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Abstract. The study of ill-posed abstract Volterra equations is a recent sub-
ject. In this paper, we investigate equations on the line, continue the research
of (a, k)-regularized C-resolvent families, subordination principles, abstract
semilinear Volterra integrodifferential equations, and provide several illustra-
tive examples.

1. Introduction and preliminaries

The present paper can be viewed as a contribution to the theory of abstract
Volterra equations that are not well-posed in the usual sense. The main part of
our investigation is devoted to the study of equations on the line, (kC)-parabolic
problems and Lp-stability of

(1.1) u(t) = f(t) +

∫ t

0
a(t − s)Au(s) ds, t > 0.

Several results from the theory of fractional differential equations in Banach spaces
[2,15,16] are reconsidered and slightly improved. In [23] a method is developed to
treat certain classes of semilinear Volterra integrodifferential equations in Banach
space. We examine possibility of extension of this method within the framework
of the theory of (local) C-regularized semigroups. Although the work mentioned
above is partially confined to the scalar case, we analyze in the last section a class
of nonscalar hyperbolic problems on the line.

We mainly use the following condition

(P1): k(t) is Laplace transformable, i.e., it is locally integrable on [0, ∞) and there
exists β ∈ R so that

k̃(λ) = L(k)(λ) := limb→∞

∫ b

0 e−λtk(t) dt :=
∫ ∞

0 e−λtk(t) dt

exists for all λ ∈ C with Re λ > β. Put abs(k) := inf{Re λ : k̃(λ) exists}.
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Let us recall that a function k ∈ L1
loc([0, τ)) is called a kernel, if for every φ ∈

C([0, τ)),
∫ t

0 k(t − s)φ(s) ds = 0, t ∈ [0, τ) implies φ(t) = 0, t ∈ [0, τ), and that
0 ∈ supp k implies that k(t) is a kernel. Henceforth C+ = {λ ∈ C : Re λ > 0}. In
the second section, E denotes a non-trivial complex Banach space, A is a closed
linear operator in E and L(E) ∋ C is an injective operator which satisfies CA ⊆ AC.
The norm in E is denoted by ‖·‖, [R(C)] stands for the Banach space R(C) equipped
with the norm ‖x‖R(C) = ‖C−1x‖, x ∈ R(C), and [D(A)] stands for the Banach
space D(A) equipped with the graph norm ‖x‖[D(A)] = ‖x‖ + ‖Ax‖, x ∈ D(A).
The C-resolvent set of A, denoted by ρC(A), is the set which consists of all complex
numbers λ satisfying that the operator λ−A is injective and that R(C) ⊆ R(λ−A);
the resolvent set of A is also denoted by ρ(A). We basically follow the notation
used in the monograph of Prüss [21] and refer the reader to [21, Definition 10.2,
p. 256] for the definition of a (strongly, uniformly) integrable family of operators.
The notions of (a, k)-regularized C-resolvent families, (a, C)-regularized resolvent
families, the condition (H5) as well as local (convoluted) C-semigroups and cosine
functions are understood in the sense of [12,13].

2. The scalar case

Of concern are the following abstract Volterra equations on the line:

(2.1) u(t) =

∫ ∞

0
a(s)Au(t − s) ds +

∫ t

−∞

k(t − s)g′(s) ds,

where g : R → E, a ∈ L1
loc([0, ∞)), a 6= 0, k ∈ C([0, ∞)), k 6= 0, and

(2.2) u(t) = f(t) +

∫ t

0
a(t − s)Au(s) ds, t ∈ (−τ, τ),

where τ ∈ (0, ∞] and f ∈ C((−τ, τ) :E). Notice that equation (2.1) appears in the
study of the problem of heat flow with memory [19].

Proposition 2.1. Assume A is a subgenerator of a global (a, k)-regularized C-
resolvent family (S(t))t>0, g : R → R(C), C−1g(·) is differentiable for a.e. t ∈ R,
C−1g(t) ∈ D(A) for a.e. t ∈ R,

(i) the mapping s 7→ S(t − s)(C−1g)′(s), s ∈ (−∞, t] is an element of the
space L1((−∞, t] : [D(A)]) for a.e. t ∈ R, and

(ii) the mapping s 7→ k(t − s)g′(s), s ∈ (−∞, t] is an element of the space
L1((−∞, t] :E) for a.e. t ∈ R.

Put u(t) :=
∫ t

−∞ S(t − s)(C−1g)′(s) ds, t ∈ R. Then C(R :E) ∋ u satisfies (2.1).

