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A NOTE ON CURVATURE-LIKE INVARIANTS

OF SOME CONNECTIONS

ON LOCALLY DECOMPOSABLE SPACES

Nevena Pušić

Abstract. We consider an n-dimensional locally product space with p and
q dimensional components (p + q = n) with parallel structure tensor, which
means that such a space is locally decomposable. If we introduce a confor-
mal transformation on such a space, it will have an invariant curvature-type
tensor, the so-called product conformal curvature tensor (P C-tensor). Here
we consider two connections, (F, g)-holomorphically semisymmetric one and
F -holomorphically semisymmetric one, both with gradient generators. They
both have curvature-like invariants and they are both equal to P C-tensor.

1. Introduction

In [8], we considered conformal transformations on anti-Kähler spaces (also
called Kähler spaces with Norden metrics or B-spaces). Also, we have considered
two kinds of holomorphically semi-symmetric connections: one of them is a metric
and F -connection and the other one is just an F -connection. We have proved that
both of these connections have the same curvature-like invariant, which is equal
to one of conformal invariants on such spaces. It was a geometrical motivation for
such a consideration on a locally product (decomposable) space.

As we know, a locally product space is an n-dimensional manifold Mn with a
(positive definite, but not necessarily) Riemannian metric (gij) and with structure
tensor field F i

j 6= δi
j , satisfying the conditions F i

sF
s
j = δi

j , gstF
s
i F

t
j = gij , where

∇ is the Levi-Civita connection from g. If we put F s
j gis = Fij , then it is clear

that Fij = Fji (from the previous formula we are getting gij = FtiF
t
j = FtjF

t
i ,

then gijF
j
l = FtiF

t
jF

j
l and, consequently, Fil = Ftiδ

t
l = Fli). There also can hold

∇kF
i
j = 0 and, consequently, ∇kFij = 0. We shall explain such a case later.

At any neighborhood of any point of a locally product space, if it is a (pseudo)
Riemannian space, there exists a coordinate system, called a separating coordi-
nate system; we can express the metric tensor in such a coordinate system in the

2010 Mathematics Subject Classification: Primary 53A30; Secondary 53A40, 53B15.
Key words and phrases: locally product space, conformal transformation, P C− curvature

tensor, class of holomorphically semisymmetric connections, Kähler-type identities.

219



220 PUŠIĆ

following way
ds2 = gαβ(xi)dxαdxβ + grs(xi) dxrdxs,

where α, β = 1, . . . , p; r, s = p + 1, . . . , p + q = n (n = dimMn), i = 1, . . . , n or,
equivalently

(gij) =

[
gαβ 0
0 grs

]

and then its tangent space is a product of two tangent subspaces: Mn = Mp ×Mq.
The structure tensor satisfies F 2 = I. In the separating coordinate system, it shall
have the form, by definition [10]

F i
j =

[
δα

β 0

0 −δr
s

]

or, for its covariant form

Fij =

[
gαβ 0
0 −grs

]
.

It is not hard to prove that, gαβ = gαβ(xγ) (α, β, γ = 1, . . . , p) and grs = grs(xt)
(r, s, t = p+ 1, . . . , n) is equivalent to ∇kF

i
j = 0 or ∇kFij = 0. In such a case the

space Mn is called a locally decomposable space, because it can be divided into two
naturally defined subspaces.

The choice of metric tensor on a locally product space in such a coordinate sys-
tem (separating) gives us the form of the covariant structure tensor automatically.

