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SOME NEW MULTIDIMENSIONAL
HARDY-TYPE INEQUALITIES
WITH KERNELS VIA CONVEXITY
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Communicated by Stevan Pilipovié

ABSTRACT. We prove some new multidimensional Hardy-type inequalities in-
volving general Hardy type operators with positive kernels for functions ¢
which may not necessarily be convex but satisfy the condition Ay (x) < ¢(x) <
B (x), where v is convex. Our approach is mainly the use of convexity ar-
gument and the results obtained are new even for the one-dimensional case
and also unify and extend several inequalities of Hardy type known in the
literature.

1. Introduction

In a note published in 1920, Hardy [3] in a surprising way discovered and
announced (without proof) (see also [4l[131[14]) the inequality

(1.1) /OOO (% /0m £(t) dt)pdgc < (%)p/ooo fP(x)dz, p>1,

in an attempt to simplify the proof of Hilbert’s double series theorem. Inequality
(I is today referred to as the classical Hardy’s integral inequality and it has
an interesting prehistory and history (see e.g., [4[13l[14]) and the references cited
therein). It is interesting to note that Hardy could hardly had forseen the profound
influence this inequality and its various variants and generalizations would have on
the development of many areas in analysis (see [6]). Owing to the usefulness of
inequality (L)), it has been investigated and generalized in several directions, e.g.,
one chapter in the book [16] is devoted to this subject. In addition, there are three
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154 OGUNTUASE AND DUROJAYE

books [12l[131[23] completely devoted to this subject, however, none of these books
treated Hardy’s inequality via convexity approach. We also refer interested readers
to the references in these books and the classical book [5] for some complementary
historical remarks connected to the development of this inequality.

Nowadays, a well-known simple fact is that (II) can equivalently (via the
substitution f(x) = h(z'=YP)z=YP), be rewritten in the form

2 /OOO G /0 h(t) dt)pdf </O ()

for which equality even holds when p = 1. In this form we see that Hardy’s inequal-
ity is a simple consequence of Jensen’s inequality but this was not discovered in the
dramatic period when Hardy discovered and finally proved inequality (L) in his
famous paper [4] from 1925 (see [13l14.120]). In 1965, Godunova [I] while study-
ing inequalities with convex functions, pioneered a simple direct way of obtaining
Hardy’s inequality via a convexity argument. However, the result of Godunova
seems to be fairly little referred to and almost unknown in the western literature
(see e.g., [20]). It was rediscovered independently by Imoru [7] and Kaijser et
al. [10] in 1978 and 2002 respectively. This is the starting point of a new develop-
ment of Hardy-type inequalities and most of the results reported in this paper are
influenced by the work of Kaijser et al. [LI0]. Obviously, the prehistory and history
of Hardy’s inequality (II]) would have been completely changed if Hardy (or some
collaborators in the dramatic period 1915-1925) had discovered that (L)) can be
rewritten in the form (2 and that this inequality follows directly from Jensen’s
inequality and Fubini’s theorem (see e.g., [24]). Even though, Jensen’s inequality
from 1906 (see [8] was of course known to Hardy).

Again, the first author to obtain the multidimensional Hardy type inequality
with a general kernel was Godunova [I] (see also [2]), while Kaijser et al. [9] ob-
tained some new integral inequalities with general integral operators (without addi-
tional restrictions on the kernel). The corresponding results for the case 0 < p < 1
and p < 0 was recently obtained by Oguntuase et al. [18] as a consequences of
a more general inequalities for convex and concave functions (see [17] for further
details). Furthermore, Oguntuase et al. [2I] obtained a new class of general mul-
tidimensional strengthened Hardy type inequalities with power weights, related to
all possible choices of parameter p € R \ {0} and to arbitrary almost everywhere
positive convex (or concave) function ¢, such that AazP < ¢(x) < BzP holds on
(0, 00) with some positive real constants A < B. The multidimensional version of
these results were recently obtained in [22] (see e.g., [111[20] and the references
given there). In particular, Oguntuase et al. [22] obtained the following new mul-
tidimensional Hardy-type inequality

