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TOTAL REDUCTION OF LINEAR SYSTEMS

OF OPERATOR EQUATIONS WITH
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Abstract. We consider a total reduction of a nonhomogeneous linear system
of operator equations with the system matrix in the companion form. To-
tally reduced system obtained in this manner is completely decoupled, i.e., it
is a system with separated variables. We introduce a method for the total
reduction, not by a change of basis, but by finding the adjugate matrix of the
characteristic matrix of the system matrix. We also indicate how this tech-
nique may be used to connect differential transcendence of the solution with
the coefficients of the system.

1. Introduction

The order of a linear operator equation is the highest power of the operator in
the equation. The reduction of a nonhomogeneous linear system of the first order
operator equations to the partially reduced system, i.e., to the system consisting
of a higher order linear operator equation having only one variable and the rest
of the first order linear operator equations in two variables, was studied in paper
[6]. In this paper we will be concerned with the reduction of a nonhomogeneous
linear system of the first order operator equations with the system matrix in the
companion form to the totally reduced system, i.e., to the system with completely
decoupled equations. The common method for transforming a system into the
totally reduced system relies upon the changing of basis in which the system matrix
is given in Jordan canonical form. In papers [1] and [2] we can find a procedure
for determining the transformation matrix S such that C = S−1 · J · S, where
C is the matrix in the companion form and J is the matrix in Jordan form. In
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order to establish the form of the totally reduced system we will use the form of
the coefficients of the adjugate matrix of the characteristic matrix of the system
matrix presented as A polynomial with matrix coefficients. As a consequence of
this method we will get a connection between the entries of the system matrix
and differential transcendence of the solution of a linear system of the first order
differential equations with the system matrix in the companion form and with
complex coefficients, where exactly one nonhomogeneous part is a differentially
transcendental meromorphic function.

2. Preliminaries

In this section we will review some standard facts of linear algebra. A more
complete presentation can be found in [4, 5].

Let C be an n × n matrix with coefficients in a field K. An element λ ∈ K

is called an eigenvalue of C with the corresponding eigenvector v if v is a nonzero
n× 1 column with coefficients in K such that λv = Cv. The set of all eigenvectors
with the same eigenvalue λ, together with the zero vector, is a vector space called
the eigenspace of the matrix C that corresponds to the eigenvalue λ. The geo-
metric multiplicity of an eigenvalue λ is defined as the dimension of the associated
eigenspace, i.e., it is the number of linearly independent eigenvectors corresponding
to that eigenvalue. The algebraic multiplicity of an eigenvalue λ is defined as the
multiplicity of the corresponding root of the characteristic polynomial. A general-
ized eigenvector u of C associated to λ is a nonzero n× 1 column with coefficients
in K satisfying (C − λI)ku = 0, for some k ∈ N. The set of all generalized eigen-
vectors for a given eigenvalue λ, together with the zero vector, form the generalized
eigenspace for λ.

The k × k matrix of the form

J =










λ 1 . . . 0 0
0 λ . . . 0 0
...

...
...

...
0 0 . . . λ 1
0 0 . . . 0 λ










is called the Jordan block of size k with eigenvalue λ. A matrix is said to be in a
Jordan canonical form if it is a block diagonal matrix with Jordan blocks along the
diagonal. The number of Jordan blocks corresponding to an eigenvalue λ is equal
to its geometric multiplicity and the sum of their sizes is equal to the algebraic
multiplicity of λ.

Invariant factors of matrix C are polynomials

i1(λ) =
D1(λ)

D0(λ)
, i2(λ) =

D2(λ)

D1(λ)
, . . . ir(λ) =

Dr(λ)

Dr−1(λ)
,

where Dj(λ) is the greatest common divisor of all the minors of order j in λI −C

and D0(λ) = 1, 1 6 j 6 r. The companion matrix of a polynomial ∆(λ) =
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λn + d1λ
n−1 + · · · + dn−1λ+ dn is the matrix

C =










0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

−dn −dn−1 −dn−2 . . . −d2 −d1










It can easily be seen that the characteristic polynomial of the companion matrix C
is ∆(λ). The characteristic equation ∆(λ) = 0 can also be written in the following
matrix form

(λI − C) · v(λ) =










λ −1 0 . . . 0 0
0 λ −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ −1
dn dn−1 dn−2 . . . d2 λ+ d1










·










1
λ
...

λn−2

λn−1










=










0
0
...
0

∆(λ)










= O.

