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SYMMETRIC POLYOMINO TILINGS,
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Abstract. We apply the theory of Gröbner bases to the study of signed,
symmetric polyomino tilings of planar domains. Complementing the results
of Conway and Lagarias we show that the triangular regions TN = T3k−1

and TN = T3k in a hexagonal lattice admit a signed tiling by three-in-line
polyominoes (tribones) symmetric with respect to the 120◦ rotation of the
triangle if and only if either N = 27r − 1 or N = 27r for some integer r > 0.
The method applied is quite general and can be adapted to a large class of
symmetric tiling problems.

1. Introduction and a summary of main results

Our general objective is to explore signed polyomino tilings which are symmetric
with respect to a group of symmetries by the methods of standard (Gröbner) bases
of polynomial ideals.

The tiling depicted in Figure 1, illustrating the case N = 8 of Theorem 1.1,
shows that a triangular region in a hexagonal lattice may have a signed tiling by
congruent copies of the three-in-line tile (tribone). In the same paper Conway
and Lagarias showed [6, Theorem 1.2.] that neither this nor any other triangular
region in the hexagonal lattice can be tiled by tribones (if ‘negative’ tiles are not
permitted).

A very nice exposition of these and related results can be found in [15] and [9,
Chapter 23].

Theorem 1.1 (Conway–Lagarias [6, Theorem 1.4]). The triangular region TN

in the hexagonal lattice has a signed tiling by congruent copies by three-in-line tiles
(tribones) if and only if N = 9r or N = 9r + 8 for some integer r > 0.

Our main results (Theorems 5.1 and 5.2) say that the triangular regions TN =
T3k−1 and TN = T3k in a hexagonal lattice1 admit a tiling by tribones symmetric
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1In the remaining case N = 3k + 1 there is a hexagon in TN fixed by the 120◦-degrees

rotation.
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with respect to the rotation of the triangle through the angle of 120◦ degrees if and
only if either N = 27r − 1 or N = 27r for some integer r > 0. In particular the
triangle depicted in Figure 1 does not admit such a tiling.

Figure 1. A signed tiling of a triangular region in the dual of the
hexagonal lattice.

The method applied for the proof of this theorem is based on the observation
that the tile homology group introduced by Conway and Lagarias in [6] (see also
Reid [13, Section 2]) is naturally a module over the group ring of the associated
group of translations. This group ring is a quotient of a polynomial ring which
allows us to reduce the tiling problem to the ‘submodule membership problem’ and
apply the theory of Gröbner bases.

1.1. Gröbner bases approach to polyomino tilings. Surprisingly enough
there are very few applications of the algebraic method based on the Gröbner basis
to problems of tilings and tessellations and the only reference we are aware of is
the paper by Bodini and Nouvel [5]. The fact that the ‘tile homology group’ in
the sense of [13] is a module over a polynomial ring offers some obvious technical
advantages. One of our objectives is to advertise this approach in the context
of signed tilings with symmetries. These problems seem to be particularly well
adapted to the algebraic method in light of the fruitful relationship between the
theory of Gröbner bases and the theory of invariants of group actions [7, 14].

We work with Göbner bases with integer coefficients. Standard references are
[1, 4], see also [11] for an overview and some applications.

2. Generalities about lattice tilings

There are three regular lattice tilings of R2, the triangular lattice L∆, square
lattice L�, and the hexagonal lattice Lhex, depicted in Figure 2. If L is one of these
lattice tilings, then the associated dual lattice (point set) L◦ is generated by all
barycenters of the elementary cells of L.

Let A(L) be the free abelian group generated by all elementary cells of the
lattice L. A ‘lattice tile’ P (informally a lattice figure in L), defined as a finite
collection P = {c1, . . . , cn} of cells in L, is associated an element P = c1 + . . . + cn

of the group A(L).
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Figure 2. Three regular lattice tilings of the plane.

The problem if a given bounded lattice region (lattice figure) R admits a signed
tiling with translates of prototiles R = {R1, . . . , Rk} is an instance of the subgroup
membership problem. Indeed, let B(R) be the subgroup of A(L) generated by all
translates of prototiles Ri and let H(R) = A(L)/B(R) be the associated ‘homology
group’. Then (following [6] and [13]) such a tiling exists if and only if R ∈ B(R)
or equivalently if the coset R + B(R) is the zero element in H(R).

Let G = G(L) be the group of all affine transformations that keep the lattice
tiling L invariant. Let Γ = Γ(L) be its subgroup of all translations with this
property. By selecting 0 ∈ L◦ as the zero element, L◦ is turned into a group and
there is a natural identification Γ = L◦.

The group A(L) is a clearly a module over the group ring Z[Γ] (which is iso-
morphic to the ring Z[Z2] of Laurent polynomials in two variables. This ring can be
obtained (in many ways) as a quotient of the semigroup ring Z[Nd] ∼= Z[x1, . . . , xd]
(for some d).

This observation allows us to see the groups A(L), B(R) and H(R) as modules
over the polynomial ring Z[x1, . . . , xd] and to reduce the tiling question to the
submodule membership problem [8, Chapter 5]. In turn, in the spirit of [5], one can
use the ideas and methods of Gröbner basis theory.

Here we put some emphasis on the use of the ‘submodule membership problem’
as a natural extension of the ‘ideal membership problem’, originally proposed and
used by Bodini and Nouvel in [5]. This appears to be a more natural and conceptual
approach to the general tiling problems since the module A(L) is no longer required
to be monogenic (cyclic over Z[P ]) which allows us a greater freedom in choosing
the semigroup ring Z[P ]. This property will be indispensable in the study of tilings
symmetric with respect to a group of symmetries which is the main goal of this
paper.

2.1. An example. The reader may find the following example, depicted in
Figure 3, as a good illustration of the main problem studied in our paper.

The (3 × 3) checkerboard C3×3 (Figure 3) is supposed to be paved by trans-
lates of two types of prototiles. Each of the cells (elementary squares) is la-
belled (coordinatized) by a pair (i, j) ∈ N

2 of integers and each tile (polyomino)
is formally a union of a finite number of elementary cells. In the example de-
picted in Figure 3, there are two types of prototiles, T1 = {(0, 0), (1, 0), (0, 1)} and
T2 = {(1, 1), (1, 0), (0, 1)}.

The tiling depicted in Figure 3 satisfies the following conditions:
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Figure 3. A signed tiling of a 3 × 3 square symmetric w.r.t. the
main diagonal.

(1) The (3 × 3) chessboard C3×3 is covered by 3 translated copies of pro-
totile T1 and 2 translated copies of prototile T2. In general the translated
prototiles are not required to be subsets of C3×3.

