‘fzpk?p_j + €§')k§i_p = _Fgg?p_j - F?kgi_p)
v \

where Gij is the symmetric part of the metric tensor of GRy and Ffj is the torsion
"

tensor of GRy.

PROOF. It is known that in the generalized Riemannian spaces holds g, ;) = 0,

1
where we denote by || covariant derivative of the first kind in GRy (see [12]). Using
1
the definition of covariant derivative, we get
995 9g;;
W =P =) _ Wo=p | RPN =P | TP\ _
\%

=p _ = _  _
< gy + 1519, =0,
\2 - Vi -

2.7)

where we used g,;;., = 0, (;) is covariant derivative in the adjoint Riemannian

space Ry. As it is &, = f;-k — T, we get (Z8) from the last equation in (7). O
A\

\%

3. Conformal mappings of generalized equidistant spaces
Let GRy and GRy be two generalized Riemannian spaces.

DEFINITION 3.1. [22] The mapping f : GRy — GRy is conformal if in the
common coordinate system x with respect to the mapping, the metric tensors g;;
and g,; of this spaces satisty g,; = e gij, where v is a function on GRy.

For the Christoffel symbols of the first kind of GRy and GRy the following
relation is valid

Tk = Tiji + gjibw — gixthi + ginth.5)
and for the Christoffel symbols of the second kind

(3.1) f;’k = F;"k + 92(gipt k — ik p + Gpkt5)-

Let us introduce the notation v = v, = 9¢/dx* and ¢ = giﬁwp. From @BJ) we
obtain

=t

Ty = Tl 4+ 92(g500n — giktp + gprtds) + 92(g5p 0k — 9iktp + Gpktls);

ie.,

F;’k = F;"k + 5;' Vi + 6}, (e Z/figﬁ + g;‘kv (5;19 = f;’k - ;k)

where
ik = 92 (Gipr — gixtp + gprtj) = —E1j-
\2 \% \2
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So, under conformal mappings, the deformation tensor satisfies
(3.2) Pf_k = 85Uk + 05y — ' gk, Pl = i = 92 (9p Yk — Gik Yp + Gpk V5)-
A\ \4 \% Vv

By comparing (2.5) with the first equation in ([3.2]) for all cases of concrete values
of indices 1, j, k, we get

1 /A o 1/B v a (B b
v1 2(A a) 2(3 b) 2b<A a)’ Yo =00 0 =20 N
wherefrom we obtain A(z!') = p(z!)a(at), B(z!) = p(z!)b(z') and
1
(3.3) ¥ =gl +e,

where p is an arbitrary function of ', p’ # 0, and c is a constant. And also,
according to (2], right, and B3], we get

/ 1 pl
3.4 L_goo—0, ¢ =P g g0 — P yorg
( ) 510 no ) ou 2apgvl ’ €1p, 2 P g gpvﬂ
The basic metric form of the space GRy is
(3.5) ds? = p(ml)(a(xl)(dx1)2 + b(xl)gwdac"dx“).

Thus, the following theorem holds

THEOREM 3.1. Generalized equidistant space GRy with fundament metric form
@2) admits conformal mapping f on the generalized equidistant space GRy with
fundament metric form [BA), which is nontrivial for p’ # 0, determined by a non-
constant ¢ given in B3), and by the anti-symmetric tensor E;k given by ([B4).

ExaMpPLE 3.1. Let the generalized Riemannian space GR3z be given by the
nonsymmetric matrix

1 ($1)2 T ($3)2 1($2)2
(9i5) = |—(2")* — (2%)? e? e 2?2 +1
—(22)2 | e“’l(xQ +23)

Suppose that 2223+ (23)2 — (22)? # 0. Consider the symmetric and anti-symmetric
part of the basic matrix, respectively

1 0 0
(i) = |0 e a? e® x?
0 e”'2? e (22 + 2)
0 ()2 + (2%)?  (22)?
(9i5) = |—(=")* — (2°)? 0 1
\ 2
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Obviously, this space is equidistant and has the metric form ([2.2)) for a(z') = 1 and

b(z') = * . The inverse matrix (¢9*2) = (g;;)~" is in the form

1 0 0
N 0 2 + a8 —z2
(99) = e (2223 + (23)2 — (22)?) e (2223 + (23)2 — (22)?)
—x2 3
0

63;1 (I2$3 + (I3)2 _ ($2)2) ex1($2x3 + ($3)2 _ ($2)2)

Let us construct a conformal mapping of the space GR3. According to the
L1
previous theorem, we can take p(z!) = e” | p’ # 0, wherefrom ) = 2

sa! for ¢ = 0.
From (3:4) we obtain

22 + a3
2@951(12:03 + (:c3)2 _ (:c2)2)’

1 1 2
§1o =89 =0, &3=— {is =

—x3
2t (2223 + (23)2 — (22)2)
Thus, the conformal mapping is determined by the deformation tensor

Pjik = 5;'1/)19 + 6}, 1, *wigﬁJFf;ka

where 1 = 1, 1y = b3 = 0, and &', is given by (B.).