Proof. The continuity of u(t) can be proved by using the dominated conver-
gence theorem and the strong continuity of (S(t))t>0. The proof of (2.1) follows
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from the following computation:
∫ ∞

0
a(s)Au(t − s) ds +

∫ t

−∞

k(t − s) g′(s) ds

=

∫ ∞

0
a(s)A

∫ t−s

−∞

S(t − s − r)(C−1g)′(r) dr ds +

∫ t

−∞

k(t − s) g′(s) ds

=

∫ ∞

0

∫ s′

0
a(s′ − r′)AS(r′)(C−1g)′(t − s′) dr′ds′ +

∫ t

−∞

k(t − s) g′(s) ds

=

∫ ∞

0
(S(s′) − k(s′)C)(C−1g)′(t − s′) ds +

∫ t

−∞

k(t − s) g′(s) ds

= u(t) −

∫ ∞

0
k(s) g′(t − s′) ds′ +

∫ t

−∞

k(t − s) g′(s) ds = u(t), t ∈ R. �

Denote by AP (E), AA(E), AAc(E) and AAA(E) the spaces which consist
of all almost periodic functions, almost automorphic functions, compact almost
automorphic functions and asymptotically almost automorphic functions defined
on R, respectively, and assume that the function (C−1g)′(t) belongs to one of these
spaces [18]. By [3, Theorem 4.6], the uniform integrability of (S(t))t>0 implies
that the solution u(t) of (2.1) belongs to the same space as (C−1g)′(t). The above
assertion remains true in the nonscalar case.

Definition 2.1. Let p ∈ [1, ∞], a ∈ L1
loc([0, ∞)), a 6= 0 and k ∈ C([0, ∞)),

k 6= 0. The abstract Volterra equation (1.1) is said to be:

(i) Lp-stable (CR) if for every g ∈ Lp([0, ∞) : [R(C)]) there exists a unique function
u ∈ Lp([0, ∞) : E) such that a ∗ u ∈ C([0, ∞) : [D(A)]) and that u(t) =
(a ∗ g)(t) + A(a ∗ u)(t) for a.e. t > 0.

(ii) Lp-stable (CS) if for every f ∈ W 1,p
loc ([0, ∞) : [R(C)]) such that f ′ ∈ Lp([0, ∞) :

[R(C)]) there exists a unique function u ∈ Lp([0, ∞) : E) satisfying a ∗ u ∈
C([0, ∞) : [D(A)]) and u(t) = f(t) + A(a ∗ u)(t) for a.e. t > 0.

(iii) C-strongly Lp-stable if for every g ∈ Lp([0, ∞) : [R(C)]) there exists a unique
function u ∈ Lp([0, ∞) : [D(A)]) such that a ∗ u ∈ C([0, ∞) : [D(A)]) and that
u(t) = (a ∗ g)(t) + (a ∗ Au)(t) for a.e. t > 0.

(iv) (kC)-parabolic if (iv.1)–(iv.2) hold, where:
(iv.1) a(t) and k(t) satisfy (P1) and there exist meromorphic extensions of the

functions ã(λ) and k̃(λ) on C+, denoted by â(λ) and k̂(λ). Let N be the
subset of C+ which consists of all zeroes and possible poles of â(λ) and

k̂(λ).
(iv.2) There exists M > 1 such that, for every λ ∈ C+ r N , 1/â(λ) ∈ ρC(A)

and ‖k̂(λ)(I − â(λ)A)−1C‖ 6 M/|λ|.
If k(t) ≡ 1, resp. C = I, then it is also said that (1.1) is C-parabolic, resp.
k-parabolic.

Before proceeding further, notice that the definition of (kC)-parabolicity of
(1.1) extends the corresponding one given by Prüss [21, Definition 3.1, p. 68]. As
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an illustrative example of a k-parabolic problem, we quote the backwards heat
equation on L2[0, π] (cf. [13] for more details).

Remark 2.1. (i) Assume (1.1) is (kC)-parabolic and there exists an analytic

mapping F : C+ → L(E) such that F (λ) = k̂(λ)(I − â(λ)A)−1C, λ ∈ C+ r N and
supλ∈C+

‖λ2F ′(λ)‖ < ∞. By [21, Theorem 0.4] and [12, Theorem 2.7(iii)–(iv)], we

infer that, for every α ∈ (0, 1], A is a subgenerator of an (a, k ∗ tα−1

Γ(α) )-regularized C-

resolvent family (Sα(t))t>0 which satisfies suph>0,t>0 h−α‖Sα(t + h) − Sα(t)‖ < ∞;
furthermore, if A is densely defined, then A is a subgenerator of a bounded (a, k)-
regularized C-resolvent family (S(t))t>0 that is norm continuous in t > 0. Hereon
Γ(·) denotes the Gamma function.