(2) Each (translated) prototile is associated a weight (sign) and the total
weight of each of the cells (i, j) ∈ C3×3 is equal to 1. (The condition that
the total weight of cells outside C3×3 is zero is added if prototiles are not
necessarily subsets of C3×3.)

(3) The tiling is symmetric with respect to the main diagonal of C3×3 in
the sense that if a translated prototile T + v (where T ∈ {T1, T2} and
v ∈ N

2) appears in the decomposition (tiling) with a weight w ∈ Z, then
the diagonally symmetric prototile T ′ + v′ is also present with the same
weight.

A basic observation is that each polyomino P ⊂ N
2 can be associated a polynomial

fP =
∑

{xiyj | (i, j) ∈ P }, for example fT1
= 1 + x + y and fT2

= x + y + xy. The
decomposition depicted in Figure 3 naturally corresponds to the following decom-
position of polynomials in the ring Z[x, y] (or in the ring Z[σ1, σ2] of symmetric
polynomials):

(2.1) fT1
+ [xfT1

+ yfT1
] − fT2

+ xyfT2
= (1 + x + x2)(1 + y + y2) = fC3×3

.

Our immediate objective is to use the theory of Gröbner bases to generate such iden-
tities. More generally we want to develop and study procedures and algorithms for
the systematic analysis (existence and other properties) of decompositions similar
to (2.1).

2.2. Basic facts about polyomino tilings. Informally a polyomino pattern
P (or polyomino for short) is a (not necessarily connected) finite region consisting
of cells in one of the three regular lattice tilings of the plane (Figure 2). It is
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sometimes more convenient to describe a polyomino as a collection P = {c1, . . . , ck}
of elementary cells in the associated lattice L. Some authors use the generic name
polyforms for all three types of polyominoes so the L�-polyforms are polyominoes
in the usual sense [10], Lhex-polyforms are referred to as polyhexes etc.

We frequently use a slightly more general (algebraic) definition of a polyomino
as a multiset, subset of L, with multiple and possibly with negative elements. We
will tacitly make a distinction between the geometric and algebraic definition by
reserving the term ‘weighted polyomino’ for the algebraic version. However most of
the time the term ‘polyomino’ is used interchangeably for both kinds of polyomino
patterns.

Definition 2.1. A (weighted) polyomino P is a finite weighted subset of L (a
multiset) which contains each elementary cell c ∈ L with some (positive or negative)
multiplicity wc ∈ Z. In other words P =

∑

wcc is an element of the free abelian
group A(L) generated by all cells of the lattice tiling L.

2.3. Geometric-algebraic dictionary of polyomino tilings. We have al-
ready seen in Section 2.1 an example of the correspondence between a geometric
image (Figure 3) and an algebraic expression (equation (2.1)), based on the corre-
spondence (i, j) ↔ xiyj between the cell labelled by (i, j) ∈ N

2 and the associated
monomial xiyj.

More generally, let S ∼= N
d be a semigroup which acts on the lattice L by

translations, meaning that there exists a homomorphism ρ : S → Γ from S to the
group Γ = Γ(L) of all translations that keep the lattice tiling L invariant.
The group A(L) is naturally a module over the semigroup ring Z[S] ∼= Z[x1, . . . , xd].
For example if S = Γ then Z[S] ∼= Z[Γ] and A(L) is a Z[Γ]-module where Z[Γ] ∼=
Z[x, x−1; y, y−1] is the ring of Laurent polynomials.

Let R = {P1, . . . , Pk} be a collection of basic tiles (prototiles). Define B(R) as
the subgroup of A(L) generated by all translates of the prototiles Pi, or equivalently
as a Z[S]-submodule of A(L) generated by R.

The following tautological proposition links the idea of the tile homology group
of Conway and Lagarias [6] and Reid [13] with the ‘submodule membership prob-
lem’ typical for applications of Gröbner bases (as proposed by Bodini and Nouvel
in [5]).

Proposition 2.1. A polyomino P has a signed tiling by translates of prototiles
R = {P1, . . . , Pk} if and only if P ∈ B(R) where B(R) is the Z[S]-submodule of
A(L) generated by R. The associated class [P ] in the tile homology module

(2.2) H(R) := A(L)/B(R)

is a ‘quantitative measure’ of how far is P from admitting a tiling by R.

A modified version of Proposition 2.1 applies to proper subsets of the lattice
tiling L. The following proposition serves as an illustration of the simplest case
where we restrict our attention to the first quadrant of the L�-lattice tiling. In
this case S = N

2 and Z[S] = Z[x, y]. As in Section 2.1, each polyomino P ⊂ N
2 is

associated a polynomial fP =
∑

{xiyj | (i, j) ∈ P }.
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Proposition 2.2. A polyomino pattern P ⊂ N
2 admits a signed tiling by the

first quadrant translates of polyomino patterns P1, . . . , Pk if and only if,

fP = h1fP1
+ · · · + hkfPk

for some polynomials h1, . . . , hk with arbitrary integer coefficients or equivalently
if,

fP ∈ 〈fP1
, . . . , fPk

〉.

2.4. Equivariant polyomino tilings. The group G = G(L) was introduced
in Section 2 as the group of all affine transformations that keep the lattice tiling
L invariant. The abelian group A(L) is a module over the group ring Z[G]. Since
Γ ⊂ G is a normal subgroup, we observe that G acts on A(L) preserving its Z[Γ]-
module structure as well, provided G acts on the ‘scalars’ from Z[Γ] by conjugation.

Let Q ⊂ G be a (finite) subgroup of G. Assume that the set R of prototiles is
invariant with respect to the group Q. Then Q acts on the submodule B(R) and
the tile homology module (2.2). Again, one shouldn’t forget that the action of Q
on scalars from Z[Γ] may be nontrivial. Define B(R)Q = HomQ(Z, B(R)) as the
subgroup (submodule) of B(R) of elements which are invariant under the action of
Q.

If we restrict our attention to the subring Z[Γ]Q ⊂ Z[Γ] of Q-invariant elements,
then the action of Q on scalars from Z[Γ]Q is trivial and the Z[Γ]Q-module A(L) is
a Q-module in the usual sense.

An element of the group A(L)Q is referred to as an equivariant signed poly-
omino. The fundamental problem is to decide when a given polyomino P ∈ A(L)Q

admits a Q-symmetric signed tiling by translates of a Q-invariant family of pro-
totiles R. The following criterion is an equivariant analogue of Proposition 2.1.