A product conformal transformation [1, 6, 8, 9] is a transformation of the metric
of a locally product space, given by

(1.1) gij = ρgij + σFij ,

where ρ and σ are scalar functions satisfying

(1.2) ρi = σaF
a
i , ρ2 − σ2 6= 0,

for their partial derivatives ρi and σi. For details, the author recommends to see
[1]. The geometric interpretation of a PC-transformation is a pair of conformal
transformations, each of them acting on one of the subspaces Mp or Mq. Then it
is not difficult to show that Christoffel symbols of the metric (1.1) are

{
i
jk

}
=

{
i
jk

}
+ δi

jpk + δi
kpj − gjkp

i + F i
j qk + F i

kqj − Fkjq
i,

where

(1.3) pi =
ρρi − σσi

2(ρ2 − σ2)
, qi =

ρσi − σρi

2(ρ2 − σ2)
,

which is the consequence of (1.1) and (1.2). If (1.2) were not satisfied, both vectors
in the upper equality would be zero vectors. It can be obtained by calculating
Christoffel symbols defined by metric (1.1). Then, one can show that the tensor

PCijkl = Kijkl + α2sijkl + β2s̃ijkl

− 2
[
(α1α2 + β1β2)K + (α1β2 + α2β1)K

]
rijkl

− 2
[
(α1β2 + α2β1)K + (α1α2 + β1β2)K

]
r̃ijkl ,
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where Kijkl is the Riemann–Christoffel tensor of Levi-Civita connection, Kjk is

the Ricci tensor of the same connection, K is its scalar curvature, Kkj = KksF
s
j ,

K = Kkjg
kj and

rijkl = gikgjl − gilgjk + FikFjl − FilFjk,

r̃ijkl = F t
i rtjkl,

sijkl = Kjlgik −Kjkgil +Kikgjl −Kilgjk +KjlFik

−KjkFil +KikFjl − KilFjk,

s̃ijkl = F t
i stjkl,

α1 =
n− 2

2[(n− 2)2 − ψ2]
, β1 = −

ψ

2[(n− 2)2 − ψ2]
,

α2 =
n− 4

(n− 4)2 − ψ2 , β2 = −
ψ

(n− 4)2 − ψ2 ,

ψ = p− q,

do not depend on the choice of the functions σ and ρ. This tensor is common
for all PC-transformations and it is called a product conformal curvature tensor
or a PC-tensor. For more details about locally product and locally decomposable
spaces, the author recommends to consult [10].

In this paper, we shall consider two kinds of so-called holomorphically semi-
symmetric connection on locally decomposable spaces. Originally, a semi-symmetric
connection was considered on a Riemannian space, as a connection with torsion
tensor which is equal to T i

jk = Γi
jk − Γi

kj = pjδ
i
k − pkδ

i
j . The generalization of

such a connection on the spaces with symmetric structure will be holomorphically
semi-symmetric connection, with the torsion tensor given by

T i
jk = pjδ

i
k − pkδ

i
j + qjF

i
k − qkF

i
j ,

where the vector qi is the image of the generator by the structure. Both the
metric and the structure tensor will be parallel with respect to the connection with
coefficients

(1.4) Γi
jk =

{
i
jk

}
+ pjδ

i
k − pigjk + qjF

i
k − qiFjk

and we shall call this connection an (F, g)-holomorphically semi-symmetric connec-
tion. The other one will be

(1.5) Γi
jk =

{
i
jk

}
+ pjδ

i
k + pigjk + qjF

i
k + qiFjk.

As just the structure tensor is parallel towards the connection (1.5), we shall call
it an F -holomorphically semi-symmetric connection. For more details about such
kind of connection, it may be useful to consult [5]. Also, similar problems have
been discussed in papers [2,3,4,7].

It is not difficult to prove that the Riemann–Christoffel tensor of a locally
decomposable space satisfies the condition of Kähler type

Kijkl = KabklF
a
i F

b
j
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using the Ricci identity for the structure tensor and Levi-Civita connection. There
also holds

(1.6) Kijkl = KiablF
a
j F

b
k ,

which can be proved using the first Bianchi identity for the same connection. These
identities are analogous to those which have been used in [6]. The identity analogous
to (1.6), but with minus on the right-hand side is valid on anti-Kähler spaces.

In this paper, we shall use mostly the covariant components of vectors. These
are, in fact, components of co-vectors, but as we can lower any upper index using
contraction by a component of the metric tensor, we shall still consider and call
them components of vectors.