(3.6) 2

3
512 -

4. Geodesic mappings of generalized equidistant spaces

Let GRy and GRy be two generalized Riemannian spaces.

DEFINITION 4.1. [15] A diffeomorphism f : GRy — GRy is called geodesic
mapping of GRy onto GRy if f maps any geodesic curve in GRy onto a geodesic
curve in GRy.

According to [15[16], a necessary and sufficient condition that the mapping f
is geodesic is that the deformation tensor has the form

(4.1) ij = 5§¢k + 81b; +€;‘k7

where

(4.2) pi=—t pr oL @ )
14 N2 4 NTR TR

, o ,
(4.3) k=P =L — T
A\ \ A\
Equation @I can be written as f;k =Ty, + 05t + 05 + &y
DEFINITION 4.2. [15] A geodesic mapping f : GRy — GRy is equitorsion
if the torsion tensors of the spaces GRy and GRy are equal in the corresponding
points.
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According to [3)), it means that f;k — I‘;k = g;ik =0.
\4 Y

Let us construct a geodesic mapping of generalized equidistant space GRy with
metric form ([Z2) onto generalized equidistant space GRy with metric form (24).
By comparing equations which describe symmetric part of deformation tensor (2.5])
with necessary and sufficient condition (ZI]) of the geodesic mapping we obtain

1/A da 1/A o

1 _ 1A ay o« 1_ _ (A _a

PH_Q(A a) Y101 + 910 = 291 = 4(A a)
Pl, =0=110) +1hs0] = 1h5 =0

a 1 B/ b/ a o o o ]- B/ b/
Pli:§<§7€)5u:w15u+¢u51 :¢15H¢¢1:§<§—€)
1/B" v B v
P;_“: _§(Xg‘7“ - ngw> = wU‘S/lL +¢u5}7 =0= a1 =0
From here, after some calculation, we obtain
__pa(@) pb(x")
T (Itgb(a")2 T 1+ gb(zl)’

where p, ¢ are constants such that p # 0, 1 + qb(x') # 0 and ¢b/(z!) is not zero
identically. The metric of GRy has the form

1 b(l’l)
4.4 gt = @) e PP e,
(44) S oy PACC M prr s
Also,
1
(4.5) Y= —§ln|1+qb(:c1)| +c,

where ¢ is a constant. According to (2.6]) and ([@4) for all cases of concrete values
of indices 1, j, k, we get the following system of equations
g;’l = _F(17'17 (gf;t + FT;L)gp_a + (gtlrp, + Fi’u)gll = 0;

v v v

( ge + Fge)gﬂ + (559 + er)gﬁ = 0)

\%

ie.,

\%

;'1 = 7]‘—‘;1’ pb(xl)(]‘ + qb(xl))(gfp + ]‘—‘;l)p,)gpo' +pa(1.1)( ;’;t + Fi’u) = 07
(4.6) - Y - v
( gé + Fga)gpu + (559 + FZg)gap = 07

wherefrom we can determine anti-symmetric tensor Ej’ k-

Thus, the following theorem holds

THEOREM 4.1. Generalized equidistant space GRy with fundament metric form
@2) admits geodesic mapping f on the generalized equidistant space GRy with fun-
dament metric form (&4, which is nontrivial for p # 0, 1+qb(z') # 0 and nonzero
qb' (z1), determined by nonconstant ¥ given in [&H), and by the antisymmetric ten-

sor E;k given by ([A6]).
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EXAMPLE 4.1. By the theorem given above, the function ¢ = 7% In|l+ 2!
and the antisymmetric tensor

& = 5%1 = 553 = 533 =0, 553 =a® - 2%,
2 _ 3 _ a?(z® — 2?)
2= —€13 = e (2223 + (23)2 — (22)2)
N o st G0 R Gt
iz = e! (2223 + (23)2 — (22)2)’ S = et (2223 + (23)2 — (22)2)’

determine a geodesic mapping of generalized equidistant space GR3 given in the
Example 3.1 onto equidistant space Rs.