([ (ot Yol [ [ v =)

involving arlthmetlc mean operator

(1.3) A f(a / / z,9)f (y) dy
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with general positive kernel

(1.4) k(@)= | L / k@, y) dy

Our aim is to derive some new multidimensional Hardy-type inequalities involving
general Hardy type operators with positive kernels (see [15]). Our approach is to use
mainly a convexity argument to prove our results. This idea was first introduced
by Oguntuase and Persson in [19] and further developed in [2I] for convex and
concave functions. Our aim is to further extend this idea to functions ¢, which
may not necessarily be convex but for which Ay(x) < ¢(x) < A(x) holds on R’}
for some constants A < B and convex function .

Notations and Conventions. Throughout this paper we use bold letters to
denote n-tuples of real numbers, e.g., = (21,...,2,t), or Yy = (y1,...,Yn). Also,
we set 0 = (0,...,0) e R" and 1 = (1,...,1) € R". Furthermore, the relations <,
<, >, and > are, as usual, defined componentwise. For example, for ,y € R”, we
write x < y if x; < y;, i =1,...,n. Moreover, 0 < b < oo means that 0 < b; < oo,
i =1,...,n. In addition, we introduce a notation for n-cells, that is, axis-parallel
to rectangular blocks in R™. For a,b € R", a < b, let

(a,b) = (a1,b1) x -+ X (an,bp) = {x € R" : @ < x < b},
(a,b] = (a1,b1] X -+ X (an,bp] ={x € R" : a < & < b},
and analogously also for [a, b) and [a, b]. In particular, we have R" = (0, co),
(0,00 ={x:0 <z < oo}, and [0,00) = {x € R" : > 0}.

Furthermore, all functions are assumed to be measurable, and expressions of the

form 0 - oo, 2, and % are taken to be equal to zero. Moreover, u(x) denotes a

weight function, i.e., a nonnegative and measurable function on R", and we define
dx by de = dxy - - - dx,.
2. Main Results

In order to prove our results we need the following multidimensional Minkowski
type inequality proved in [22].

LEMMA 2.1. [22] Let p > 1, —o0 < a; < b; < 00, k = k(z,y) be a locally
integrable kernel and ¢ and v be positive and measurable functions. Then

(/bl /(/ / (@, y) v dy)¢( )dm)% |
/bl / (/y | @R, y>dw)_w<y>dy.

PRrROOF. Follows from the fact that we can have equality in Holder’s inequality
and application of Fubini’s theorem (see [22] Lemma 2.1 and Proposition 2.3] for
details). O

Our first result which generalizes Theorem 2.1 in [22] reads:
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THEOREM 2.1. Let 1 < p < g < 00, 0 < b; € 00, S1,... € (1,p), i =
1,2,...,n and let ¢ be a nonnegative increasing function on (a, c), —oo<a<cg
oo for which there exists a convex function v on (a,c) such that
(2.1) AY(z) < ¢(x) < By ()

holds for constants 0 < A < B < co. Let Ai be the general Hardy operator defined
by [@L3) and let u(x) and v(x) be weight functions, where v(x) is of product type
i.e., v(x) = v(x1)v(xa) - -v(xy,). Then the inequality

o ([ [mrereor )
cof [ wrermz )

holds for all functions f such that a < f(x) < ¢, if

s

1

b1 x, a(p—s1) a(p—sn) dx q
A(s) = sup ( / / [ y] W@V, T () Ve T (m)—)
o<y<b L1 Tn

s1—1 sp—1

xV, 7 (k) Vn P (t,) < oo

holds, where V;(x;) = Omi vil*p,dti, 1=1,2,...,n, and p' = 1%.