Proposition 2.3. Let R be a Q-invariant (finite) set of prototiles. A Q-
invariant polyomino P ∈ A(L)Q has an equivariant, signed tiling by translates of
prototiles R if and only if P ∈ B(R)Q where B(R) is the Z[Γ]Q-submodule of A(L)
generated by R.

The setting of Proposition 2.3 is exactly the same as before (Proposition 2.1),
however the emphasis is now on the Z[Γ]Q-module structure on A(L)Q and B(R)Q.
In order to apply this criterion one is supposed to determine the ring of invariants
Z[Γ]Q and the structure of the module B(R)Q. Both goals can be achieved with
the aid of the theory of Gröbner bases, see [7, Section 7] for necessary tools.

3. Hexagonal polyomino with symmetries

3.1. Lattices and semigroup rings. Let Ghex be the group of symmetries
of the hexagonal tiling Lhex of the plane depicted in Figure 4. Our objective is
to study Lhex-tiling problems which are symmetric with respect to some (finite)
subgroup of Ghex. Our initial focus is on subgroups which act without fixed points
(invariant hexagons) so let S3 be the group of all elements in Ghex which keep the
vertex o fixed, and let Z3 be its subgroup generated by the 120◦-rotation.

The group Ghex has a free abelian subgroup D = Γ(Lhex) ∼= Z
2 of rank 2

which is generated by three translations (vectors) tx, ty, ty satisfying the condition
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tx + ty + tz = 0. The associated group ring P = Z[D] is isomorphic to the ring
Z[x, y; x−1, y−1] of Laurent polynomials in two variables. For our purposes a more
convenient representation is P = Z[x, y, z]/〈xyz − 1〉 (Figure 4) where variables

x, y, z correspond to vectors tx =
−→
bc4, ty = −→ca, tz =

−→
ab.

Figure 4. The hexagonal tiling group Ahex as a module over P =
Z[x, y, z]/〈xyz − 1〉.

Figure 5. The lattice of black dots as a module over the lattice
of white dots.

Let Ahex be the (infinite dimensional) free abelian group generated by all ele-
mentary hexagonal cells of the lattice Lhex. The group Ahex is a finitely generated
module over the ring P , indeed it is generated by the three neighboring cells a, b, c
with common vertex O, depicted in Figure 4.

For added clarity, from here on the lattice Lhex is represented by its dual lattice
L◦

hex of barycenters of all hexagons (the black dots in Figure 5). Consequently the
‘lattice’ L◦

hex is a geometric object (a periodic set of points).
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The lattice (discrete subgroup of Z2) D, generated by vectors tx, ty, tz is in this
figure represented by white dots. The fact that Ahex is a module over P is simply
a reformulation of the fact that the lattice of white dots acts on the set of black
dots.

The lattice D is sometimes (Section 3.4) referred to as the xyz-lattice. The
lattice (discrete group) E generated by black dots is referred to as the abc-lattice
since it is generated by vectors ta, tb, tc, where ta + tb + tc = 0 (Figure 5). The
group ring of E is Q = Z[a, b, c]/〈abc − 1〉.

Note that E has three types of points (Figure 5 on the right) which reflects the
fact that the ‘white dot lattice’ D is a sublattice of E of index 3.

3.2. The actions of S3 and Z3 on Z[x, y, z]. Here we collect some basic
facts about the symmetric group S3 and the cyclic group Z3 actions on Z[x, y, z]
induced by the permutations of variables x, y, z. As usual for a given G-module M ,
the associated submodule of G-invariant elements is MG. Elementary symmetric
polynomials are σ1 = x + y + z, σ2 = xy + yz + zx, σ3 = xyz.

The S3-invariant polynomials in Z[x, y, z] which form a Z-basis are σp
3 = xpypzp

(where p > 0), ∆(xpypzq) = xpypzq + ypzpxq + zpxpyq (for p 6= q), and for p 6= q 6=
r 6= p,

(3.1) H(xpyqzr) = xpyqzr + ypzqxr + zpxqyr + ypxqzr + xpzqyr + zpyqxr .

Basic Z3-invariant polynomials in Z[x, y, z] are,

(3.2) xpypzp (where p > 0) and ∆(xpyqzr) = xpyqzr + ypzqxr + zpxqyr,

where (p, q, r) 6= (p, p, p). There is an involution I on the set Z[x, y, z]Z3 of Z3-
invariant polynomials defined by I(p(x, y, z)) = p(y, x, z). The map α : Z[x, y, z]S3 →
Z[x, y, z]Z3 is a monomorphism and the image Im(α) is the fixed point set of the
involution I. More explicitly, α(xpypzp) = xpypzp,
(3.3)

α(∆(xpypzq)) = ∆(xpypzq) and α(H(xpyqzr)) = ∆(xpyqzr) + I(∆(xpyqzr)).

From here we deduce the following proposition.

Proposition 3.1. There is a commutative diagram

(3.4)

0 −→ 〈xyz − 1〉S3 −→ Z[x, y, z]S3 −−−−−−−→ Z[σ1, σ2] −−−−−−−→ 0




yα′





yα





yα′′

0 −→ 〈xyz − 1〉Z3 −→ Z[x, y, z]Z3 −→ (Z[x, y, z]/〈xyz − 1〉)Z3 −→ 0

where 〈xyz −1〉 ⊂ Z[x, y, z] is the principal ideal generated by xyz −1, with the split
horizontal exact sequences and injective vertical homomorphisms α, α′ and α′′.

Proof. Since Z[x, y, z]S3 = Z[σ1, σ2, σ3] and 〈xyz−1〉S3 = Z[σ1, σ2, σ3](σ3−1),
the exactness of the first row in (3.4) is an immediate consequence.

More explicitly the description of S3-invariant and Z3-invariant polynomials in
Z[x, y, z] ((3.1) and (3.2)) allows to describe in a similar fashion invariant poly-
nomials in the ideal (submodule) 〈xyz − 1〉 = 〈σ3 − 1〉. For example the basic
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S3-invariant polynomials in 〈σ3 − 1〉S3 are,

(3.5) σp
3(σ3 − 1), ∆(xpypzq)(σ3 − 1), H(xpyqzr)(σ3 − 1).

Figure 6. 3d-representation of invariant polynomials (Proposition 3.1)

Similarly, the basic Z3-invariant polynomials in 〈σ3 − 1〉Z3 are

(3.6) σp
3(σ3 − 1) and ∆(xpypzq)(σ3 − 1).