4.1. Invariant objects of equitorsion geodesic mapping. Invariant ge-
ometrical objects (invariants) are objects that do not change structure according
to the corresponding mappings. In the case of geodesic mapping between two Rie-
mannian spaces we have invariant geometric objects: the Tomas projective param-
eter and the Weyl projective tensor (see, for example, [10]). In [25] we found some
new invariants according to the equitiorsion geodesic mappings f : GRy — GRy.
All these objects exist in the space GRy and they are generalization of the Weyl
projective tensor. Among five invariants, three of them are tensors and we called
them “equitorsion projective tensors", and two of them are not tensors and we called
them “equitorsion projective parameters". Using the condition of the equidistant
spaces, we can find some interesting invariant geometrical objects which appear
under equitorsion geodesic mapping of generalized equidistant spaces.

Let f : GRy — GRy be a geodesic mapping of the generalized Riemannian
space which satisfies the condition

(47) ’(ﬂij = wgﬁ,

where w is an invariant and 1;; = 1;,; —1;%;, or in the terms of covariant derivatives
of the first and the second kinds

(4.8) leij =wgij — Ty, e zgij = wgij + Ty,

hij = V55 — iy, k =1,2. Then the space GRy is generalized equidistant whose
k k

equidistant congruence is generated by the vector ¢;. Indeed, conditions (@1 and
([A3) are equivalent to ;.; = pg;; in the case ¢ = eV, p = —we ¥ and the last
one presents the equation of generalized equidistant space. Further, suppose that
the mapping f is equitorsion, i.e., the condition §§-k = 0 is in force. Let us find the
invariant objects of this mapping of generalized equidistant space GRy.

As it is known, the relations between the corresponding kinds of curvatures
tensors of the spaces GRy and GRy under equitorsion geodesic mapping are [22]
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R;mn - Jl%ijmn + 5; (%Jmn - ?nm) + 5:711{)Jn - 521{}]'7” + 2Fl wj + QI‘mnwp(Sz
gzmn - gijmn + 0 (;pmn — “f"m) + 6}'7112%,1 — 5};12%” + 21” s+ QFP R
R =R 48 (mn — Ynm) + 08 in — 6t + 21” n + QFz b
3] 3 J J 5 1 5 ]
O R = B+ 0} — ) + St = iy + T w m
]E?_Z]mn = ]5% jmn + 5 51 (wmn - l/}nm + l/}mn - wnm) + 3 51 (wjn + w]n)
2 2 1

- 552(11%71 + g’jm)-

Let us start from the curvature tensor of the first kind. After using conditions (£.J))
we obtain

(4'10) R;mn = ?ijn (61 g]" 51 g]m) (6:71F§n - 6:1F§;m)wp + 2Finnwj'
\%
Contracting by indices ¢ and n in the previous equation we get

?jm = ]izjm +CU(1 - N) - (1 7N)Ffmwp7

wherefrom we have
1

(4.11) st = 7 o = o) + Tty
Put (@II) into (@IO) and obtain

i i 5:71 5} 5:1 i
(412) R]mn R jmn ﬁ(lﬁjn - Jl:i]n) - ﬁ(]ﬁ]m - R ) + QF l/}J

In the similar way, starting from the second equation in ([@3) and using (£.3)
we obtain the following equation for the curvature tensor of the second kind

o (i~ o)~ 3

i _ % -
(413) R =R Bjn) =

o jmn o Jmn m(

Let us sum up (I2) and (II3). We get

(]jjm - R )+2F1 w]

I % ; % 57177, 57} 5}
ijn + ijn = ?%mn + g jmn + N_—1 [?]” + gjn - (?J" + g]n)]
5t — —
N i 1 []?Jm + gjm - (]l%Jm + ljjm)]
If we introduce the notation
1jmn:§jmn+§]mn NT (?jn'i‘gjn)_ Nzl(ﬁjm—’—gjm)a
we obtain Q = Q",,n» Which means that Q]mn is an invariant object of equitor-

mn mn?
J 1 J

sion geodesm mapping. Obviously, this obJect is a tensor.
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Analogously to the previous consideration we can determine the relationships
between the curvature tenors of the third, the fourth and the fifth kind under
equitorsion geodesic mapping satisfying condition (ZJ]). Thus we have

5t — 5t —
‘3R;mn = ]??ljmn N—rjl(‘gﬂl - ‘3RJ’”) - N—ﬁl(];]m - ]??Jm)
+ 25Ty 2Ty + 2Ty,

. . o¢ i .
4.14 Lo — R —m (R _—R.)——" (R. —R.
L) R = Ry + 727 (Bin = Bin) N_g@m Bm)