The vector pj is the generator of both these connections. The vector qj is its
image by the structure.

2. Curvature tensor and curvature-type invariant of

(F, g)-holomorphically semi-symmetric connection.

Now we shall calculate the curvature tensor of the (F, g)-holomorphically semi-
symmetric connection. The components of such a connection are given by (1.4). If
we calculate the component of its curvature tensor, we obtain, after lowering the
upper index

(2.1) Rijkl = Kijkl +gikplj −gilpkj +gjlpki−gjkpli+Fikqlj −Filqkj +Fjlqki−Fjkqli,

where we introduce the abbreviations pkj and qkj for tensors

pkj = ∇kpj − pkpj − qkqj + 1
2psp

sgkj + 1
2psq

sFkj ,(2.2)

qkj = ∇kqj − pkqj − qkpj + 1
2psp

sFkj + 1
2psq

sgkj .(2.3)

We have got these expressions in the process of calculation of the components Rijkl .
It is obvious that qkj = pkaF

a
j .

Now we want tensor (2.1) to satisfy standard algebraic conditions for a curva-
ture tensor. It is obvious that it is skew-symmetric in the last two indices (just this
condition is satisfied automatically). It will also be skew-symmetric in the first two
indices, which can be easily checked. If we want it to be invariant under changing
of places of the first and the second pair of indices, then there must hold

0 = gik(plj − pjl) − gil(pkj − pjk) + gjl(pki − pik) − gjk(pli − pil)(2.4)

+ Fik(qlj − qjl) − Fil(qkj − qjk) + Fjl(qki − qik) − Fjk(qli − qil).

After contraction of the upper equation by gik, we obtain

(2.5) (n− 3)(plj − pjl) + ψ(qlj − qjl) − F a
j F

b
l (pba − pab) = 0.

We can see that, if plj is a symmetric tensor, then the tensor qlj is also symmetric.
So, if we take into account (2.2) and (2.3), it is easy to see that, if the generator pi

is a gradient, then its image by the structure is also a gradient.
It is not difficult to prove that the generator of connection (1.4) must be a

gradient if its curvature tensor is invariant under changing places of the first and
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the second pair of indices. There is an exception just for cases of low-dimensional
subspaces. If we transvect (2.4) by F ik, we obtain

(2.6) (n− 3)(qlj − qjl) + ψ(plj − pjl) = F a
j F

b
l (qba − qab).

From (2.5), it is easy to get

pba − pab =
1

n− 3
F s

aF
r
b (prs − psr) −

ψ

n− 3
(qba − qab).

If we transvect the last equation by F a
j F

b
l , we can obtain, using (2.5)

F a
j F

b
l (pba − pab) =

1

n− 3
(plj − pjl) −

ψ

n− 3
F a

j F
b
l (qba − qab)

= (n− 3)(plj − pjl) + ψ(qlj − qjl).

The consequence of the last equation will be

(2.7) plj − pjl = −
ψ(n− 3)

(n− 2)(n− 4)
(qlj − qjl) −

ψ

(n− 2)(n− 4)
F a

j F
b
l (qba − qab).

Using (2.6) and (2.7), we obtain

qlj − qjl =
1

n− 3

(n− 2)(n− 4) + ψ2

(n− 2)(n− 4) − ψ2F
a
j F

b
l (qba − qab).

The last equation deals with a recurrent relation. Using it once again on the right-
hand side, we obtain

qlj − qjl =
1

(n− 3)2

[
(n− 2)(n− 4) + ψ2

(n− 2)(n− 4) − ψ2

]2

(qlj − qjl).

Here we have three possibilities

(1)
(n− 2)(n− 4) + ψ2

(n− 2)(n− 4) − ψ2 = n− 3, or (2)
(n− 2)(n− 4) + ψ2

(n− 2)(n− 4) − ψ2 = −(n− 3),

or (3) qlj = qjl.