If λ1, λ2, . . . , λt are different eigenvalues of the matrix C, we can conclude from
the previous equation that v(λi) is the eigenvector corresponding to the eigenvalue
λi. Since the rank of the matrix λiI − C is equal to n − 1, it follows that for
each eigenvalue there is only one eigenvector. Thus, geometric multiplicity of each
eigenvalue is equal to 1 and the Jordan canonical form has exactly t blocks. The
number of generalized eigenvectors associated to λi is equal to algebraic multiplicity
ki of λi. It also holds ∆(λi) = ∆′(λi) = · · · = ∆(ki−1)(λi) = 0 and ∆(ki)(λi) 6= 0.
Differentiating the corresponding matrix equation ki − 1 times with respect to λ

we obtain that

v′(λi),
1

2
v′′(λi), . . . ,

1

(ki − 1)!
v(ki−1)(λi)

are generalized eigenvectors. Let S be the matrix whose columns are these general-
ized eigenvectors. Then J = S−1 · C · S is a Jordan canonical form of the matrix
C, (see [1, 2] for more details).

In the next section we will derive some properties of a companion matrix that
we need for the total reduction by finding the adjugate matrix of the characteristic
matrix of the system matrix.

3. Properties of Companion Matrix of a Monic Polynomial

We already mentioned that the characteristic polynomial of the companion
matrix C is ∆(λ). The minor of size n−1 of the matrix λI−C obtained by deleting
the n-th row and the first column is equal to 1. Hence the minimal polynomial of
the matrix C is also equal to ∆(λ) and all invariant factors of the matrix λI − C

except the last one are 1. Furthermore, the determinant of the matrix C is (−1)ndn,
and consequently if dn 6= 0 the matrix C is invertible. Then the inverse matrix of
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the matrix C is

G =










−
dn−1

dn

−
dn−2

dn

−
dn−3

dn

. . . − d1

dn

− 1
dn

1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0










.

The adjugate matrix of C is

adj(C) = (−1)n−1










dn−1 dn−2 dn−3 . . . d1 1
−dn 0 0 . . . 0 0

0 −dn 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . −dn 0










.

Let the adjugate matrix of the characteristic matrix λI −C be written in the form
adj(λI − C) = λn−1C0 + λn−2C1 + · · · + λCn−2 + Cn−1. Let us determine the
coefficients Ck using the recurrences Ck = C · Ck−1 + dkI, for 1 6 k 6 n − 1 and
C0 = I. The recurrences are obtained by equating coefficients at the same powers
of λ on the both sides of the equality adj(λI−C)(λ) · (λI −C) = ∆C(λ)I, (see [5]).

Lemma 3.1. Coefficients Ck, 1 6 k 6 n − 1, of the matrix adj(λI − C) are

matrices of the form























dk dk−1 dk−2 . . . d2 d1 1 . . . 0 0 0
0 dk dk−1 . . . d3 d2 d1 . . . 0 0 0
0 0 dk . . . d4 d3 d2 . . . 0 0 0
...

. . .
. . .

...

0 0 0 . . . dk dk−1 dk−2 . . . d2 d1 1
−dn −dn−1 −dn−2 . . . −dk+1 0 0 . . . 0 0 0

0 −dn −dn−1 . . . −dk+2 −dk+1 0 . . . 0 0 0
0 0 −dn . . . −dk+3 −dk+2 −dk+1 . . . 0 0 0
...

. . .
. . .

...

0 0 0 . . . −dn −dn−1 −dn−2 . . . −dk+1 0 0
0 0 0 . . . 0 −dn −dn−1 . . . −dk+2 −dk+1 0























.

Proof. The proof follows by induction on k. We have C0 = I. For the
coefficient C1 it holds C1 = C · I + d1I, i.e.,

C1 =










d1 1 0 . . . 0 0
0 d1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . d1 1

−dn −dn−1 −dn−2 . . . −d2 0










.
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Suppose that

Ck−1 =

















dk−1 dk−2 . . . d1 1 . . . 0 0
0 dk−1 . . . d2 d1 . . . 0 0
...

. . .
. . .

...
0 0 . . . dk−1 dk−2 . . . d1 1

−dn −dn−1 . . . −dk 0 . . . 0 0
0 −dn . . . −dk+1 −dk . . . 0 0
...

. . .
. . .

...
0 0 . . . −dn −dn−1 . . . −dk 0

















.