+ 25;nrfnz/;p + 20T, + 20wy,

ot — ot —
Binn = By + 3727 Bm = Bin) — N—fl@m = Bim)-
After subtraction of the second equations from the first in (£I4]) we obtain
i

13 13 1 7 5m 5) %)
]??jmn - i%jmn = ]?:2 jimn %} jmn + N—[R jin — Rj’ﬂ - (]3%]" - R]n)]

— 1137 4 4
— v Bim = Bim — (Bym — L2m)].
After introducing the denotation
i i O o
2jmn - ]??jmn ‘i‘i jmn m(gﬂl - 5]") - ﬁ(]??jm - ‘{Ejm)a

we obtain Q;m” = Cg;mn, which presents the second invariant tensor of the map-
ping. From the last equation in (@I4) we get
5t 5
= Rt m_p.o__n p.
33’”” 5 Jmn N715J" N —15"™
which is the third invariant tensor, i.e. ngn = 3;mn.
Further, let us use ([@2) and the fact that the torsions of the corresponding
spaces are equal under equitorsion mapping in [@I2). Then we have
. 5 _ 5 _
m n
R;mn - ]l%zjmn + N _1 (]1%]" - ‘Z?Jn) TN -1 (‘Zl:i]'m - ]l%jm)

1 _
+ 21" (P’.’ —I?)

mn N 1V de T ip
SR e (g T (R~ T
= jmn T N7 Glin T Ltin N _ 1 \am T flim
) .
——TI" T2 .
N+4+1 "2
Let us denote
ot 2

51’
Qipan = Bgmn + 7 27 fin = 72 Niil

N1 dm N +1 m"FJP
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The object Q

way we can erte the second, the third and the fourth curvature tensor

imn 18 Invariant of the mapping, but is not a tensor. In the similar

7 i m . _ D _ _ .
gjmn 9 Jmn + N — 1(@]” gjn) N — 1(@ g]m)
n 2 i —=p 2 i T
Nl mmie” Ny1 mmo
R, =R +£(R- - R; )—i(R- —Rjm)
gJmn T ogamn LN gt It eI 3Im
2
P
5o (r]nrpq -1,
2 i —i i
+ N—H(ijrnp Fm]Fgr)zp) + N—H(Fnjrmp - Fnjrfnp)
I i 5:77, %) 5; %)
ijn =B jmn + m(@jn - @jn) - m(@jm — Bjm)
2 i
+ ]\74»]_(S ( Jn pq anrgq)

2 — i . .
NI 1(F,mrn,, ijrg;p) - N—H(rmrmp Fmrg’n »)

\% \%

wherefrom we get three more invariant parameters of the mapping which are not
tensors:

=R ﬁfi- - o R; 2 re Te
5jmn samn TN IR T N 1 N1 mmip
Do = B+ 72 B~ g om — o T
_ NLHF;? - NL_HF;JFW),
7]m" - {Ezjm" %{Ejn o N(s% 1§jm - Ni— 15:71 Jvn pq
2

7 2 7

Thus, we proved the following theorem.

THEOREM 4.2. Let f : GRy — GRy be an equitorsion geodesic mapping of
generalized equidistant space GRy in which the equidistant congruence is generated
by the vector 1; such that ¢ = e %. Then Ci?;mn, g;mn; ?;mn are invariant

tensors and Q;mn, Q;mn, Q;mn, Q;mn are invariant parameters (not tensors) of
4 5 6 7

this mapping.
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5. Conclusion

The notion of generalized equidistant spaces first appeared in our paper [1].
We here continued the idea of generalized equidistant spaces, studying conformal
and geodesic mappings of such spaces. We proved the existence of mentioned
nontrivial mappings and constructed examples of conformal and geodesic mapping
of a generalized equidistant space GRs.

Also, we found three invariant tensors and four invariant objects which are not
tensors under geodesic mapping. By linear combinations of the obtained objects
one can form new interesting invariant objects, but the question is how many of
them are linearly independent and what they are.

The equidistant spaces are defined as the spaces satisfying the condition gafj =
p5§, for some vector field ¢ and a function p.

Due to the fact that in the generalized Riemannian spaces there are four kinds
of covariant derivatives with respect to the connection F;k, we can also define
generalized equidistant spaces of the first and second kinds respectively by the
conditions

Py = P55 el = po;.
1 2

(Note that the covariant derivatives of the third and fourth kinds are reduced to
the second and the first kind, respectively, in the case of ¢°.)

All this opens new questions and gives quite interesting ideas for the further
investigation.
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