From the first possibility, we obtain ψ = ±(n− 4). From the second possibility, we
obtain ψ = ±(n− 2). This means

(1) p = n− 2, q = 2 or p = 2, q = n− 2;
(2) p = n− 1, q = 1 or p = 1, q = n− 1.

In case 3, it is easy to notice that qlj is symmetric if and only if the vector qi is
a gradient. If we use (2.6) and if the vector qi is a gradient, then the tensor plj

is also symmetric and it is true, according to (2.2), if and only if the generator of
considered connection is a gradient. So, we have proved

Theorem 2.1. If the curvature tensor of (F, g)-holomorphically semi-sym-
metric connection (1.4) on a locally decomposable space is invariant under changing
places of the first and the second pair of indices, then the generator of such a connec-
tion is a gradient automatically, except if the dimension of one of space components
is 1 or 2. If the generator is a gradient, then its image by the structure is also a
gradient.
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In our following considerations, we shall presume that both the generator and
its image by the structure are gradients. The best way to prove it is to presume
that p > 2, q > 2, like in [6]. Then the first Bianchi identity for such a connection
will be satisfied automatically.

Now we can transvect (2.1) by gil and obtain

(2.8) Rjk = Kjk − (n− 4)pkj − ps
sgkj − ψqkj − Fjkq

s
s.

We shall define Kjk = KijklF
il and Rjk = RijklF

il. Then, we can transvect (2.1)
by F il and obtain

(2.9) Rjk = Kjk − (n− 4)qkj − qs
sgkj − ψpkj − Fjkp

s
s,

The scalar functions ps
s and qs

s are still unknown. We shall find their form by
multiplying both (2.8) and (2.9) by gjk and by contracting these expressions. We
shall obtain two new expressions of scalar type:

2(n− 2)ps
s + 2ψqs

s = K −R,

2ψps
s + 2(n− 2)qs

s = K −R,

where K = Kjkg
jk and R = Rjkg

jk.
Now we are going to solve this system of equations. We obtain

ps
s =

n− 2

2[(n− 2)2 − ψ2]
(K −R) −

ψ

2[(n− 2)2 − ψ2]
(K −R),

qs
s =

n− 2

2[(n− 2)2 − ψ2]
(K −R) −

ψ

2[(n− 2)2 − ψ2]
(K −R).

If we use the following abbreviations

α1 =
n− 2

2[(n− 2)2 − ψ2]
, β1 = −

ψ

2[(n− 2)2 − ψ2]
,

then

ps
s = α1(K −R) + β1(K −R), qs

s = α1(K −R) + β1(K −R),

If we substitute this into (2.8) and (2.9), we obtain that

(n− 4)pkj + ψqkj = Kjk −Rjk − [α1(K −R) + β1(K −R)]gjk

− [α1(K −R) + β1(K −R)]Fjk,

ψpkj + (n− 4)qkj = Kjk −Rjk − [α1(K −R) + β1(K −R)]gjk

− [α1(K −R) + β1(K −R)]gjk

If we multiply the first of the upper two equations by n− 4 and the second one
by −ψ, add results and put new abbreviations

α2 =
n− 4

(n− 4)2 − ψ2 , β2 =
−ψ

(n− 4)2 − ψ2 ,
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we obtain

pkj = α2
[
Kjk −Rjk − [α1(K −R) + β1(K −R)]gjk(2.10)

− [α1(K −R) + β1(K −R)]Fjk

]

+ β2
[
Kjk −Rjk − [α1(K −R) + β1(K −R)]gjk

− [α1(K −R) + β1(K −R)]gjk

]
.

As we have to calculate qkj = pkaF
a
j , we have to notice that

KjkF
k
t = KijklF

ilF k
t = KijtkF

ilF k
l = Kijtkg

ik = Kjt.

Using equality (2.1), it is easy to prove Rijkl = RabklF
a
i F

b
j . If we use the fact that

this curvature tensor is invariant under changing places of the first and the second
pair of indices, then we have Rijkl = RijabF

a
k F

b
l . Then

RjkF
k
t = RijklF

ilF k
t = RijtkF

ilF k
l = Rijtkg

ik = Rjt.