(ii) Assume A is the integral generator of a bounded analytic C-regularized
semigroup of angle α ∈ (0, π

2 ], a(t) satisfies (P1) and admits a meromorphic exten-
sion â(λ) on C+. Let ǫ ∈ (0, α) and 1/â(λ) ∈ Σ π

2
+α−ǫ, λ ∈ C+ r N . Then (1.1) is

C-parabolic.

Assume n ∈ N, a(t) satisfies (P1) and abs(a) = 0. Following [21, Definition 3.3,
p. 69], a(t) is said to be n-regular if there exists c > 0 such that

|λmâ(m)(λ)| 6 c|â(λ)|, λ ∈ C+, 1 6 m 6 n.

Set a(−1)(t) :=
∫ t

0 a(s) ds, t > 0 and suppose that a(t) and b(t) are n-regular for

some n ∈ N. Then â(λ) 6= 0, λ ∈ C+, (a ∗ b)(t) and a(−1)(t) are n-regular, and
a′(t) is n-regular provided that abs(a′) = 0. Furthermore, a(t) is n-regular iff there
exists c′ > 0 such that |(λmâ(λ))(m)| 6 c′|â(λ)|, λ ∈ C+, 1 6 m 6 n, and in the
case arg â(λ) 6= π, λ ∈ C+, n-regularity of a(t) is also equivalent to the existence
of a constant c′′ > 0 such that |λm(ln â(λ))(m)| 6 c′′, λ ∈ C+, 1 6 m 6 n.

The following theorem is an extension of [21, Theorem 3.1, p. 73].

Theorem 2.1. Assume n ∈ N, a(t) is n-regular, (1.1) is C-parabolic and the

mapping λ 7→ (I − ã(λ)A)−1C, λ ∈ C+ is continuous. Denote by Dζ
t the Riemann–

Liouville fractional derivative of order ζ > 0. Then, for every α ∈ (0, 1], A is

a subgenerator of an
(
a, tα

Γ(α+1)

)
-regularized C2-resolvent family (Sα(t))t>0 which

satisfies suph>0,t>0 h−α‖Sα(t + h) − Sα(t)‖ < ∞, Dα
t Sα(t)Ck−1 ∈ Ck−1((0, ∞) :

L(E)), 1 6 k 6 n as well as:

(2.3)
∥∥tjDj

t Dα
t Sα(t)Ck−1

∥∥ 6 M, t > 0, 1 6 k 6 n, 0 6 j 6 k − 1,

∥∥tkDk−1
t Dα

t Sα(t)Ck−1 − skDk−1
s Dα

s Sα(s)Ck−1
∥∥ 6 M |t − s|

(
1 + ln

t

t − s

)
,(2.4)

0 6 s < t < ∞, 1 6 k 6 n,

and, for every T > 0, ε > 0 and k ∈ {1, . . . , n}, there exists M ε
T,k > 0 such that

∥∥tkDk−1
t Dα

t Sα(t)Ck−1 − skDk−1
s Dα

s Sα(s)Ck−1
∥∥ 6 M ε

T,k(t − s)1−ε,(2.5)

0 6 s < t 6 T, 1 6 k 6 n.
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Furthermore, if A is densely defined, then A is a subgenerator of a bounded (a, C2)-
regularized resolvent family (S(t))t>0 which satisfies S(t)Ck−1 ∈ Ck−1((0, ∞) :
L(E)), 1 6 k 6 n and (2.3)–(2.5) with Dα

t Sα(t)Ck−1 replaced by S(t)Ck−1 (1 6

k 6 n) therein.

Proof. We will prove the theorem provided k > 2 and A is nondensely defined.
By [13, Proposition 2.4.6] and an elementary argumentation, it follows that the
mapping λ 7→ (I − ã(λ)A)−1C, λ ∈ C+ is analytic. Put F (λ) := (I − ã(λ)A)−1C/λ,
λ ∈ C+. Then

F ′(λ)C = −
(I − ã(λ)A)−1C2

λ2 +
ã′(λ)

λã(λ)

[
(I−ã(λ)A)−2C2−(I−ã(λ)A)−1C2]

, λ ∈ C+

and

F ′′(λ)C2 =
2

λ3 (I − ã(λ)A)−1C3 −
2

λ2

ã′(λ)

ã(λ)

[
(I − ã(λ)A)−2C3 − (I − ã(λ)A)−1C3]

+
1

λ

ã′′(λ)ã(λ) − ã′(λ)2

ã(λ)2

[
(I − ã(λ)A)−2C3 − (I − ã(λ)A)−1C3]

+
1

λ

( ã′(λ)

ã(λ)

)2[
2(I−ã(λ)A)−3C3−3(I−ã(λ)A)−2C2+(I−ã(λ)A)−1C3]

, λ ∈ C+.