There is an exact sequence of Z[Z3]-modules,

0 → 〈xyz − 1〉 −→ Z[x, y, z] −→ Z[x, y, z]/〈xyz − 1〉 → 0

The ideal 〈xyz − 1〉 is as a Z-submodule of Z[x, y, z] freely generated by binomials
xpyqzr(xyz − 1) = xp+1yq+1zr+1 − xpyqzr. This binomial is Z3-invariant if and
only if p = q = r. From here, we easily deduce the structure of 〈xyz −1〉 as a Z[Z3]-
module, in particular we observe that there is a decomposition 〈xyz − 1〉 ∼= T ⊕ F
of Z[Z3]-modules where T is a trivial and F a free Z[Z3]-module.

It follows that H1(Z3; 〈xyz − 1〉) ∼= 0 and from the long exact sequence of
cohomology we obtain the exactness of the second row of (3.4),

0 → 〈σ3 − 1〉Z3 −→ Z[x, y, z]Z3 −→ (Z[x, y, z]/〈xyz − 1〉)Z3 → 0.

In particular,

(Z[x, y, z]/〈xyz − 1〉)Z3 ∼= Z[x, y, z]Z3/〈xyz − 1〉Z3 .

The injectivity of α and α′ follows from (3.3). In order to establish the injectivity of
α′′, we observe that (in light of (3.2) and (3.6)) Z[x, y, z]Z3/〈xyz−1〉Z3 is isomorphic
to the submodule of Z[x, y, z]Z3 generated by 1 = x0y0z0, ∆(xp) = xp + yp + zp

and ∆(xpyq) = xpyq + ypzq + zpxq (where (p, q) 6= (0, 0)). Similarly, in light of
(3.1) and (3.5), we observe that Z[σ1, σ2] ∼= Z[x, y, z]S3 /〈xyz − 1〉S3 is generated
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by 1 = x0y0z0, ∆(xp), ∆(xpyp) and H(xpyq). For example, one of these H-
polynomials (or hexagons) is depicted in Figure 6. From here, we observe that α′′

is injective since it satisfies analogues of formulas (3.3). �

3.3. The ring P Z3 of Z3-invariant polynomials. We begin the analysis
of Z3-invariant hexagonal tilings by describing the structure of the ring P Z3 =
(Z[x, y, z]/〈xyz − 1〉)Z3 of Z3-invariant polynomials.

The ring P is as a Z-module freely generated by monomials xpyqzr which are
not divisible by xyz, that is monomials xpyqzr which satisfy at least one of the
conditions p = 0, q = 0, r = 0. Each of these monomials is associated a white dot
in the XY Z-coordinate system (Figure 7).

The ring P Z3 of Z3-invariant polynomials is as a free Z-module generated by
polynomials (‘triangles’) ∆(xpyq) = xpyq +ypzq +zpxq, where either p > 0 or q > 0,
and the constant monomial 1 = x0y0z0. Note that ∆(xpyq) is the Z3-symmetrized
version of xpyq; we also write ∆(1) = 3 = 1 + 1 + 1. Moreover, xpyq is the leading
monomial of ∆(xpyq) in the graded reversed lexicographic monomial order such
that x > y > z. Consequently, ∆(yk) = ∆(zk) is almost always recorded as ∆(xk).

Figure 7. Polynomial ∆(x2y) = x2y+y2z+z2x as one of basic ∆-
polynomials which generate (over Z) all Z3-invariant polynomials
in P .

Lemma 3.1. The following identities hold in the ring P = Z[x, y, z]/〈xyz − 1〉.

(3.7) ∆(xy)∆(xp−1yq−1)=∆(xpyq)+∆(xp−1yq−2)+∆(xp−2yq−1) (p > 2, q > 2)

(3.8) ∆(x)∆(xp−1yq) = ∆(xpyq) + ∆(xp−1yq+1) + ∆(xp−2yq−1) (p > 2, q > 1)

(3.9) ∆(x)∆(xpyq−1) = ∆(xpyq) + ∆(xp+1yq−1) + ∆(xp−1yq−2) (p > 1, q > 2)

(3.10) ∆(x)∆(xp−1) = ∆(xp) + ∆(xp−1y) + ∆(xyp−1) (p > 2)

(3.11) ∆(xy)∆(xp−1) = ∆(xpy) + ∆(xp−2) + ∆(xyp) (p > 2).
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By the injectivity of the map α′′ (Proposition 3.1) the ring Z[σ1, σ2] can be seen
as a subring of the ring P = Z[x, y, z]/〈xyz − 1〉, so both P and P Z3 are modules
over Z[σ1, σ2].

Theorem 3.1. The ring P Z3 = (Z[x, y, z]/〈xyz −1〉)Z3 of Z3-invariant polyno-
mials is isomorphic (as a module over Pσ = Z[σ1, σ2]) to the free module Pσ ·1⊕Pσ·θ
of rank two where θ = ∆(x2y) (Figure 7). Moreover,

(3.12) Θ = Θ(σ1, σ2, θ) := θ2 − (σ1σ2 − 3)θ + (σ3
1 + σ3

2 − 6σ1σ2 + 9) = 0

so there is an isomorphism of the rings

(3.13) (Z[x, y, z]/〈xyz − 1〉)Z3 ∼= Z[σ1, σ2, θ]/〈Θ〉

where 〈Θ〉 is the principal ideal in Z[σ1, σ2, θ] generated by Θ.

Proof. By definition ∆(x) = σ1, ∆(xy) = σ2, θ = ∆(x2y) and θ′ = ∆(xy2).
Let us show that the ring P Z3 of Z3-invariant polynomials in P is generated as a
Z[σ1, σ2]-module by 1 and θ.

• If p > 2 and q > 2, then by identity (3.7) (Lemma 3.1) the polyno-
mial ∆(xpyq) can be expressed in terms of lexicographically smaller ∆-
polynomials, multiplied by elements of Z[σ1, σ2].

• If p > 3 and q = 1, then by Lemma 3.1 (equation (3.8)) the polynomial
∆(xpy) can be also reduced to lexicographically smaller ∆-polynomials.

• If p > 2, then ∆(xp) is by Lemma 3.1 (equation (3.10)) reducible to
lexicographically smaller ∆-polynomials.

Using the symmetry to cover the cases of ∆(xyq) for q > 3, we observe that all ∆-
polynomials can be expressed in terms of θ, θ′, σ1, σ2 and 1. Since θ + θ′ = σ1σ2 − 3
(equation (3.11)) we finally conclude that

(3.14) P Z3 = Z[σ1, σ2] · 1 + Z[σ1, σ2] · θ.

