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Abstract. This paper deals with the rectangle packing problem, of filling a
big rectangle with smaller rectangles, while the rectangle dimensions are real
numbers. A new nonlinear programming formulation is presented and the
validity of the formulation is proved. In addition, two cases of the problem are
presented, with and without rotation of smaller rectangles by 90◦. The mixed
integer piecewise linear formulation derived from the model is given, but with
a simple form of the objective function.

1. Introduction

The packing problem and a closely related cutting problem, encompass a wide
range of industry originated problems. Optimal solution or even an approximately
good one contributes significantly to savings in both money and new materials.

Most of the previous contributors in the literature deal with the case where
the items to be packed have a fixed orientation with respect to the stock unit(s),
i.e., it is not allowed to rotate them. The case explained here can be applied in a
number of practical contexts, such as cutting of corrugated or decorated material
(wood, glass, clothing stripes), or the newspapers’ paging.

For variants allowing rotations (usually by 90◦) and/or constraints on the item’s
placement (such as the “guillotine cuts”), the reader is referred to [2,12], where a
three-field classification of the area is also introduced. General surveys on cutting
and packing problems can be found in [14–16]. Results of the probabilistic analysis
of packing algorithms can be found in [10] and [11].
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Let us introduce the problems in a more formal way. We are given a set of n
rectangular items each defined by a width, wj , and a height, hj :

(i) in the Two-Dimensional Bin Packing Problem (2BP), we are further given
an unlimited number of identical rectangular bins of width W and height H , and
the objective is to allocate all the items into the minimum number of bins;

(ii) in the Two-Dimensional Strip Packing Problem (2SP), we are further given
a bin of width W and infinite height (hereafter called strip), and the objective is
to allocate all the items to the strip by minimizing the height to which the strip is
used.

Both problems are strongly NP-hard, as can easily be seen by transforming
a strongly NP-hard (one-dimensional) Bin Packing Problem (1BP), in which n

items, each having an associated size hj , have to be partitioned into the minimum
number of subsets so that the sum of the sizes in each subset does not exceed a
given capacity H [28].

A special case of the above mentioned problems is packing of a set of rectangles
into a bounding rectangle.

The rectangle packing problem belongs to a subset of classical cutting and
packing problems and has been shown to be NP-complete [22,26].

The problem of determining whether a set of rectangles can be packed into
a bounding rectangle can relate to some practical applications in floor planning,
placement problems, or job scheduling problems [13]. One of the most frequent ap-
plications of the problem is cutting of smaller pieces of material of rectangular shape
from a large rectangle. Another direct application of the problem is organization
of warehouse floor space in the most effective way.

Cutting and packing problems [2,4,8,12,20,35] have a wide range of applica-
bility that has been studied for more than 40 years. The two-dimensional cutting
stock problems with rectangle shapes are closely related to our problem. In [9],
the basic formulation issues and linear programming procedures for solving packing
and cutting problem are being discussed, as well as sequential heuristic and hybrid
solving procedures.

Based on the usage of guillotine or non-guillotine cuts, the problems can be
roughly divided into two styles of cutting. Constrained cutting refers to the em-
ployment of orthogonal and guillotine cuts under certain copy constraints of the
rectangles [17]. Optimal algorithms for orthogonal two-dimension cutting were pro-
posed in [4,20]. However, they might not be practical for large problems. In the
orthogonal packing problem, a set of rectangles are to be packed into a rectangle
board with rectangle edges parallel to the x− and y−axes of the board, respectively,
and the height is to be minimized. In order to reduce the number of possible or-
thogonal packing patterns, the so-called BL-condition was introduced, and hybrid
algorithm using genetic and deterministic methods was proposed [5,19,24]. In [32],
a new and improved algorithm with level heuristics was suggested. In [21,30,35], a
various range of metaheuristics were suggested for solving the two-dimensional rec-
tangle packing problem. Very effective quasi-human heuristic was presented in [38].
Some of the newest heuristic approaches, using skyline heuristic [37] and intelligent
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search [27], represent very effective methods for practical solving of the rectangle
and strip packing problems.