Then, it is easy to calculate the tensor qkj using (2.10). We have

qkj = α2
[
Kjk −Rjk − [α1(K −R) + β1(K −R)]Fjk(2.11)

− [α1(K −R) + β1(K −R)]gjk

]

+ β2
[
Kjk −Rjk − [α1(K −R) + β1(K −R)]Fjk

− [α1(K −R) + β1(K −R)]gjk

]
.

Substituting (2.10) and (2.11) into (2.1), we see that the tensor

Kijkl −
[
(α2Kjk + β2Kjk)gil − (α2Kjl + β2Kjl)gik

+ (α2Kil + β2Kil)gjk − (α2Kik + β2Kik)gjl

]

−
[
(α2Kjk + β2Kjk)Fil − (α2Kjl + β2Kjl)Fik

+ (α2Kil + β2Kil)Fjk − (α2Kik + β2Kik)Fjl

]

+ 2
[
(α1α2 + β1β2)K + (α2β1 + β2α1)K

]
(gilgjk − gikgil + FilFjk − FikFjl)

+ 2
[
(α1α2 + β1β2)K + (α2β1 + β2α1)K

]
(Filgjk − Fikgjl + Fjkgli − Fjlgki)

is identical to the tensor which is constructed in the same way by using the corre-
sponding curvature elements of the (F, g)-holomorphically semi-symmetric connec-
tion. Also, it is easy to transform the upper tensor to the form which is identic to
(1.3). So, we have proved

Theorem 2.2. If the curvature tensor of the (F, g)-holomorphically semi-sym-
metric connection on a locally decomposable space is invariant under changing
places of the first and the second pair of indices, then such a connection has a
curvature-type tensor which is equal to the product conformal curvature tensor of
such a space and, consequently, it does not depend on the choice of the generator.
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3. Curvature tensor and curvature-type invariant of F -holomorphically

semi-symmetric connection on a locally decomposable space

Now we shall calculate components of curvature tensor of the F -holomorphically
semi-symmetric connection; its components are given by (1.5). After lowering the
upper index, we obtain

(3.1) Rijkl = Kijkl +gikplj −gilpkj +gjkpli−gjlpki+Fikqlj −Filqkj +Fjkqli−Fjlqki,

where we induce abbreviations

plj = ∇lpj − Slj , qlj = plaF
a
j , pli = ∇lpi + Sli, qli = plaF

a
i ,

Slj = plpj + qlqj + 1
2p

spsglj + 1
2psq

sFlj , SlaF
a
j = SjaF

a
l .

Also the following relations hold and will be necessary for future calculations:

Ss
s =

n+ 4

2
psp

s +
ψ

2
psq

s, SljF
lj =

n+ 4

2
psq

s +
ψ

2
psp

s, SabF
a
l F

b
j = Slj .

Suppose that curvature tensor (3.1) of such a connection is an algebraic curvature
tensor (that means that it satisfies standard algebraic conditions for a curvature
tensor) and that the generator pi of such a connection is a gradient. If the curvature
tensor of the connection (3.1) is skew-symmetric in the first two indices and if we
take into account symmetry of the tensors Slj and SlaF

a
j , we obtain

0 = gik∇lpj −gil∇kpj +gjk∇lpi −gjl∇kpi +Fik∇lqj −Fil∇kqj +Fjk∇lqi −Fjl∇kqi.

If we transvect the relation above by gik, we obtain

(3.2) (n+ 1)∇lp = glj∇sp
s + Flj∇sq

s + F k
l ∇kqj − ψ∇lqj ,

and if we transvect it by F ik, we obtain

(3.3) (n+ 1)∇lqj + ψ∇jpl − ∇jql = glj∇sq
s + Flj∇sp

s,

as the generator is a gradient. Now we shall change places of the indices l and j i
the upper equation and get

(n+ 1)∇jql + ψ∇lpj − ∇lqj = gjl∇sq
s + Fjl∇sp

s.