Let (Ck−1)→j stand for the j-th row of matrix Ck−1, and let (C · Ck−1)→j denote
the j-th row of the product of the matrices C and Ck−1. Then (C · Ck−1)→j =
(Ck−1)→j+1, 1 6 j 6 n− 1. We also have

(Ck−1)→n · C

= [0 . . . 0
︸ ︷︷ ︸

k−2

−dn − dn−1 . . . − dk+1 − dk 0] ·








0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 1

−dn −dn−1 −dn−2 . . . −d2 −d1








= [0 . . . 0
︸ ︷︷ ︸

k−1

−dn − dn−1 . . . − dk+1 − dk 0]

From C · Ck−1 = Ck−1 · C we conclude that the above row is the last row of the
product C · Ck−1 and hence we deduce

C · Ck−1 =

















0 dk−1 . . . d2 d1 . . . 0 0
...

. . .
. . .

...
0 0 . . . dk−1 dk−2 . . . d1 1

−dn −dn−1 . . . −dk 0 . . . 0 0
0 −dn . . . −dk+1 −dk . . . 0 0
...

. . .
. . .

...
0 0 . . . −dn −dn−1 . . . −dk 0
0 0 . . . 0 −dn . . . −dk+1 −dk

















.

Adding the matrix dkI to this product we obtain the matrix Ck. �

4. The Main Result

In this section we will derive explicit formulas for the transformation of the
following system (4.1) into the totally reduced system.

Let K be a field, V a vector space over K and A : V → V a linear operator on
the vector space V . We will consider a nonhomogeneous linear system of operator
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equations of the form

(4.1)

A(x1) = x2 + ϕ1

A(x2) = x3 + ϕ2

...

A(xn−1) = xn + ϕn−1

A(xn) = −dnx1 − dn−1x2 − · · · − d1xn + ϕn,

for di ∈ K, ϕi ∈ V , 1 6 i 6 n. The system can be rewritten in the matrix form

~A(~x) = C~x+ ~ϕ,

where ~x = [x1 x2 . . . xn]T ∈ Kn×1 is the column of unknowns, ~A : V n×1 → V n×1

is a vector operator defined componentwise ~A(~x) = [A(x1)A(x2) . . . A(xn)]T , ~ϕ =
[ϕ1 ϕ2 . . . ϕn]T ∈ V n×1 is a nonhomogeneous term and the system matrix C is the
companion matrix of the polynomial ∆(λ) = λn +d1λ

n−1 + · · ·+dn−1λ+dn. Since

A is a linear operator, the system ~A(~x) = C~x + ~ϕ can be transformed into the

system ~A(~y) = J~y + ~ψ by multiplying on the left by the matrix S−1, where J is
the matrix in Jordan canonical form and S is a transformation matrix such that
C = S−1 · J · S. Here ~y = S−1~x is the column of unknowns and ~ψ = S−1~ϕ is the
nonhomogeneous term. If the matrix J has only one block, then system (4.1) can
be transformed into the partially reduced system

A(y1) = λy1 + y2 + ψ1

A(y2) = λy2 + y3 + ψ2

...

A(yn−1) = λyn−1 + yn + ψn−1

A(yn) = λyn + ψn.

The totally reduced system is obtained by acting of operators

(A− λ)n−1, . . . , (A− λ)2, A− λ

successively on the equations of the partially reduced system and by substituting
the expressions (A−λ)n+1−i(yi) appearing on the right-hand sides of the equalities
with

∑n

j=i(A−λ)n−j(ψj), for 2 6 i 6 n, assuming (A−λ)0 is the identity operator.
Thus the system is of the form

(A− λ)n(y1) = ψn + (A− λ)(ψn−1) + · · · + (A− λ)n−1(ψ1)

(A− λ)n−1(y2) = ψn + (A− λ)(ψn−1) + · · · + (A− λ)n−2(ψ2)

...

(A− λ)2(yn−1) = ψn + (A− λ)(ψn−1)

(A− λ)(yn) = ψn.
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If the matrix J has t blocks J1, . . . , Jt, then system (4.1) is equivalent to the system
∧t

i=1

(
~A(~yi) = Ji~yi + ~ψi

)
, where ~yi = [yℓi+1 . . . yℓi+ki

]T and ~ψi = [ψℓi+1 . . . ψℓi+ki
]T ,

for l1 = 0 and li =
∑i−1

j=1 kj , 2 6 i 6 t. Each of the subsystems has the same form as
the above partially reduced system, and therefore the corresponding totally reduced
system is a conjunction of totally reduced systems.