There are heuristic approaches which are improving almost on yearly basis.
The exact approaches and mathematical modelling are also important part of the
research area. New mathematical formulations allow application of many exact
methods, which guarantee optimality, though on smaller instances. This optimal
solution again can verify usage of wide range of heuristics and metaheuristics. Fur-
thermore, theoretical research in optimization theory can lead to potentially new
exact and heuristic approaches to packing problem. One case of this kind is pa-
per [34] relating to linear disjunctive programming, which is specifically applied to
the two dimensional packing problem.

In the last decade, there were several papers addressing the issue of modelling
and exactly solving the two-dimensional packing problems. The models for level
packing problem are represented in paper [29]. The difference from our problem is
that paper [29] considers packing strip of fixed width and infinite length separated
in levels all of which are packed so that when the width of one level is covered, other
rectangles are packed on the next level. The binary tree representation of the rec-
tangle packing problem is given in [36]. But, the tree is of enormous size and solving
of the problem is reduced to local search heuristics. In [18] one considers packing
of rectangles in a way that one rectangle dominates in size all the others. The given
formulation is linear, but can be treated as a variant of a knapsack problem and
the proposed method of solving is being reduced to a linear approximation.

Another approach to this problem [25] dealt with finding a minimal bounding
box for given set of rectangles. There is an interesting review of previous attempts
for solving the same problem. Paper [7] introduces a model where both binary
and real variables are presented. Variables representing x coordinates are binary,
while y coordinates are real. The model still works only with integer dimensions of
rectangles and uses multispatial layers, of which every one contains one specific rec-
tangle. This hybrid discrete/continous-space model can find optimal solutions just
in some cases. Global optimality can only be ensured when the specific conditions
are met, and they are resource consuming for even a small number of rectangles.

Finally, there are exact methods, which use a branch and bound techniques
and are mostly based on procedures explained in [31]. They propose solving to
a relaxed two-dimensional strip packing problem by solving one dimensional bin-
packing problem with side constraints using a modified enumerative algorithm.
Lower bound, used in branch and bound method, is calculated by relaxation. Upper
bounds are obtained by using some known heuristics, as well as some new ones.
The research that addresses the improvement in obtaining the lower bounds with
proposed branch and bound method and heuristics using them can be found in [3,6].

This idea was improved by calculating new lower bounds and dominance condi-
tions in [1]. Using the GRASP algorithm, the authors were able to quickly produce
lower bound at the root node, obtained either a feasible solution or, in the worst
case, an upper bound.

Using general idea of integer grid of the packing space, the paper [23] con-
siders a branch and bound method for perfect packing problems, generalized for
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two-dimensional strip packing problem. The solution was calculated with two al-
gorithms, the first one obtained better lower bounds and the second used staircase
placement of rectangles for branching operations. Both algorithms start from the
lower bound and keep the strip height increasing until a feasible solution is found.
The improvements in [1] and [23] are still working with integer dimensions and
binary variables and do not address the issue of real dimension cases.

2. A nonlinear programming formulation

This paper explains the mathematical model of packing big rectangle with
smaller rectangles, where dimensions of the rectangles are real numbers. Moreover,
a variant with 90 degrees rotation is taken into consideration. Problem complexity
and limited resources made us introduce a mixed integer piecewise linear program-
ming formulation at the end of the paper. Problems formulated in this way can be
solved using CPLEX or some other solver.

The problem taken into consideration is two-dimensional packing of a big rec-
tangle with a given number of small rectangles. It is a must that the sides of small
rectangles are parallel to the sides of the big rectangle. Two cases are considered
in the paper: in the first case, a 90 degree rotation for smaller rectangles is not
allowed, and in the second case, the rotation is allowed. Smaller rectangles must
be placed completely inside the big rectangle, and they should not overlap. Let
the dimensions of the big rectangle be respectively A and B. There are n small
rectangles. Let their dimensions be respectively ai and bi, i = 1, . . . , n, as shown
in Fig. 1. It is allowed that small rectangles have the same dimensions.

