
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 93 (107) (2013), 109–115 DOI: 10.2298/PIM1307109L

COMPARISON OF RANDOM

S-BOX GENERATION METHODS

Dragan Lambić and Miodrag Živković

Communicated by Žarko Mijajlović

Abstract. Random bijective S-box generation methods are considered. An
alternative S-box generation method by forming compositions of permutations
from some fixed set is proposed. Experiments show that the rate of acceptable
S-boxes for all the methods considered is essentially the same. The advantage
of the composition method is an obvious parametrization, with the potentially
large key space.

1. Introduction

A number of known block ciphers are of substitution-permutation (SP) type.
S-boxes are used in such cipher systems as the important nonlinear component.
A strong block cipher should be resistant to various attacks, such as linear and
differential cryptanalysis. In SP networks this is generally achieved if the S-boxes
used satisfy a number of criteria, such as strict avalanche criterion (SAC), bit
independence criterion (BIC), nonlinearity, XOR Table Distribution and maximum
expected linear probability (MELP, see for example [1,2]).

The S-box used in encryption process could be chosen under the control of
key, instead of being fixed. For example in [1,3,4] random key-dependent S-boxes
are generated once per encryption without discarding any S-boxes, and in [5] the
S-boxes are generated until a good one is found.

Here we consider random bijective S-box generation methods satisfying cho-
sen selected criteria. Jakimoski and Kocarev [6] generated the chaotic S-boxes by
discretizing the exponential and logistic maps; the numbers of iterations of the
discretized exponential map were considered as the keys, making the S-boxes key-
dependent. The S-box generation method based on a 2D discretized chaotic Baker
map was proposed in [7]. Afterwards, the 2D was further extended to a 3D one [8].

2010 Mathematics Subject Classification: 15A21; 15A36.
Key words and phrases: S-box, random permutation, Walsh transform.
Partially supported by Ministry of Science and Technology of Serbia, Grant 174021.

109



110 LAMBIĆ AND ZIVKOVIĆ

Yin et al. [9] presented S-box generation method based on the iteration of con-
tinuous chaotic maps, with the starting points depending of the key. In [10], a
generation method is proposed, which uses the Lorenz system and special shift-
ing method to generate the S-box. The S-boxes obtained by various methods are
checked afterwards, and discarded if they do not satisfy common set of criteria (see
for example [2,11–13]).

We propose another simple method to obtain random S-boxes. After choosing
some fixed set of starting S-boxes, output S-boxes are obtained by making various
compositions of the starting S-boxes. The sequence of the indices of starting S-boxes
used is key-controlled. These methods are experimentally compared, by generating
a number of n × n S-boxes, n = 8, 10, 12. It turns out that the rate of S-boxes
satisfying all the criteria does not depend substantially on a generation method.
The advantage of the proposed generation method is the size of the key space.

2. Notation

Let B = {0, 1}. S-box of the type m × n is a function f : Bm → Bn. S-boxes
appearing inside block ciphers are expected to satisfy some standard criteria. Here
we consider only bijective S-boxes, where m = n. The vector x = (x1, x2, . . . , xn) ∈
Bn naturally corresponds to the integer

∑n

i=1 xi2
n−i, which is also denoted by x,

without causing misunderstanding. Bijective S-box f : Bn → Bn is a permutation
of the set {0, 1, . . . , N − 1}, where N = 2n. It is represented by the integer vector
{f(0), f(1), . . . , f(N −1)} which is also denoted by f , because there is no danger of
confusion. A cycle is a permutation (c1, c2, . . . , ck) mapping ci into ci+1, 1 6 i < k,
and mapping ck into c1, leaving the other elements in place. Transposition is a
cycle of length two. The composition h = fg of two permutations f and g of the
same set A, is the permutation mapping each x ∈ A into h(x) = f(g(x)).

Let ei = [δi,1 δi,2 . . . δi,n]T , where

δi,j =

{

1, i = j

0, i 6= j,

and let (·)T denote a matrix transpose. Let ⊕ denote exclusive or operation.
The nonlinearity of a function φ : Bn → B is defined by

N(φ) = 2n−1 −
1

2
max
a∈Bn

∣

∣

∣

∣

∑

x∈Bn

(−1)f(x)+a·x

∣

∣

∣

∣

(see [14] for example). The complexity of computation of N(φ) using Walsh trans-
form is O(n2n). Let Pi,j(f) = 2−n

∑

x∈Bn fj(x) ⊕ fj(x ⊕ ei).