The expression on the right-hand side of both two upper equations is symmetric.
If we subtract the second one from the first one, we obtain

(n+ 2)(∇lqj − ∇jql) = 0.

So, we have proved

Lemma 3.1. If the generator of F -holomorphically semi-symmetric connection
on a locally decomposable space is a gradient and if its curvature tensor is skew-
symmetric in the first two indices, then the generator’s image by the structure is
also a gradient.

If the generator is a gradient, then the equations (3.2) and (3.3) can be simpli-
fied as

n∇lpj + ψ∇lqj = glj∇sp
s + Flj∇sq

s,

ψ∇lp+ n∇lq = glj∇sq
s + Flj∇sp

s.
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If we multiply the first equation by n, the second one by −ψ and adding them, we
obtain

∇lpj =
n∇sp

s − ψ∇sq
s

n2 − ψ2 glj +
n∇sq

s − ψ∇sp
s

n2 − ψ2 Flj ,

∇lqj =
n∇sq

s − ψ∇sp
s

n2 − ψ2 glj +
n∇sp

s − ψ∇sq
s

n2 − ψ2 Flj .

There holds

Lemma 3.2. If the generator of an F -holomorphically semi-symmetric con-
nection on an almost product space is a gradient and if its curvature tensor is an
algebraic curvature tensor, then covariant derivatives of the generator and its image
by the structure can be expressed in such a form

(3.4) ∇lpj = αglj + βFlj , ∇lqj = βglj + αFlj ,

where α and β are scalar functions.

If we want curvature tensor (3.1) to be invariant under changing places of the
first and the second pair of indices, we obtain

gjk∇lpi − gli∇kpj = Fli∇kqj − Fjk∇lqi.

It is easy to check that the upper equality will be satisfied authomatically, by the
reason of holding of (3.4). It will not be difficult to prove that the curvature tensor
of such a connection will also satisfy the first Bianchi identity, because the generator
is a gradient and tensors Slj and SlaF

a
j are symmetric.

When we substitute the expressions (3.4) into (3.1), we obtain

Rijkl = Kijkl − gikSlj + gilSkj − gjlSki + gjkSli

− FikSlaF
a
j + FilSkaF

a
j − FjlSkaF

a
i + FjkSlaF

a
i .

We know that both tensors Slj , SlaF
a
j are symmetric. The only difference between

this formula and formula (2.1) is the sign, but it is absolutely irrelevant. In the
same manner like in the previous paragraph, we obtain

Skj = α2
[
Rjk −Kjk − [α1(R−K) + β1(R−K)]gjk

− [α1(R−K) + β1(R−K)]Fjk

]

+ β2
[
Rjk −Kjk − [α1(R−K) + β1(R−K)]gjk

− [α1(R−K) + β1(R−K)]gjk

]

and, consequently

SkaF
a
j = α2

[
Rjk −Kjk − [α1(R−K) + β1(R−K)]Fjk

− [α1(R−K) + β1(R−K)]gjk

]

+ β2
[
Rjk −Kjk − [α1(R−K) + β1(R−K)]Fjk

− [α1(R−K) + β1(R−K)]gjk

]
,
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as we can easily prove that the curvature tensor of F -holomorphically semi-sym-
metric connection, if it is an algebraic curvature tensor, satisfies the condition of
Kähler type

Rijkl = RijabF
a
k F

b
l

and that there, consequently, holds

RjkF
k
t = RijklF

ilF k
t = Rjt.

So, we have proved that there holds

Theorem 3.1. If the curvature tensor of an F -holomorphically semi-symmetric
connection satisfies some standard algebraic conditions for a curvature tensor and
if its generator is a gradient, then such a connection has a curvature-type invariant
tensor (independent on the choice of the generator) which is equal to the product
conformal curvature tensor.
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