A

B

an

bn

...

a2
b2

a1

b1

Figure 1. Dimensions of big rectangle and small rectangles

Let us consider the following problem closely related to the above problem
mentioned. In xOy coordinate plain, the small rectangle is defined by its dimensions
ai and bi and coordinates xi and yi of its middle point (intersection of diagonals).
The problem is to find conditions, which must be satisfied by all points outside the
rectangle. Using the well-known inequality, which is satisfied by all points outside
the square with vertices in (1, 0), (0, 1), (−1, 0), (0,−1) (Fig. 2)

(2.1) |x|+ |y| > 1
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the stated conditions could be found. In order to construct the model, let us deter-
mine an affine transformation of a whole plane xOy so that point (xi, yi) is mapped
into (0, 0), and any two vertices of the rectangle are mapped to match coordinates
of the respective vertices of the above-mentioned square. Without losing generality
the vertices

(

xi +
1
2ai, yi +

1
2bi

)

,
(

xi +
1
2ai, yi −

1
2bi

)

are mapped into (0, 1) and
(1, 0) respectively. Now, with three pairs of points mapped, a system for finding
coefficients of affine transformation can be created. Let the affine transformation
is defined by

x′ = α1x+ β1y + γ1

y′ = α2x+ β2y + γ2

where x′ and y′ are the new coordinates and x and y are the old ones and α1, α2,
β1, β2, γ1 and γ2 are the unknown coefficients. The affine transformation is shown
in Fig. 2.
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(1, 0)(−1, 0)

(0, 1)

(xi, yi)

(xi+ai/2, yi+bi/2)

(xi+ai/2, yi−bi/2)

Figure 2. Affine transformation

Now the system of equations for finding coefficients of affine transformation is

0 = α1xi + β1yi + γ1

0 = α2xi + β2yi + γ2

0 = α1(xi +
1
2ai) + β1(yi +

1
2bi) + γ1

1 = α2(xi +
1
2ai) + β2(yi +

1
2bi) + γ2

1 = α1(xi +
1
2ai) + β1(yi −

1
2bi) + γ1

0 = α2(xi +
1
2ai) + β2(yi −

1
2bi) + γ2

After solving the system of linear equations the unknown coefficients are found
and are given with

α1 =
1

ai
, β1 = −

1

bi
, γ1 =

xi

ai
+

yi

bi
,
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α2 =
1

ai
, β2 =

1

bi
, γ2 =

xi

ai
−

yi

bi
,

Using this solution, condition (2.1) now becomes

(2.2)

∣

∣

∣

∣

x− xi

ai
−

y − yi

bi

∣

∣

∣

∣

+

∣

∣

∣

∣

x− xi

ai
+

y − yi

bi

∣

∣

∣

∣

> 1

Finally, condition (2.2) must be satisfied by any point with coordinates (x, y)
for it to be outside the rectangle with the middle point in (xi, yi) and sides lengths
ai and bi respectively and parallel with coordinate axes. Let us prove this.

Theorem 2.1. Point with the coordinates (x, y) is outside the rectangle with

the middle point in (xi, yi) and sides lengths ai and bi respectively and parallel with

coordinate axes if and only if condition (2.2) is satisfied.

Proof. (⇒) Let the point (x, y) be outside the triangle. Then at least one of
the inequalities |x − xi| >

1
2ai or |y − yi| >

1
2bi is true. Without loss of generality

let the former holds. Then, from the triangle inequality, there is
∣

∣

∣

∣

x− xi

ai
−

y − yi

bi

∣

∣

∣

∣

+

∣

∣

∣

∣

x− xi

ai
+

y − yi

bi

∣

∣

∣

∣

>

∣

∣

∣

∣

x− xi

ai
−

y − yi

bi
+

x− xi

ai
+

y − yi

bi

∣

∣

∣

∣

= 2

∣

∣

∣

∣

x− xi

ai

∣

∣

∣

∣

> 1

which means that condition (2.2) is satisfied.