Linear probability is defined by LP (a, b) =
(

2−n
∑

x∈Bn(−1)a·x+b·f(x)
)2

.
Given a function f : Bn → Bn, f = (f1, f2, . . . , fn) (where fi : Bn → B), let

N(f) = min{N(fi) | 1 6 i 6 n},

B(f) = min{N(fi ⊕ fj) | 1 6 i < j 6 n},

S(f) =
1

n2

∑

16i6n

∑

16j6n

∣

∣

∣

1

2
− Pi,j(f)

∣

∣

∣



COMPARISON OF RANDOM S-BOX GENERATION METHODS 111

X(f) = max
∆x∈Bn

r{0}, ∆y∈Bn
{x ∈ Bn | f(x) ⊕ f(x ⊕ ∆x) = ∆y}

L(f) = max
a,b∈Bn

r{0}
LP (a, b).

The value N(f) is a measure of the nonlinearity of f . Furthermore, S(f), B(f),
X(f) and L(f) measure degree to which f satisfy strict avalanche criterion (SAC),
output bits independence criterion (BIC), equiprobable input/output XOR distri-
bution criterion (XOR) and maximum expected linear probability (MELP), respec-
tively. Equiprobable input/output XOR distribution criterion (XOR) is also known
as maximum expected differential probability (MEDP).

Let a, c, d be integers, 0 < a, c, d < 2n−1, and let 0 < b, e < 1. We say that the
S-box f : Bn → Bn is (a, b, c, d, e) acceptable if

(1) N(f) > a, S(f) 6 b, B(f) > c, X(f) 6 d, L(f) < e.

These five criteria will be denoted by C1, C2, C3, C4, C5, respectively. The values
N(f), S(f), B(f), X(f), L(f) can be computed in time O(n22n), O(n22n), O(n32n),
O(n4n), O(n4n), respectively. Therefore, it is most efficient to check if f satisfy
the conditions 1, following the order Ci, i = 1, 2, 3, 4, 5; if f fails to satisfy Ci for
some i, 1 6 i 6 5, the computation is stopped, and f is discarded.

3. Random S-box generation methods

For given n, after choosing appropriate values of a, b, c, d, e, all n × n S-box
generation algorithms that will be considered, generate a sequence of permutations
of {0, 1, . . . , N − 1}, N = 2n, leaving only (a, b, c, d, e) acceptable ones. There
have been recently proposed a number of random bijective S-box generation algo-
rithms, differing mainly in a random permutation generation method used. Each
permutation is then checked to see if it satisfies conditions 1.

For the sake of completeness, the two “classical” algorithms to obtain random
permutation of {0, 1, . . . , N −1} are included here. They both use a random number
generator rnd(), giving the pseudorandom numbers uniformly distributed on [0, 1].
The algorithm perm1 obtains the i-th element f [i] of a permutation f repeatedly
computing a = ⌊N · rnd()⌋ until a is different from all f [j], 0 6 j < i. The average

number of calls to rnd() is
∑N−1

i=0
N

N−k
= O(N log N).

The algorithm perm2 (Knuth shuffle, see [15]) gives the permutation equal
to the product of N − 1 transpositions (N − i, r[i]), i = 0, 1, . . . , N − 1, where
r[i] = ⌊(N − i) rnd()⌋. The number of calls to rnd() in the worst case is O(N),
explaining why perm2 is much more efficient than perm1.

Denote by S0 the n × n S-box generating algorithm using perm2, and the
standard RNG (random number generator) rnd(), the part of C language.

The method proposed in [7] (which will be denoted by S1) uses the random
number generator based on recurrent sequence xm = τ(xm−1), m > 1, x0 ∈ [0, 1],

where τ(x) = µx(1 − x), µ ∈ [4 ·
2n− 1

2

2n , 4]. Here µ is chosen so that the length of
the interval [0, 1] r {τ(x) | x ∈ [0, 1]} is at most 1/(2N). Given x, the state of
the RNG, the next random number generated rnd() is τ(x), which also replaces
the state x. After obtaining the permutation π by perm1, the permutation πβ9



112 LAMBIĆ AND ZIVKOVIĆ

is returned, where β is the Baker 2D-map [7]. Experiments show that the rate of
(a, b, c, d, e)-acceptable S-boxes is not changed if the permutations are generated by
more efficient algorithm perm2 .

The method proposed in [8] (which will be called S2) uses similar RNG, based
on the recurrent sequence, where τ(x) = cos(k arccos(x)) (k ∈ R); instead of Baker
2D map β, the Baker 3D-map [8] is used.

The method from [9] (which will be called S3) gives random permutations of
Bn depending on the key — the sequence o of N = 2n integers from the interval
[0, N −1]. The permutation returned is the product of N −1 transpositions (i, r[i]),
i = 0, 1, . . . , N − 1, where

r[i] =

⌊

Nτm

(

i

2n
+

o(i)

4n

)⌋

,

and m = 9, for example.