Theorem 4.1. For the linear system of operator equations ~A(~x) = C~x + ~ϕ it

holds ∆(A)(~x) =
∑n

k=1 Ck−1 · ~An−k(~ϕ), where ∆(λ) is the characteristic polyno-

mial of the system matrix C and C0, C1, . . . , Cn−1 are the coefficients of the matrix

polynomial adj(λI − C).

For the proof we refer the reader to [7].

Theorem 4.2. The linear system of operator equations (4.1) implies the totally

reduced system

(4.2)

∆(A)(x1) =

n∑

k=1

k−1∑

j=0

djA
n−k(ϕk−j)

...

∆(A)(xi) =
n+1−i∑

k=1

k−1∑

j=0

djA
n−k(ϕi−1+k−j) −

n∑

k=n+2−i

n∑

j=k

djA
n−k(ϕi−1+k−j)

...

∆(A)(xn) = An−1(ϕn) −

n∑

k=2

n∑

j=k

djA
n−k(ϕn−1+k−j),

where d0 = 1.

Proof. According to Theorem 4.1 we have ∆( ~A)(~x) =
∑n

k=1 Ck−1 · ~An−k(~ϕ).
Moreover it holds

















An−k(ϕ1)
An−k(ϕ2)

...
An−k(ϕk−1)
An−k(ϕk)
An−k(ϕk+1)

...
An−k(ϕn)

















=














∑k−1
j=0 djA

n−k(ϕk−j)
...

∑k−1
j=0 djA

n−k(ϕn−j)

−
∑n

j=k djA
n−k(ϕn+1−j)
...

−
∑n

j=k djA
n−k(ϕn+k−1−j)














Consequently we get (4.2). �

Let B be an arbitrary n × n matrix with coefficients in a field K and let
C = C1 ⊕ · · · ⊕ Ck be the rational canonical form of the matrix B. Each block
Ci, 1 6 i 6 k, is the companion matrix of a invariant factor of the matrix B. The
system

~A(~x) = B~x+ ~ϕ
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can be reduced to the system

k∧

i=1

(

~A(~zi) = Ci~zi + ~νi

)

,

where ~νi = [νℓi+1 . . . νℓi+ni
]T and ~zi = [zℓi+1 . . . zℓi+ni

]T , for l1 = 0 and li =
∑i−1

j=1 nj , 2 6 i 6 k. According to Theorem 4.2 each subsystem

~A(~zi) = Ci~zi + ~νi

corresponding to the companion matrix Ci of the polynomial

∆Ci
(λ) = λni + di,1λ

ni−1 + · · · + di,ni−1λ+ di,ni

can be transformed into the totally reduced system

∆Ci
(A)(zli+1) =

ni∑

k=1

k−1∑

j=0

di,jA
ni−k(νli+k−j)

...

∆Ci
(A)(zli+t) =

ni+1−t∑

k=1

k−1∑

j=0

di,jA
ni−k(νli+t−1+k−j)

−

ni∑

k=ni+2−t

ni∑

j=k

di,jA
ni−k(νli+t−1+k−j)

...

∆Ci
(A)(zli+ni

) = Ani−1(νli+ni
) −

ni∑

k=2

ni∑

j=k

di,jA
ni−k(νli+ni−1+k−j),

where di,0 = 1. These systems consist of higher order linear operator equations
in only one variable. The homogeneous parts of the equations are obtained by
replacing λ by A in the invariant factors of the matrix B.

In addition, each of the subsystems ~A(~zi) = Ci~zi + ~νi can be transformed by a
change of basis into a system with the matrix in the Jordan canonical form. Let Si

be the matrix constructed from the eigenvectors of Ci. Then Ji = S−1
i ·Ci · Si is a

matrix in the Jordan canonical form and Ji = Ji,1 ⊕ Ji,2 ⊕ · · · ⊕ Ji,ti
. The blocks

Ji,1, Ji,2, . . . , Ji,ti
correspond to distinct roots of the polynomial ∆Ci

(λ), and their
dimensions are equal to the multiplicities of these roots. Let us denote by S the
direct sum of the matrices Si, i.e., S = S1 ⊕ S2 ⊕ · · · ⊕ Sk. Then J = S−1 ·C · S is

the Jordan canonical form of the matrix B. Therefore the system ~A(~x) = B~x + ~ϕ

can be reduced to an equivalent system ~A(~y) = J~y + ~ψ, from which, as we have
seen, we can obtain the totally reduced system.
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5. Differential transcendence

In this section we restrict our attention to system (4.1) on the assumptions
that V is the vector space of meromorphic functions over the complex field C and
that A(x) = d

dz
(x) is a differential operator.