The sign + in formula (3.14) can be replaced by ⊕. Indeed, if P + Qθ = 0 for some
P, Q ∈ Z[σ1, σ2], then (by interchanging variables x and y) we have P + Qθ′ = 0
which is possible only if P = Q = 0.

By (3.14) θ2 = P + Qθ for some P, Q ∈ Z[σ1, σ2] which by direct calculation
leads to equation (3.12) and isomorphism (3.13). �

3.4. The abc-lattice E and the xyz-lattice D. The ‘white dot’ lattice or the
xyz-lattice D (Section 3.1) is generated by vectors (translations) tx, ty, tz (Figures 4
and 5). It is convenient to introduce the abc-lattice E as the lattice generated by
the vectors ta, tb, tc (Figures 8 and 9).

The lattice D is a sublattice of E of index 3. The set of black dots (Figures 5,
8 and 9) is clearly one of the cosets of the quotient lattice E/D ∼= Z3.

The fact that E/D ∼= Z3 explains why there are three types of dots in these
images. In order to avoid clutter, we will in subsequent sections continue to draw
only black and white dots, however one should keep in mind the whole of the back-
ground lattice E and the presence of ‘invisible’ dots (circled asterisks in Figures 8
and 9).
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Figure 8. The lattice E has three types of dots,black, white, and
asterisks in circles.

Figure 9. Three types of dots correspond to the cosets of the
sublattice D ⊂ E.

Let ι : E → Z/3Z be the homomorphism which sends the generators a, b, c to 1 ∈ Z.
Then D = E0 = ι−1(0) is the set of white dots and E1 = ι−1(1) is the set of black
dots.

3.5. The abc-ring Q and the xyz-ring P. Let Q = Z[a, b, c]/〈abc − 1〉 be
the semigroup ring of the lattice E and let QZ3 = (Z[a, b, c]/〈abc − 1〉)Z3 be the
associated ring of Z3-invariant polynomials. All structure results that apply to the
ring P = Z[x, y, z]/〈xyz − 1〉 apply to the ring Q as well. In particular there is an
isomorphism (Theorem 3.1),

(3.15) (Z[a, b, c]/〈abc − 1〉)Z3 ∼= Z[s1, s2, t]/〈Θ〉

where Θ = Θ(s1, s2, t) is the polynomial described in equation (3.12) and

s1 = a + b + c s2 = ab + bc + ca t = ∆(a2b) = a2b + b2c + c2a.
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The homomorphism ι : E → Z/3Z introduced in Section 3.4 allows us to define
a Z3-grading in the rings Q and QZ3 . Indeed, the monomial m = apbqcr ∈ Q is
graded by its ‘degree mod 3’ i.e., the mod 3 class of deg(m) = p + q + r.

The xyz-ring P , as the group ring of the lattice D of white dots, corresponds
to the elements in the abc-ring Q graded by 0. Indeed, this follows from the fact
(Figure 9) that x = ac2, y = ba2, z = cb2.

Moreover, the P -submodule of Q of elements graded by 1 (monomials with
the degree congruent to 1 mod 3) is precisely the submodule generated by the
monomials associated with the black dots.

Recall that the P -module generated by black dots is precisely the module Ahex

from Section 3.1. This observation allows us to reduce the “submodule membership
problem” in the P -module Ahex to the corresponding “ideal membership problem”
in the ring Q. We are primarily interested in Z3-invariant polynomials, so in the
following section, we show how the similar “submodule membership problem” in the
P Z3-module AZ3

hex can be reduced to the corresponding “ideal membership problem”

in the ring QZ3 (Proposition 3.2).

3.6. The ring QZ3 and AZ3

hex as a P Z3-module. The free abelian group Ahex,
generated by all elementary 2-cells of the hexagonal lattice Lhex (or equivalently
all 0-dimensional cells of its dual lattice L◦

hex), is a module over the ring P =
Z[x, y, z]/〈xyz − 1〉.

∆-polynomials already appeared in the description of the ring P Z3 of Z3-
invariant polynomials in P (Figure 7). Following the idea of the ‘Newton polygon
construction’, a polynomial ∆(xpyq) = xpyq +ypzq +zpxq is visualized as a triangle
with vertices in the ‘white dot’-lattice, invariant with respect to the action of group
Z3.

Similarly the ∆-polynomials ∆(apbq) = apbq + bpcq + cpaq are, together with
1 = a0b0c0, Z-generators of the ring QZ3. An immediate consequence is that P Z3

is a subring of QZ3 .
Finally, the ‘black dot’ ∆-polynomials ∆(xpyqa) = xpyqa + ypzqb + zpxqc (Fig-

ure 10) form a Z-basis of the group AZ3

hex of Z3-invariant elements of Ahex.
The ring QZ3 inherits the Z3-gradation from the ring Q. Moreover P Z3 is

precisely the subset of all elements graded by 0 ∈ Z3, while AZ3

hex is generated
by ‘black dot triangles’ which are precisely the triangles graded by 1 ∈ Z3. This
characterization is a basis of the following fundamental proposition.

Proposition 3.2. Let K ⊂ AZ3

hex be a P Z3-submodule of AZ3

hex. Let IK ⊂ QZ3

be the ideal in QZ3 generated by K. Suppose that p ∈ AZ3

hex. Then,

p ∈ K ⇐⇒ p ∈ IK .

In other words the ‘submodule membership problem’ is reduced to the ‘ideal mem-
bership problem’ in the ring QZ3 .

Proof. The implication p ∈ K ⇒ p ∈ IK is clear. The reverse implication
is equally easy. Indeed, if p = α1p1 + · · · + αkpk for some elements pi ∈ K and
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homogeneous (in the sense of the Z3-gradation) elements αi ∈ QZ3 , then we can
assume that all αi ∈ P Z3 (the other terms cancel out). �

Figure 10. ∆-polynomials in the ‘black dot lattice’ generate the
group AZ3

hex.

3.7. Submodule of AZ3

hex generated by tribones. A three-in-line hexago-
nal polyomino or a tribone is a translate of one of the following three types (Fig-
ure 10),

Tx = x−1 + 1 + x = ab2 + 1 + ac2

Ty = y−1 + 1 + y = bc2 + 1 + ba2

Tz = z−1 + 1 + z = ca2 + 1 + cb2

If A = xpyqa is a ‘black dot’ in the angle XOY , then the three basic tribones
centered at the point A are

(3.16) Tx(A) = xpyqaTx, Ty(A) = xpyqaTy, Tz(A) = xpyqaTz.