4. Proposed S-box generation method

We now describe the proposed simple algorithm, which will be called S4. The
set of k > 1 fixed bijective starting S-boxes f1, f2, . . . , fk is used. For an arbi-
trary sequence of m > 1 indexes i1, i2, . . . , im ∈ {1, 2, . . . , k}, S4 returns the S-box
∏m

j=1 fij
. For example, if n = 8, k = 5, and f1, f2, f3, f4 are the bijective chaotic S-

boxes from [7], [8], [16], [17] respectively, and if f5 is the AES S-box, then the S-box
f5f4f5f3f3f1f4f3f5 is good enough — it is (106, 0.02856, 100, 10, 0.071)-acceptable.

The S-box generation method could be incorporated in practical system as
follows. Communicating parties A and B share the set of starting S-boxes, the
parameter (a, b, c, d, e) values and the key for chosen PRNG (pseudo random num-
ber generator). The PRNG is used to generate index sequences, until the first
(a, b, c, d, e)-acceptable S-box is found. Let K be the total number of S-boxes to be
generated by the system, i.e., the number of different keys; we suppose that keys are
not to be repeated. The key space size log2 K could be estimated as follows. De-
note by δ the probability that the randomly chosen S-box is (a, b, c, d, e)-acceptable.
Denote by ǫ the probability that all S-boxes generated are different. Starting from
the approximate expression (birthday problem, see for example [18], ǫ small)

ǫ ≃
K2

2δ(2n)!
,

the size of key space is approximately 1
2 log2 N ! + 1

2 log2(2ǫδ). If, for example,

ǫ = δ = 2−20 ≃ 10−6, then the size of key space is approximately 1
2 log2 N ! − 9.5 ≃

832, 4375, 21615 bits for n = 8, 10, 12 respectively. The speed of the S-box genera-
tion is proportional to the selection rate δ. It is determined mostly by the efficiency
of checking the conditions C4 and C5. A small change in key bits causes substan-
tially different sequence of index sequences, and therefore substantially different
output S-boxes.

5. Experimental results

In order to compare the rates of (a, b, c, d, e)-acceptable S-boxes that could be
obtained by algorithms S0, S1, S2, S3 and S4, each of these algorithms is used



COMPARISON OF RANDOM S-BOX GENERATION METHODS 113

Table 1. The bounds (a, b, c, d, e) used for corresponding charac-
teristics of S-boxes.

a b c d e
8 106 0.030 100 10 0.079
10 456 0.015 444 12 0.025
12 1920 0.008 1900 14 0.006

Table 2. The rates of S-boxes satisfying one of five criteria,
among those satisfying previous ones.

n = 8, M = M0 = 107

M1 100 M1

M0

M2 100 M2

M1

M3 100 M3

M2

M4 100 M4

M3

M5 100 M5

M4

S0 1455 0.015 257 17.7 43 16.7 14 32.6 9 64.3
S1 1452 0.015 246 16.9 48 19.5 15 31.2 9 60.0
S2 1431 0.014 282 19.7 52 18.4 21 40.4 12 57.1
S3 1514 0.015 273 18.0 48 17.6 10 20.8 7 70.0
S4 1340 0.013 236 17.6 33 14.0 16 48.5 9 56.2

n = 10, M = M0 = 105

M1 100 M1

M0

M2 100 M2

M1

M3 100 M3

M2

M4 100 M4

M3

M5 100 M5

M4

S0 2336 2.3 87 3.7 48 55.2 17 35.4 16 94.1
S1 2273 2.3 100 4.4 40 40.0 16 40.0 15 93.7
S2 2265 2.3 82 3.6 33 40.2 11 33.3 11 100.0
S3 2282 2.3 87 3.8 41 47.1 14 34.1 13 92.9
S4 2267 2.3 84 3.7 39 46.4 14 35.9 14 100.0

n = 12, M = M0 = 104

M1 100 M1

M0

M2 100 M2

M1

M3 100 M3

M2

M4 100 M4

M3

M5 100 M5

M4

S0 672 6.7 52 7.7 21 40.4 6 28.6 6 100.0
S1 619 6.2 47 7.6 21 44.7 5 23.8 5 100.0
S2 663 6.6 57 8.6 26 45.6 10 38.5 10 100.0
S3 624 6.2 52 8.3 25 48.1 9 36.0 9 100.0
S4 676 6.8 50 7.4 18 36.0 6 33.3 6 100.0

to generate and check M = M(n) = 107, 105, 104 random S-boxes for n = 8, 10, 12
respectively.

Let M0 = M , and let Mi denote the number of S-boxes satisfying all the criteria
C0, . . . , Ci, 1 6 i 6 5. The values of bounds (a, b, c, d, e) are chosen so that the ratio
Mi/Mi−1 is not unreasonably small, 1 6 i 6 5. The bounds for n = 8 are stronger
than or equal to those from [7,8,10,16,17,19] except for nonlinearity bound in [19]
obtained with the heuristic S-box generation method. No S-box satisfying C1 with
a = 108 was found, so the value a = 106 was chosen. The bounds chosen are shown
in Table 1.