(⇐) Now, let us prove that if a point satisfies condition (2.2), then it is outside
the rectangle. Let us assume the opposite. Let a point (x, y) be strictly inside
the rectangle, satisfy condition (2.2). Then both inequalities |x − xi| <

1
2ai and

|y− yi| <
1
2bi must be satisfied. Now, let us denote x−xi

ai

= α and y−y

bi
= β. In this

notation, let us find the maximum value of the function |α− β|+ |α+ β| under the
conditions |α| < 1

2 and |β| < 1
2 . Without losing generality, let us assume |α| > |β|.

Now

|α− β|+ |α+ β| =



















2α, α− β > 0, α+ β > 0

−2β, α− β > 0, α+ β 6 0

2β, α− β 6 0, α+ β > 0

−2α, α− β 6 0, α+ β 6 0

6 2|α| < 1

However, this contradicts the presumption that the point (x, y) satisfies condi-
tion (2.2). So, the point satisfying condition (2.2) must be outside the rectangle.

Finally, let us show that two other vertices of the rectangle are mapped by affine
transformation to two remaining vertices of the above-mentioned square. Actually,

x′ =
1

ai

(

xi −
1
2ai

)

−
1

bi

(

yi +
1
2bi

)

−
xi

ai
+

yi

bi
= −1

y′ =
1

ai

(

xi −
1
2ai

)

+
1

bi

(

yi +
1
2bi

)

−
xi

ai
−

yi

bi
= 0

and

x′ =
1

ai

(

xi −
1
2ai

)

−
1

bi

(

yi −
1
2bi

)

−
xi

ai
+

yi

bi
= 0
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y′ =
1

ai

(

xi −
1
2ai

)

+
1

bi

(

yi −
1
2bi

)

−
xi

ai
−

yi

bi
= −1

And finally point (x, y) is outside the rectangle if and only if condition (2.2) is
satisfied. �

Now we can conclude that two rectangles with middle points (xi, yi) and (xj , yj)
will not overlap if and only if the middle point (xj , yj) is outside the rectangle with
the middle point (xi, yi) and with sides of lengths (ai+aj) and (bi+ bj), see Fig. 3.
In other words, two rectangles will not overlap if and only if the following condition
is satisfied

∣

∣

∣

∣

xj − xi

ai + aj
−

yj − yi

bi + bj

∣

∣

∣

∣

+

∣

∣

∣

∣

xj − xi

ai + aj
+

yj − yi

bi + bj

∣

∣

∣

∣

> 1

-

6

r

(xi, yi)

r(xj , yj)

Figure 3. Overlapping of small rectangles

Now we can set vertices of the big rectangle at points (0, 0), (0, B), (A, 0),
(A,B). We impose for every small rectangle the following condition: x coordinate
must be in the interval

[

1
2ai, A− 1

2ai
]

, i = 1, 2, . . . , n, or 1
2ai 6 xi 6 A − 1

2ai,
i = 1, 2, . . . , n. To avoid overlapping of small rectangles (which will surely happen if
the sum of areas of small rectangles is greater than the area of the big rectangle) the
second coordinate will be bound only from below (Fig. 4): 1

2bi 6 yi, i = 1, 2, . . . , n.
In other words, packing of the big rectangle is transformed in packing of a strip

of width A aiming at placing as much as possible small rectangles in the strip’s
initial part of length B. Every small rectangle must be placed completely within
the big rectangle, which is at the beginning of the lent or to be completely left out.
This can be achieved by imposing the following conditions on y coordinate of every
small rectangle’s middle point: |yi −B| > 1

2bi, i = 1, 2, . . . , n.
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A

B

Figure 4. Overlapping the boundaries of big rectangle

Let us now form a mathematical model for packing the big rectangle with small
ones without rotation:

(2.3) max
n
∑

i=1

max(0, B − yi)