Hence, supλ∈C+
(‖λF (λ)C‖ + ‖λ2F ′(λ)C‖ + ‖λ3F ′′(λ)C2‖) < ∞. This inequal-

ity, in combination with [21, Proposition 0.1] and [13, Theorem 1.1.1.13], implies

that, for every α ∈ (0, 1], A is a subgenerator of an
(
a, tα

Γ(α+1)

)
-regularized C2-

resolvent family (Sα(t))t>0 which satisfies suph>0,t>0 h−α‖Sα(t + h) − Sα(t)‖ < ∞.

Inductively, supλ∈C+

∑n
k=0 ‖λk+1F (k)(λ)Ck‖ < ∞, and one can apply [21, The-

orem 0.4] in order to see that, for every k ∈ {1, . . . , n}, there exists a function
Vk ∈ Ck−1((0, ∞) :L(E)) such that (2.3)–(2.5) hold with Dα

t Sα(t)Ck−1 replaced by
Vk(t). Using the uniqueness theorem for Laplace transform, one gets Sα(t)Ck−1x =∫ t

0
(t−s)α−1

Γ(α) Vk(s)x ds, x ∈ E, t > 0, 1 6 k 6 n. Since Vk ∈ L1((0, T ) : L(E)) for all

T > 0 and k ∈ {1, . . . , n}, [2, Theorem 1.5] implies Vk(t) = Dα
t Sα(t)Ck−1, t > 0,

1 6 k 6 n. This completes the proof of theorem. �

Keeping in mind Theorem 2.1, one can simply transfer the representation for-
mula [21, (3.41), p. 81] and the assertions of [21, Corollary 3.2–Corollary 3.3,
pp. 74–75] to exponentially bounded (a, C)-regularized resolvent families. An ap-
plication can be made to Petrovsky correct matrices of operators [7,13,25].

In what follows, we consider Lp-stability of (1.1).

Proposition 2.2. (i) Assume A is a subgenerator of an integrable (a, a)-
regularized C-resolvent family (R(t))t>0 and (H5) holds. Then (1.1) is Lp-stable
(CR) for each p ∈ [1, ∞].

(ii) Let (1.1) be Lp-stable (CR) for some p ∈ [1, ∞] and let a(t) satisfy (P1).
Put gµ(t) := e−µt, t > 0, µ ∈ C+.
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(ii.1) Then, for every µ ∈ C+, A is a subgenerator of an (a, a(−1)∗gµ)-regularized
C-resolvent family (Uµ(t))t>0 and there exists c(µ) > 0 such that ‖Uµ(t)‖

6 c(µ)t1/p′

, where [1, ∞] ∋ p′ satisfies 1
p + 1

p′ = 1.

(ii.2) Let D(A2) 6= {0}. Then ã(λ) admits a meromorphic extension â(λ) on
C+. Denote by N the set which consists of all zeroes and possible poles

of â(λ), and assume additionally D(A) = E or ρ(A) 6= ∅. Then 1/â(λ) ∈
ρC(A), λ ∈ C+ rN , and the mapping λ 7→ K(λ) := â(λ)(I − â(λ)A)−1C,
λ ∈ C+ r N is uniformly bounded; if C+ ∋ λ0 and limλ→λ0

â(λ) = ∞,
then 0 ∈ ρC(A).

(ii.3) Let D(A2) 6= {0} and p = 1. Assume ã(λ), K(λ) and N possess the same

meanings as in (ii.2), and D(A) = E or ρ(A) 6= ∅. Then 1/â(λ) ∈ ρC(A),
λ ∈ C+rN , and the mapping λ 7→ K(λ) admits a strongly continuous and
uniformly bounded extension on C+. Furthermore, the mapping λ 7→ â(λ)
admits a continuous extension on C+ which takes values in C ∪ {∞}; if
limλ→λ0

â(λ) = ∞ for some λ0 ∈ C+, then 0 ∈ ρC(A).

(iii) Let (1.1) be C-strongly Lp-stable. Then (1.1) is C-parabolic.

Proof. We will prove only (ii). Fix µ ∈ C+ and denote by uµ(t; x) the unique
function which satisfies

a ∗ uµ(·; x) ∈ C([0, ∞) : [D(A)]), uµ(t; x) = (a ∗ gµ)(t)Cx + A(a ∗ uµ(·; x))(t)

for a.e. t > 0 and uµ(t; x) ∈ Lp([0, ∞) :E). By the closed graph theorem, it follows

that there exists a constant c > 0 such that ‖uµ(·; x)‖p 6 c‖g‖p = c(p Re µ)−1/p‖x‖.