For example,

Tx(a) = (x−1 + 1 + x)a Ty(a) = (y−1 + 1 + y)a Tz(a) = (z−1 + 1 + z)a

The Z3-symmetric triplets of tribones, associated to tribones (3.16), are

∆(Tx(A)), ∆(Ty(A)), ∆(Tz(A))
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where for example,

∆(Ty(A)) = ∆(xpyqaTy) = ∆(xpyq−1a) + ∆(xpyqa) + ∆(xpyq+1a).

Theorem 3.2. The submodule Ktrib ⊂ AZ3

hex of Z3-invariant polyominoes (poly-
hexes) which admit a signed, symmetric tiling by tribones is generated, as a module
over P Z3 , by the Z3-symmetric triplets of tribones,

(3.17) ∆(Tx(a)), ∆(Ty(a)), ∆(Tz(a)), ∆(Tx(ax)), ∆(Ty(ax)), ∆(Tz(ax)).

Figure 11. ∆-polynomials and the structure of the P Z

3 -module of
Z3-invariant tiles.

Proof. Let A = Ma = xpyqa ∈ Ahex be a ‘black dot’ in the angle ∠XOY
where M = xpyq ∈ P is the corresponding ‘white dot’ (Figure 11). The three
tribones centered at A are MaTx, MaTy, MaTz. We want to show that each
of the associated Z3-symmetric triplets ∆(MaTx), ∆(MaTy), ∆(MaTz) is in the
P Z3-module generated by the six elements listed in the equation (3.17).

Figure 11 depicts the case where M = x4y3 and the chosen tribone is MaTy =
x4y3(y−1 + 1 + y)a. Using this particular example, we describe a general reduction
procedure which allows us to express the triplets ∆(MaTx), ∆(MaTy), ∆(MaTz)
by triplets strictly closer to the origin O.

Let ∆(x) = x + y + z = σ1 and ∆(xy) = xy + yz + zx = σ2 be the two
basic ‘white dot’ triangles (∆-polynomials) depicted at the center of Figure 11.
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By translating these triangles we surround the point A by six triangles forming a
regular hexagon.

Let us assume that the origin O is not contained in the interior of this hexagon.
It follows that one of the six triangles (the shaded triangle ABC in Figure 11) has
the property that the segment OA intersects the side BC opposite to A. (Observe
that the origin O can be on the segment BC and this happens precisely if A ∈
{ya, xya}.)

An immediate consequence is that the lengths of all segments OB, OC, OX are
strictly smaller than the length of OA. Indeed, by construction ∠ACO > 60◦ >

∠CAO, and at least one of these inequalities is strict. In our case, the triangle ABC
is a translate of ∆(xy) (otherwise we would use ∆(x)). Since ∆(xy)X = A+B +C
we observe that

(3.18) ∆(xy)(y−1 + 1 + y)X = (y−1 + 1 + y)A + (y−1 + 1 + y)B + (y−1 + 1 + y)C

Let ∆Y = ∆((y−1 + 1 + y)Y ). By symmetrizing equality (3.18) and adding (that
is by applying the ∆-operator on both sides of (3.18)) we finally obtain,

∆(xy)∆X = ∆A + ∆B + ∆C .

Summarizing, we see that each Z3-symmetric triplet of tribones ∆A can be ex-
pressed in terms of triplets closer to the origin, provided the hexagon associated to
A does not contain the origin O in its interior.

The only remaining possibilities are A′ = a and A′′ = xa which accounts for
the six Z3-symmetric triplets of tribones listed in the theorem. �

3.8. The ideal IKtrib
. In this subsection, we express the generating polyno-

mials for the ideal IKtrib
⊂ QZ3 (listed in (3.17)) in terms of variables s1, s2, t which

appear in the description of the ambient ring QZ3 (equation (3.15) in Section 3.5)).

Proposition 3.3. We have

∆(Tx(a)) = −3s1 + 2s2
2, ∆(Tx(ax)) = −s2

1s2 + 2s2
2 − s1t + s2

2t,

∆(Ty(a)) = 3s1 − s2
2 + s1t, ∆(Ty(ax)) = −3s1 + s2

1s2 − s2
2,

∆(Tz(a)) = s2
1s2 − s2

2 − s1t, ∆(Tz(ax)) = 3s1 − 2s2
1s2 − s2

2 + s1s3
2 + s1t − s2

2t

Proof. The proof is by direct calculations which follow the algorithm de-
scribed in the proof of Theorem 3.1. For example

∆(Tx(a)) = ∆(a2b2 + a + a2c2) = 2∆(a2b2) + ∆(a) = 2s2
2 − 4s1 + s1 = 2s2

2 − 3s1.

Similarly since

∆(a3b) = ∆(a)∆(a2b) − ∆(a2b2) − ∆(a) = s1t − (s2
2 − 2s1) − s1 = s1t − s2

2 + s1

we deduce that,

∆(Ty(a)) = ∆(c + a + a3b) = 2s1 + ∆(a3b) = s1t − s2
2 + 3s1.

The proofs of other equalities follow the same pattern. �
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4. Calculations

4.1. Auxiliary calculations. Let I ⊂ Z[x, y] be the ideal,

I = 〈1 + x + x2, 1 + y + y2, 1 + xy + (xy)2〉.

If p − q ∈ I we say that p and q are congruent mod I and write p ≡I q. In
this section we collect some elementary congruences mod I which are needed for
subsequent calculations.

Lemma 4.1. If m − n is divisible by 3 then,

xm ≡I xn, ym ≡I yn, (xy)m ≡I (xy)n.

Lemma 4.2. We have

Lk := 1 + x + . . . xk−1 ≡I











0 if k ≡ 0 (mod 3)

1 if k ≡ 1 (mod 3)

1 + x if k ≡ 2 (mod 3).

Lemma 4.3. We have

�k := (1 + x + . . . xk−1)(1 + y + . . . yk−1) ≡I











0 if k ≡ 0 (mod 3)

1 if k ≡ 1 (mod 3)

x2y2 if k ≡ 2 (mod 3).

Figure 12. Pictorial proof of the relation ∆3n−1 ≡I n∆2.