Furthermore, if C' is the best possible constant in ([22)), then

_ 1/p _ 1/p
C<§ inf (p 1) (p 1) A(s).

Al<s<p\p—s1 D — Sp

REMARK 2.1. For the special case A = B = 1, Theorem [Z] coincides with
Theorem 2.1 in [22].

PROOF. By applying condition (1) followed by Jensen’s inequality to the
left-hand side of ([2:2)) we obtain that

(2.3) (/b / ol ) (o) — d n) |
B</b}../"{¢< / /m (@.y)f y>] u(m)ﬁ)al
</ I Tl e y_ )y ) )"

Define a function g so that ¥?(f(x))—
inequality (23] to obtain that

o ([ [ oo
[ il oot

¥(g(x)) and substitute it into

wl T
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1 _1 1 L 74 dx .
vlP(yl)wvn”(yn)yf-~'yﬁdy} u(“f)—xl...x >
n

Now apply Holder’s inequality, Lemma 2.1l with p replaced by
hand side of (24 and using the fact that

% on the the right-

!

dv(;igz) = vilipl(xi) = v%(xi)v o(@) = vi(@1) - va(en), —- =17,
we obtain
£ flonseoorc)
<s(f : / e [ e VT ) )
) Ve T e ) ) by ) 22
<B (/b [ e vewm e v 1<yn>dy]%

Vi " o) Ve T (g

[T

(y1) -~

| 1
0
/ —p/(s1-1) =p/(sn=1) !
0

L L
P’ Y

)G ([ [

p a(p—s1) a(p—sn)

><V151_1(y1) Vsn 1(yn)dy:| Vl 3 (xl) Vn 4 (In)

L L
o7 o7

A (R (Lo o

i |"=L

9(y))

i)

L
P’

ozt (22
B (2

and the proof is complete.

([ o)
([ ttmn)

\IH

O

REMARK 2.2. Note that by taking A = B in Theorem 2] condition (1))
reduces to ¢(x) = Ay (x) and so Theorem [Z] yields a result that is more general

than Theorem 2.1 in [22].
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COROLLARY 2.1. Let 1 < p < ¢ < 00, 0 < b; < o0, 81,...,8, € (1,p),
1=1,2,...,n and let ¢ be a nonnegative increasing function on (a,c), —o0o < a <
¢ < 0o for which there exists a convex function i on (a,c) such that ¢p(x) < Ayp(x)
holds for a constant A > 0. Let Ax be the general Hardy operator defined by
[T3) and let u(x) and v(x) be weight functions, where v(x) is of product type i.e.,
v(x) =v(z1)v(xa) - -v(xy,). Then the inequality

([ [tz ) <o( [ Pireninz o)

holds for all functions f such that a < f(x) < ¢, if

b1 a(p—s1) a(p—sn) dx %
) := su LY w@)V, * (z Ve P () ————
0<'y2b(/ / [ K(x) ] @)V, (1) ( )len)

1—1 sp—1

XV, 7 (t) Vi 7 (t) < 00

holds, where V;(z;) = Omi vil*p,dti, i =1,2,...,n. Furthermore, if C is the best

possible constant in [2.2)), then

S\ 1N\
C<A inf (p ) ---(p ) A(s).
1<s<p \ p — S1 P — Sn

REMARK 2.3. For the case A = 1, Corollary[ZTreduces to Theorem 2.1 in [22].
Observe also that the case n = 1 yields a result which is more general than Theorem
4.4 in [9).