Recall that a function x0 ∈ V is differentially algebraic over C if it satisfies a
differential algebraic equation with coefficients in the field C. A function x0 ∈ V is
differentially transcendental over C if it is not differentially algebraic, (see [8, 3]).

We are interested in establishing a connection between the differential tran-
scendence of the solution of system (4.2) and the differential transcendence of the
nonhomogeneous parts of system (4.1). Let x0 ∈ V be a solution of differential
equation

x(n)(z) + d1x
(n−1)(z) + · · · + dn−1x

′(z) + dnx(z) = ϕ(z),

for d1, d2, . . . , dn ∈ C and ϕ ∈ V . The function x0 is differentially transcendental
over C if and only if the function ϕ is differentially transcendental over C, (see
[7, 10]). Since all equations of system (4.2) are of this form, our main task is
to determine the conditions on which a differentially transcendental component of
the nonhomogeneous term of system (4.1) does not appear in the nonhomogeneous
parts of system (4.2).

Let ϕ1(z) be the only differentially transcendental component of the nonhomo-
geneous term ~ϕ(z) = [ϕ1(z) . . . ϕn(z)]T of system (4.1). Then

n∑

k=1

k−1∑

j=0

djϕ
(n−k)
k−j (z)

is a differentially transcendental function over the field C, because the function
ϕ1(z) appears in the sum in the form

ϕ
(n−1)
1 (z) + d1ϕ

(n−2)
1 (z) + · · · + dn−1ϕ1(z).

Therefore the first coordinate x01(z) of the solution of system (4.2) is differentially
transcendental over C. The function ϕ1(z) appears in the sums

n+1−i∑

k=1

k−1∑

j=0

djϕ
(n−k)
i−1+k−j(z) −

n∑

k=n+2−i

n∑

j=k

djϕ
(n−k)
i−1+k−j(z),

for 1 < i 6 n, in the form −dnϕ
(i−2)
1 (z), so the sums are differentially algebraic over

C if and only if dn = 0. Hence, the coordinates x02(z), . . . , x0n(z) of the solution
of system (4.2) are differentially algebraic over C if and only if dn = 0.

From now on let ϕm(z), 1 < m < n, be the only differentially transcendental
component of the nonhomogeneous term ~ϕ(z). The nonhomogeneous part

n+1−i∑

k=1

k−1∑

j=0

djϕ
(n−k)
i−1+k−j(z) −

n∑

k=n+2−i

n∑

j=k

djϕ
(n−k)
i−1+k−j(z)
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of the i-th equation of system (4.2), for 1 6 i 6 m, contains the function ϕm(z) in
the form of a differential polynomial

ϕ(n−m+i−1)
m (z) + d1ϕ

(n−m+i−2)
m (z) + · · · + dn−mϕ

(i−1)
m (z).

Therefore these nonhomogeneous parts are differentially transcendental functions
over C and consequently the coordinates x01(z), . . . , x0m(z) of the solution of system
(4.2) are differentially transcendental over C. The function ϕm(z) appears in the
nonhomogeneous part of the i-th equation of system (4.2), for m + 1 6 i 6 n, in
the form of a differential polynomial

−(dn−m+1ϕ
(i−2)
m (z) + dn−m+2ϕ

(i−3)
m (z) + · · · + dnϕ

(i−1−m)
m (z)).

Hence, these nonhomogeneous parts are differentially algebraic over C if and only
if dn−m+1 = dn−m+2 = · · · = dn = 0, m + 1 6 i 6 n. Thus, the coordinates
x0 m+1(z), . . . , x0 n(z) of the solution of system (4.2) are differentially algebraic
over C if and only if dn−m+1 = dn−m+2 = · · · = dn = 0.

If ϕn(z) is the only differentially transcendental component of the nonhomoge-
neous term ~ϕ(z), then all coordinates of the solution of system (4.2) are differen-
tially transcendental over C, because ϕn(z) appears in each nonhomogeneous part
of system (4.2).

An important point to note here is that if more than one component of the
nonhomogeneous term of system (4.1) is differentially transcendental over C we
need to examine their differential independence, (see [9]).
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