The Newton polygon of the polynomial �k is the square with vertices (0, 0),
(0, k − 1), (k − 1, 0), (k − 1, k − 1), which has precisely k integer points on each of
its sides. Similarly the polynomial

∆k = Lk + xyLk−1 + (xy)2Lk−2 + · · · + (xy)k−1L1

collects all monomials associated to the integer points in the triangle with the
vertices (0, 0), (k − 1, 0), (k − 1, k − 1)} (∆8 is depicted in Figure 12).
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Lemma 4.4. We have

∆3n−1 ≡I n∆2 ≡I n(1 + x + xy)

∆3n ≡I ∆3n−1 ≡I n∆2

∆3n+1 ≡I n∆2 + 1

4.2. ∆-polynomial of a triangular region. We use the calculations from
Section 4.1 to determine the ∆-polynomial of a triangular region TN depicted in
Figure 13, where N = 3k − 1 is the number of black dots on one of the edges of
the triangle. By definition the vertices of the triangular region TN are black dots
which are associated to the monomials

axk−1y2k−2 byk−1z2k−2 czk−1x2k−2.

It is sufficient to determine the ≡I class of the polynomial Ak described as the sum
of all monomials in TN which belong to the cone xOy. By inspection we see that
Ak = Bk + Ck where Bk corresponds to the parallelogram with vertices a, axk−1,
ayk−1, a(xy)k−1 and Ck is the polynomial associated to the triangle with vertices
axyk, axk−1yk, axk−1y2k−2. Since Bk = a · �k and Ck = axyk∆k−1, we can use
Lemmas 4.1, 4.3 and 4.4 to evaluate Ak.

Figure 13. Decomposition of TN into blocks.

Proposition 4.1. We have

Ak =











dax∆2 if k = 3d

a + daxy∆2 if k = 3d + 1

ax2y2 + axy2(d∆2 + 1) if k = 3d + 2.
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Proof.

(4.1) Bk = a · �k ≡I











0 if k = 3d

a if k = 3d + 1

ax2y2 if k = 3d + 2.

Since

axyk ≡I











ax if k = 3d

axy if k = 3d + 1

axy2 if k = 3d + 2,

(4.2) Ck = axyk∆k−1 ≡I











dax∆2 if k = 3d

daxy∆2 if k = 3d + 1

axy2(d∆2 + 1) if k = 3d + 2.

Since Ak = Bk + Ck the result follows by adding equations (4.1) and (4.2). �

Proposition 4.2. The ∆-polynomial of Ak is equal to ∆(Ak) = P +dQ where,

P = 0, Q = 3s1 − 3s2
1s2 + s1s3

2,(k = 3d)

P = s1, Q = 9s1 − 6s2
1s2 + s3

1s2
2 + 4s1t − 2s2

1s2t + s1t2(k = 3d + 1)

(k = 3d + 2)
P = 11s1 + s4

1 − 9s2
1s2 + 5s2

2 + s3
1s2

2 − s1s3
2 + 4s1t − 2s2

1s2t + s2
2t + s1t2

Q = 24s1 + s4
1 − 11s2

1s2 + s5
1s2 − 3s3

1s2
2 + 4s1s3

2 + 8s1t − s4
1t − s2

1s2t + 3s1t2.

Proof. It follows from Proposition 4.1 that,

Ak =











d(a2c2 + a3c4 + a4c3) if k = 3d

a + d(a3c + a4c3 + a5c2) if k = 3d + 1

(a5c2 + a4) + d(a4 + a5c2 + a6c) if k = 3d + 2.

The rest of the proof is by direct calculation, by hand or preferably by a computer
algebra system. �

4.3. Gröbner basis for the submodule Ktrib ⊂ AZ3

hex. We want to test if
the polynomials ∆(Ak) described in Proposition 4.2 belong (for different values of
k) to the submodule Ktrib described in Theorem 3.2 (Section 3.7).

In light of Proposition 3.2, this question is reduced to the ‘ideal membership
problem’ for the associated ideal IKtrib

in the ring QZ3 ∼= Z[s1, s2, t]/〈Θ〉 and in
turn to the ‘ideal membership problem’ for the ideal

JKtrib
:= IKtrib

+ 〈Θ〉 ⊂ Z[s1, s2, t].

Here Θ is the polynomial defined in Theorem 3.1 (equation 3.13) and again, in the
context of the abc-ring QZ3 , in Section 3.5.

With the aid of Wolfram Mathematica 9.0 we determine the Gröbner basis for
the ideal JKtrib

.
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Proposition 4.3. The Gröbner basis G = Gtrib of the ideal JKtrib
⊂ Z[s1, s2, t]

with respect to the lexicographic order of variables s1, s2, t is given by the following
list of polynomials:

(4.3)
27 + 9t + 3t2 −27 + t3 9s2 + 3s2t + s2t2 3s2

2
s2

2t s4
2 3s1 + s2

2 s2
2 + s1t

s1s3
2 s2

1s2 9 + s3
1 + s3

2 + 3t + t2

As the first application of Proposition 4.3 we calculate the remainders P
G

and Q
G

of polynomials P and Q introduced in Proposition 4.2 on division by the
Gröbner basis G = Gtrib.

Proposition 4.4. Let Pi and Qi be the polynomials such that to ∆(A3d+i) =
Pi + dQi (Proposition 4.2). Then the remainders of these polynomials on division
by the Gröbner basis G = Gtrib are

(4.4)

P0
G

= 0 Q0
G

= −s2
2

P1
G

= s1 Q1
G

= −s2
2

P2
G

= −s1 Q2
G

= −s2
2

5. Main results

Theorem 5.1. Let TN = T3k−1 be the Z3-symmetric triangular region in
the hexagonal lattice depicted in Figure 13 where N is the number of black dots
(hexagons) on the edge of the triangle. Then TN admits a Z3-symmetric, signed
tiling by three-in-line polyominoes (tribones) if and only if k = 9r for some inte-
ger r. The first such triangle is T26, in particular the triangle T8 shown in Figure 1
does not have a Z3-symmetric, signed tiling by tribones.

Proof. By Proposition 4.2 the polynomial ∆(Ak), equal to the sum of all
monomials covered by the triangular region TN = T3k−1, can be expressed (as a
polynomial in variables s1, s2, t) as the sum ∆(Ak) = P + dQ. More explicitly
(taking into account the different cases of Proposition 4.2) we write ∆(A3d+i) =
Pi + dQi where i ∈ {0, 1, 2}.

By Proposition 4.4 remainders of these polynomials on division by the Gröbner
basis G = Gtrib are displayed in Table (4.4).