Our next result reads:

THEOREM 2.2. Let 1 < p < ¢ < 00, 0 < b; < 00, 81,...,8, € (1,p),
t=1,2,....,n (n € Zy) and let ¢ be a nonnegative increasing function on (a,c)
satisfying 21I0). Let Ax be a general Hardy type operator defined by (L3) and
let u(x) and U( ) be weight functions, where v(x) is of product type i.e., v(x) =
v(xzy)v(ze) - --v(zy). Then the inequality

N R )
<of [ [sroniot)

holds for all functions f such that a < f(x) <c¢, if

)= <oi¥<)b/b1 / { az;g} (m>‘/1Q(p_sl)($1)"'V,§’(pS")(xn)%f

s1—1 sp—1

xVi 7 (y1)Va 7 (yn) <00

<=

holds, where Vi(z;) = [y Uj_p/dti, i=1,2,...,n
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Furthermore, if C' is the best possible constant in (2H), then

1 p D
B\? —1\7 -1\
C<(—> inf (p )p---(p )pA(s).
A 1<s<p \p — $1 P — Sn
REMARK 2.4. If A = B = 1, then Theorem coincides with Theorem 3.1

in [9].
PROOF. By applying condition (21]) followed by Jensen’s inequality to the

left-hand side of (28] we obtain that

2o ([ B b"qs%(AKf(w))u(w)J—”‘f%)%
= (/Obl/ob{ (Kgm / /I (.y)f y)] “(‘”)ﬁ) .

o ([ Dl [rmmo) o)
(//[(@/ ) Hewvtrwan] e )

Q=

'§I>—‘

Define g such that wi(f(w))wf =~ = ¥(g(z1,...,2,)) and substitute in (2.0)
to find that
b1 br q dx %
(// W(Akf(w))u(w)m)
2% Tn %
<ni([- / i [ e e ) o) o) kst

dx

By applying Holder’s inequality, Lemma [21] and using the fact that

v(x) =vi(x1) - v (X)),

we have that

(/bl /qs (A f(@)) u(a)—— )
%</bl / { s / (,9) 67 (o)) VP () - VD)

o
yzdy] u(m)—m)q

hSpES)

X VTP () Ve D () 0 () 0P () 0

(/bl /U /I P(@y) v (y))Vlsl1(y1)---Vi"‘1(yn)dy]q

‘dl>—‘



160 OGUNTUASE AND DUROJAYE

T Tn  —p/(s1-1) —p'(sn=1) _z 2’ 2’ 2’ v
T e o T T ) o o ]
0 0

zf__sll)f_',;( _Sn> (/bl / VA ) - Vo)
/ybl . ./bn VP (gy) . VP (g Y () (kl(gz;g)) a
b
(/ /w )
Lo N2 o
) (5_811) ( —Sn> 8)</ )dy)

and the proof is complete. (|

b
8
=
U
8
8
3
| I
QU
<
S~
I

P
'Y

<=

Next, we give the following more general result:

THEOREM 2.3. Let t € [1,00), 0 < b; < 00,1 =1,2,...,n (n € Zy) and let ¢
be a nonnegative increasing function on (a,c), —0o < a < ¢ < 0o for which there
exist a convex function v on (a,c) such that

(2.7) Ap(z) < ¢(z) < By(x)

holds for constants 0 < A < B < 0o. Let Ax be a general Hardy type operator

defined by [L3), K(x) be as defined in (L) and u(x) and v(x) be weight functions
n (0,b). Then the inequality

(2.8)

[ [ s 2 < <§) ( [ b?s(f(w))v(m)dw)t

holds for all functions f such that a < f(x) < ¢, where

([ e )

REMARK 2.5. In Theorem 23] if we set ¢ = 1, then we obtain that

/bl oA f(@)) u(e) " < —/bl "ol (@) vle) do

where
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PROOF. By using assumption (ZT), Jensen’s inequality, Lemma [21] and the
monotonicity of the function a — o', to the left-hand side of inequality (2.8) we
obtain that

/bl / O (A f (@) ule)
/ {(Kix/ / dyﬂ e

b1 n mn T
t/o (g [ e i) | e 2
/ /(Kw>/ [ e )w(f(y))dy)tu(fv)%
<o {([" /f"(K?w/ R e B
b b by + t
<o(f [ouon( [ [ e )dy)
<o ([ [wwrwa) < (5) ([~

and the proof is complete. (|

D:J

iy
ﬁ

3. Further results and examples

By using our results in special cases, we obtain some multidimensional Hardy-
type inequalities which are also new even for the case n = 1. Specifically, we obtain
the following results:

REMARK 3.1. For the case p = ¢ = 1 in Theorem 2.2 then inequality (2.5
reduces to

by by T by bn T
gy [ [Tt s@ue = <o [ [oe) e

where
—

B . p—1\7 p—1\r
< (=2 )
C\<A)1<Hsl£p(p—51> (p_Sn) A(s)

Observe that (BI)) is new for the case n = 1.

In Theorem 2.3]if t = ﬂ, then we obtain:

EXAMPLE 3.1. Let t =% > 1,0 <b; < o00,i=1,2,...,n (n € Z;) and let ¢ be
a nonnegative increasing functlon on (a,c), —0o < a < ¢ < oo for which there exist
a convex function v on (a, ¢) such that Ay (x) < ¢(x) < Bw( ) holds for constants
0 < A< B < oo. Let Ak be a general Hardy type operator defined by (L3), K (x)
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be as defined in (I4) and u(x) and v(x) be weight functions on (0,b). Then

/bl/wAKf())() , ()(//qs 0)ie)

where

Sle

- (L?-%ﬁ”ﬁﬁii?f o),

B\* p—1\¥ (p—1\7¥
< | = f . A .
¢ <A> 1<Hsl<p<p—81) (p—sn) (s)

REMARK 3.2. Note that in the case A = B =1 in Example B1l we see that
¢(x) = Ap(z) is convex, and coupled with the fact that 1 > 1, then (B.2) yields

6o [ [ < </ob/0 o (@) v(a) dw>%

and the inequality sign is reversed if ¢ is concave

Q

and

REMARK 3.3. For the special case p = ¢ =1 in (83]) we obtain that

/0 L / " S Are £ @) u(w)—— / " s @) vie) da.

which coincides with [9) Theorem 4.1] when n = 1.
In Theorem [Z.2] if we set ¥(x) = 2P, then we obtain the following result:

EXAMPLE 3.2. Let 1 < p < ¢ < 00, 0 < b; < 00, 81,...,8, € (L,p), i =
1,2,...,n (n € Z;) and let ¢ be a nonnegative increasing function on (a,c¢) such

that Ax? < ¢(x) < BaP. Let Ax be a general Hardy type operator defined by

(EI:}]) and let u(x) and v(x) be weight functions, where v(x) is of product type i.e.,
= v(z1)v(a2) - v(x,); then

([ [amoo e Yecl - fororioes

holds for all functions f such that a < f(x) < ¢, if

o=, [ i"['“é“’&if] ) )

s1—1 sn—1

Vi 7 (y1) Vo 7 (yn) <0

B\* . (p—1\¥ [(p—1\7¥
(Z) 1<12£p(p_81) ...(p_sn) A(s).

Finally, by putting k(x,y) = 1, ¥(x) = 2P and t = 1 in Theorem 23] condition
1) reduces to Ax? < ¢(x) < Bx? and so we obtain the following result:

Q=

and

C

N
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EXAMPLE 3.3. Let 1 <p<o00,0<b; <00,i=1,2,...,n (n €Zy) and let ¢

be a nonnegative convex function on (a,¢), —oo < a < ¢ < oo for which

Ax? < ¢(x) < Ba?

holds for constants 0 < A < B < oo. If u(x) and v(x) are weight functions on

(0’

(3.

b), then the inequality

N ey R R e ey

< g/ob.l../obn () v(z) de

holds, where

(@)
W [ ] g

n

The sign of (34) is reversed if ¢ is concave.

REMARK 3.4. For the case n = 1, inequality (84 yields the following result

/ob (é /0 1) dy>p“<:”)i_w <3 /Ob F?(@)o(x) de,

which is also new.
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