B − yi
aibi

subject to
∣

∣

∣

∣

xj − xi

ai + aj
−

yj − yi

bi + bj

∣

∣

∣

∣

+

∣

∣

∣

∣

xj − xi

ai + aj
+

yj − yi

bi + bj

∣

∣

∣

∣

> 1,
i = 1, 2, . . . , n− 1,

j = i+ 1, . . . , n
(2.4)

|yi −B| > 1
2bi, i = 1, 2, . . . , n(2.5)

1
2ai 6 xi 6 A− 1

2ai, i = 1, 2, . . . , n(2.6)

yi >
1
2bi, i = 1, 2, . . . , n(2.7)

As it was explained earlier, conditions (2.4) do not allow overlapping of any two
rectangles. Conditions (2.5) impose any small rectangle to be either within the big
rectangle or within the remainder of the strip. Conditions (2.6) and (2.7) ensure
that the rectangles are packed in the strip of width A and that none of the small
rectangles overlap at the beginning of the strip. Hence, the number of variables is
in accordance with the problem and is equal to 2n. In addition, all variables are
taking values from a set of real positive numbers. The total number of conditions
is

(

n

2

)

+ 3n and is rather large, but ensures that there is no overlapping of any
of the small rectangles. In formula (2.3) one takes into consideration only those
small rectangles that are totally placed within the big rectangle. Solutions to this
problem, using formulation (2.3)–(2.7), can be found in [33].

Let us now consider the case where rotation of small rectangles by 90◦ is al-
lowed. In order to do so, we shall include one more set of rectangles, which will
have dimensions bi, ai, i = 1, 2, . . . , n respectively. For easier notation, we shall
note an+i = bi, bn+i = ai, i = 1, 2, . . . , n. In addition, we shall now introduce new
variables xn+i, yn+i which will represent the middle points of these newly intro-
duced rectangles. We must avoid the case where the small rectangle and the rotated
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counterpart will be packed together inside the big rectangle. Let the rectangle with
the middle point (xi, yi) be packed. Then the rectangle with the middle point
(xn+i, yn+i) can not be packed. To avoid this, the inequality yn+i−

1
2bn+i > B−yi

must be satisfied, and vice versa, if a rectangle with the middle point (xn+i, yn+i) is
packed, then a rectangle with a middle point (xi, yi) can not be packed. Therefore,
the inequality yi −

1
2bi > B − yn+i must also be satisfied. Since we do not know

which of these two small rectangles will be packed, at least one of the inequalities
yi + yn+i > B+ 1

2bi, yn+i + yi > B + 1
2bn+i must be satisfied (Fig. 5a and Fig. 5b)

or consequently yi + yn+i > B + 1
2 max(bi, bn+i).

Figure 5. Inclusion of only one small rectangle out of two
with same dimensions but with different rotation

So finally, the model for packing the big rectangle with small rectangles with
allowed rotation is

max

2n
∑

i=1

max(0, B − yi)

B − yi
aibi

subject to
∣

∣

∣

∣

xj − xi

ai + aj
−

yj − yi

bi + bj

∣

∣

∣

∣

+

∣

∣

∣

∣

xj − xi

ai + aj
+

yj − yi

bi + bj

∣

∣

∣

∣

> 1,
i = 1, 2, . . . , 2n− 1,

j = i+ 1, . . . , 2n, j 6= n+ i

|yi −B| > 1
2bi, i = 1, 2, . . . , 2n

1
2ai 6 xi 6 A− 1

2ai, i = 1, 2, . . . , 2n

yi >
1
2bi, i = 1, 2, . . . , 2n

yi + yn+i > B + 1
2 max(bi, bn+i), i = 1, 2, . . . , 2n

As it can be seen, in this case the number of variables is doubled and is equal
to 4n. The total number of conditions is

(

2n
2

)