The leading terms of the Gröbner basis (4.3) are

3t2 t3 s2t2 3s2
2

s2
2t s4

2 3s1 s1t
s1s3

2 s2
1s2 s3

1

By inspection we see that the polynomial Pi + dQi can be reduced to zero if
and only if i = 0 and d = 3r for some integer r, or in other words if and only if
k = 3d = 9r (N = 27r − 1). �
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5.1. The case N = 3k. The triangular region TN in the case N = 3k + 1 has
a fixed point (black dot) with respect to the Z3 action so we focus on the remaining
case N = 3k. In this case, the convex hull of the set of all black dots in the
intersection of T3k with the angle xOy is the trapeze with vertices associated the
monomials a, axk, ayk−1, ax2k−1yk−1. We denote the sum of all these monomials
by Ak. This trapeze is divided into a rhombus, with vertices at a, axk−1, ayk−1,
a(xy)k−1 and an equilateral triangle with vertices at axk, axkyk−1, ax2k−1yk−1.
The sums of monomials in these two regions are respectively Bk and Ck, so by
definition Ak = Bk + Ck.

The mod I class of the polynomial Bk = a · �k is as in the case N = 3k − 1
described by the equality (4.1). Similarly, Ck = axk∇k where ∇k is the sum of
all monomials in the triangle with vertices at 1, yk−1, (xy)k−1. This triangle is
obtained from ∆k by interchanging variables x and y so the following lemma is an
immediate consequence of Lemma 4.4.

Lemma 5.1. We have

∇3n−1 ≡I n∇2 ≡I n(1 + x + xy),

∇3n ≡I ∇3n−1 ≡I n∇2,

∇3n+1 ≡I n∇2 + 1.

Similarly,

axk ≡I











a if k = 3d

ax if k = 3d + 1

ax2 if k = 3d − 1,

Ck = axk∇k ≡I











da∇2 if k = 3d

ax(d∇2 + 1) if k = 3d + 1

dax2∇2 if k = 3d − 1.

and finally,

Proposition 5.1. We have

Ak =











da∇2 = d(a + a3b + a3c) k = 3d

a + ax(d∇2 + 1) = (a + a2c2) + d(a2c2 + a3c + a4c3) k = 3d + 1

ax2y2 + dax2∆2 = a5c2 + d(a3c4 + a4c3 + a5c5) k = 3d − 1.

The associated ∆-polynomials are given by the following proposition.

Proposition 5.2. The ∆-polynomial of Ak is equal to ∆(Ak) = P +dQ where,

P = 0 Q = s2
1s2 − 2s2

2(k = 3d)

P = −s1 + s2
2 Q = −s2

1s2 − 2s2
2 + s1s3

2 − s2
2t(k = 3d + 1)

P = 7s1 − 5s2
1s2 + 3s2

2 + s3
1s2

2 − s1s3
2 + 4s1t − 2s2

1s2t + s2
2t + s1t2(k = 3d − 1)

Q = 2s2
1s2 + 4s2

2 − 4s1s3
2 + s5

2.

Proposition 5.3. Let Pi and Qi be the polynomials such that to ∆(A3d+i) =
Pi + dQi (Proposition 5.2). Then the remainders of these polynomials on division



22 MUZIKA DIZDAREVIĆ AND ŽIVALJEVIĆ

by the Gröbner basis G = Gtrib are

P0
G

= 0 Q0
G

= s2
2

P1
G

= −s1 + s2
2 Q1

G
= s2

2

P−1
G

= s1 Q−1
G

= s2
2

The analysis similar to the proof of Theorem 5.1 leads to the following result.

Theorem 5.2. Let TN = T3k be the Z3-symmetric triangular region in the
hexagonal lattice which has 3k hexagons on one of its sides. Then TN admits a
Z3-symmetric, signed tiling by three-in-line polyominoes (tribones) if and only if
k = 9r for some integer r. The first such triangle is T27.

5.2. Examples illustrating Theorems 5.1 and 5.2. Here we describe ex-
plicit Z3-invariant tilings predicted by Theorems 5.1 and 5.2. We begin with the
case N = 3k − 1 = 27r − 1. Figure 13 describes a decomposition of the triangular
region TN into triangular and rhombic blocks. The side length of the triangle with
the vertices axyk, axk−1yk, axk−1y2k−2 is k − 1 = 9r − 1 so by Theorem 1.1 this
triangle admits a signed tiling by tribones. The side length of the rhombus with
vertices a, axk−1, ayk−1, a(xy)k−1 is k = 9r so it can be paved by tribones. This
signed tiling is extended to the whole region TN by rotations through the angle of
120◦ and 240◦.

The case N = 3k = 27r is treated similarly. The intersection of T3k with the
angle xOy is the trapeze with vertices at a, axk, ayk−1, ax2k−1yk−1 (Section 5.1).
This trapeze is divided into a rhombus, with vertices at a, axk−1, ayk−1, a(xy)k−1

and an equilateral triangle with vertices at axk, axkyk−1, ax2k−1yk−1. Both figures
admit a (signed) tribone tiling. Indeed, the triangle has the side length k = 9r (and
Theorem 1.1 applies) while the side length of the rhombus is as before k = 9r.

6. Concluding remarks, examples and questions

Our main objective was to illustrate the method of Gröbner bases in the case of
equivariant tribone tilings of the hexagonal lattice. However the method has many
other advantages and some of them were mentioned already in the original paper
of Bodini and Nouvel [5].

Perhaps the main reason why this method is so well adapted for lattice tiling
problem is its close connection with the already developed methods and tools used
in lattice geometry.

6.1. Integer-point transform and Brion’s theorem. Following [2] and
[3], we define the integer-point transform of a finite subset K ⊂ N

2 as the polyno-
mial fK =

∑

{xαyβ | (α, β) ∈ N
2}.

Brion’s formula, see [2, Chapter 8] and [3, Section 9.3], is a versatile tool for
evaluating the integer-point transform of convex polytopes. It allows us to replace a
polynomial with a large number of monomials by a very short expression involving
only rational functions. It was tacitly used throughout the paper for an independent
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checking of some of the formulas. More systematic application of these ideas will
be presented in [12].

6.2. Integer-point enumeration in polyhedra. Let P be a convex poly-
tope with vertices in N

d and let fP be its integer-point transform. The ‘discrete
volume’ of Q, defined as the number of integer points inside P , can be evaluated
as the remainder of fP on division by the ideal

I = 〈x1 − 1, x2 − 1, . . . , xd − 1〉.

Let J ⊂ Z[x1, . . . , xd] be an ideal, say the ideal associated to a set R of prototiles
in N

d. Let G = GJ be the Gröbner basis of J with respect to some term order. It
may be tempting to ask (at least for some carefully chosen ideals J) what is the

geometric and combinatorial significance of the remainder f
G

Q of the integer-point
transform polynomial fQ on division by the Gröbner basis G.

Acknowledgement. The symbolic algebra computations in the paper were
performed with the aid of Wolfram Mathematica 9.0.
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