114 LAMBIĆ AND ZIVKOVIĆ

The results are given in Table 2. The numbers Mi and the ratios 100Mi/Mi−1,
i = 1, 2, 3, 4, 5, are shown for n = 8, 10, 12. It is seen that the ratios 100Mi/Mi−1

do not vary substantially for different S-box generation methods.

6. Conclusion

Several methods for random S-box generation have been proposed in recent
years. The results show that the rates of good S-boxes among those generated by
various methods do not depend substantially on the method of generation. The
consequence of the large complexity of the S-box testing is that the total generation
times per one good S-box obtained do not differ substantially, also. The advantage
of the proposed composition method is a possibility to achieve a large key space.

Acknowledgement. The authors are grateful to anonymous referee for useful
comments leading to improvement of exposition.

References

1. L. Keliher, H. Meijer, S. Tavares, A new substitution-permutation network cryptosystem using
key-dependent s-boxes, In: Proc. SAC’97, Canada, (1997), 13–26

2. L. Keliher, Refined analysis of bounds related to linear and differential and linear cryptanal-
ysis for the AES, (In: H. Dobbertin et al., eds. Advanced Encryption StandardŮAES Š04,
Bonn, 2004, Lect. Notes Comput. Sci. 2005, 42–57)

3. K. Kazlauskas, Key-dependent S-box generation in AES block cipher system, Informatica 20
(2009), 23–34

4. B. Schneier, Description of a new variable-length, 64-bit block cipher (Blowfish), (In: Proc.
Fast Software Encryption, Springer, 1994, pp. 191–204)

5. P. Mroczkowski, Generating Pseudorandom S-Boxes Ű– a Method of Improving the Security
of Cryptosystems Based on Block Ciphers, J. Telecommun. Inform. Technol. (2009), 74–79

6. G. Jakimoski, L. Kocarev, Chaos and cryptography:block encryption ciphers based on chaotic
maps, IEEE Trans Circuits SystŰI 48 (2001), 163–70

7. G. Tang, X. F. Liao, Y. Chen, A novel method for designing S-boxes based on chaotic maps,
Chaos Solitons Fractals 23 (2005), 413–419

8. G. Chen, Y. Chen, X. F. Liao, An extended method for obtaining S-boxes based on 3-dim-
ensional chaotic baker maps, Chaos Solitons Fractals 31 (2007), 571–579

9. R. Yin, J. Yuan, J. Wang, X. Shan, X. Wang, Designing key-dependent chaotic S-box with
larger key space, Chaos Solitons Fractals 42 (2009), 2582–2589

10. F. Ozkaynak, A. B. Ozer, A method for designing strong S-Boxes based on chaotic Lorenz
system, Phys. Lett., A 374 (2010), 3733–3738

11. C. Adams, S. Tavares, Good S-boxes are easy to find, (In: Advances in Cryptology: Proc. of
crypto’89. Lect. Notes Comput. Sci., 1989, 612–615)

12. A. Webster, S. Tavares, On the design of S-boxes, (In: Advances in Cryptology: Proc. of
CRYPTO’85. Lect. Notes Comput. Sci., 1986, 523–534)

13. E. Biham, A. Shamir, Differential cryptanalysis of DES-like cryptosystems, J. Cryptol. 4
(1991), 3–72

14. T. Cusick, P. Stanica, Cryptographic Boolean Functions and Applications, Elsevier, 2009
15. D. E. Knuth, The Art of Coputer Programming; Vol 2: Seminumerical Algorithms, Addison-

Wesley, Reading, MA, 1969, 124–125
16. G. Chen, A novel heuristic method for obtaining S-boxes, Chaos Solitons Fractals 36 (2008),

1028–1036
17. M. Asim, V. Jeoti, Efficient and simple method for designing chaotic S-boxes, ETRI J. 1

(2008), 170–172



COMPARISON OF RANDOM S-BOX GENERATION METHODS 115

18. A. A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone Handbook of Applied Crytography, CRC
Press, 1997

19. Y. Wang, K. W. Wong, C. Li, Y. Li. A novel method to design S-box based on chaotic map
and genetic algorithm, Phys. Lett., A 376 (2012), 827–833

Faculty of Education (Received 25 09 2011)
University of Novi Sad (Revised 21 12 2012 and 20 02 2013)
Sombor
Srbija
draganposao@yahoo.com

Matematički Fakultet
Belgrade University
Beograd
Srbija
ezivkovm@matf.bg.ac.rs


	1. Introduction
	2. Notation
	3. Random S-box generation methods
	4. Proposed S-box generation method
	5. Experimental results
	6. Conclusion
	References