+ 8n.
The complexity of formula (2.3) in the proposed model does not allow ap-

plication of global optimization or usage of commercial solvers like CPLEX etc.,
without difficulties. Therefore we suggest a mixed integer piecewise linear program-
ming model. First, let us consider a problem without rotation. The variables xi
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and yi have the same meaning as before. Let us introduce new binary variables zi,
i = 1, 2, . . . , n defined by

zi =

{

1, yi 6 B − 1
2bi

0, yi > B + 1
2bi

and let us denote M =
∑n

i=1 bi. Then, the mixed integer formulation can be given
by

max

n
∑

i=1

aibizi

subject to
∣

∣

∣

∣

xj − xi

ai + aj
−

yj − yi

bi + bj

∣

∣

∣

∣

+

∣

∣

∣

∣

xj − xi

ai + aj
+

yj − yi

bi + bj

∣

∣

∣

∣

> 1,
i = 1, 2, . . . , n− 1,

j = i+ 1, . . . , n

|yi −B| > 1
2bi, i = 1, 2, . . . , n

1
2ai 6 xi 6 A− 1

2ai, i = 1, 2, . . . , n

M − 1
2bi > yi >

1
2bi, i = 1, 2, . . . , n(2.8)

B − yi 6 zi 6
1

M
(B − yi) + 1, i = 1, 2, . . . , n(2.9)

zi ∈ {0, 1}, i = 1, 2, . . . , n.

For the problem with rotation there will be twice as many variables z and
M = max {

∑n

i=1 ai,
∑n

i=1 bi}. Then the mixed integer formulation is given by

(2.10) max

2n
∑

i=1

aibizi

subject to
∣

∣

∣

∣

xj − xi

ai + aj
−

yj − yi

bi + bj

∣

∣

∣

∣

+

∣

∣

∣

∣

xj − xi

ai + aj
+

yj − yi

bi + bj

∣

∣

∣

∣

> 1,
i = 1, 2, . . . , 2n− 1,

j = i+ 1, . . . , 2n

|yi −B| > 1
2bi, i = 1, 2, . . . , 2n

1
2ai 6 xi 6 A− 1

2ai, i = 1, 2, . . . , 2n

M − 1
2bi > yi >

1
2bi, i = 1, 2, . . . , 2n

yi + yn+i > B + 1
2 max(bi, bn+i), i = 1, 2, . . . , 2n(2.11)

B − yi 6 zi 6
1

M
(B − yi) + 1, i = 1, 2, . . . , 2n(2.12)

zi ∈ {0, 1}, i = 1, 2, . . . , 2n.

In both cases, without and with rotation, conditions (2.8)–(2.9) and (2.11)–
(2.12) respectively, ensure that the variables z are always between 0 and 1. Hence,
formula (2.10) which corresponds to objective function, has now a simple form and
directly represents the area of packed rectangles. New binary variables are naturally
introduced and they indicate whether the specific rectangle was packed or not.
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This paper presents a new mathematical formulation of rectangle packing prob-
lems. It addresses the issues that have not been fully considered in any previous
research. The dimensions considered in literature are mostly integer and variables
are binary and integer. The only paper that allows usage of real variables is [7]
and only for the y coordinates. Here both dimensions and variables are real and
the proposed model has a piecewise linear programming formulation. The general
idea is to optimally pack the big rectangle and to put the rest of small rectangles
in a strip of the same width as the big rectangle. Rectangles in the strip (i.e., those
that were not packed in the big rectangle) would not be packed optimally into the
strip. The big rectangle will represent the beginning of the strip, and it will be the
only one to be optimally packed.

3. Conclusions

This paper tackles the two-dimensional rectangle packing problem. We intro-
duce new nonlinear programming formulation and proved the correctness of the
corresponding formulation. Numbers of variables were relatively small, compared
to the dimension of the problem. In addition, we proposed the mixed integer for-
mulation, with simple formula for objective function to ease the solving of the
nonlinear programming model.

This research can be extended in several ways. It would be desirable to in-
vestigate the application of some exact method of global optimization by using
the proposed formulation or application of some metaheuristics both on proposed
nonlinear and relaxed piecewise linear formulation. The other approach is an ap-
plication of methods of disjunctive programming to a relaxed formulation.
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