Define Uµ(t)x :=
∫ t

0 uµ(s; x) ds, t > 0, x ∈ E. Then (Uµ(t))t>0 is a strongly

continuous operator family and there exists c(µ) > 0 such that ‖Uµ(t)‖ 6 c(µ)t1/p′

,
t > 0. Using the Laplace transform, we get

(
I − ã(λ)A

)
Ũµ(λ)x =

ã(λ)

λ(λ + µ)
, x ∈ E, Re λ > max(0, abs(a)).

Combining with [12, Theorem 2.6(ii)], this implies that, for every λ ∈ C with
Re λ > max(0, abs(a)) and ã(λ) 6= 0, 1/ã(λ) ∈ ρC(A) and that A is a subgenerator
of an (a, a(−1) ∗ gµ)-regularized C-resolvent family (Uµ(t))t>0, finishing the proof

of (ii.1). Set fµ(λ) := λ(λ + µ)Ũµ(λ), Re λ > 0. In order to prove (ii.2), notice that
for every x ∈ D(A), x∗ ∈ E∗, and λ ∈ C with Re λ > max(0, abs(a)), ã(λ) 6= 0 and

〈x∗, fµ(λ)x〉 6= 0, we have 1
ã(λ) =

〈x∗,Cx〉+〈x∗,fµ(λ)Ax〉
〈x∗,fµ(λ)x〉 . Assume 〈x∗, fµ(λ)x〉 = 0

for all x ∈ D(A), x∗ ∈ E∗ and λ ∈ C+. Then 〈x∗, Uµ(t)x〉 = 0 for all x ∈ D(A),
x∗ ∈ E∗ and t > 0. This shows that, for every x ∈ D(A2), x∗ ∈ E∗ and t > 0,

0 = 〈x∗, Cx〉
(
a(−1) ∗ gµ

)
(t) +

∫ t

0
a(t − s)〈x∗, Uµ(s)Ax〉ds,

which implies 〈x∗, Cx〉 = 0, x ∈ D(A2), x∗ ∈ E∗. This is a contradiction to the
assumption D(A2) 6= {0}. The existence of an element x ∈ D(A) and a functional
x∗ ∈ E∗ such that 〈x∗, fµ(·)x〉 6= 0 is clear now. Fix such x, x∗ and assume
〈x∗, Cx〉 + 〈x∗, fµ(λ)Ax〉 = 0, λ ∈ C+. Then one obtains 1

ã(λ) 〈x∗, fµ(λ)x〉 =
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〈x∗, fµ(λ)x〉 = 0, Re λ > max(0, abs(a)), ã(λ) 6= 0 and 〈x∗, fµ(λ)x〉 = 0, λ ∈ C+,
which is a contradiction. Therefore, 〈x∗, Cx〉 + 〈x∗, fµ(λ)Ax〉 6= 0, λ ∈ C+. Let N
be the set which consists of numbers λ0 ∈ C+ such that 〈x∗, Cx〉+〈x∗, fµ(λ0)Ax〉 =

0 and that 〈x∗, fµ(λ0)x〉 = 0. Then ã(λ) =
〈x∗,fµ(λ)x〉

〈x∗,Cx〉+〈x∗,fµ(λ)Ax〉 , λ ∈ C+ r N ,

Re λ > max(0, abs(a)), which shows that ã(λ) admits a meromorphic extension â(λ)
on C+. Further on, A

∫ ∞

0 e−λtUµ(t)y dt =
∫ ∞

0 e−λtUµ(t)Ay dt, λ ∈ C+, y ∈ D(A)
and Afµ(λ)y = fµ(λ)Ay, λ ∈ C+, y ∈ D(A). Since A is closed and the mapping
λ 7→ Afµ(λ)y = fµ(λ)Ay, λ ∈ C+ is analytic for every fixed y ∈ D(A), we obtain:

Cy =
( 1

â(λ)
− A

)
fµ(λ)y, y ∈ D(A), λ ∈ C+ r N.

This implies 1
â(λ) ∈ ρC(A) if D(A) = E. Since R(· : A) and fµ(·) commutes, the

above conclusion still holds if ρ(A) 6= ∅. The uniform boundedness of the mapping
λ 7→ K(λ), λ ∈ C+ r N follows as in [21]. Let λ0 ∈ C+ and limλ→λ0

â(λ) = ∞.
Then limn→∞ fµ(λn) = fµ(λ0), limn→∞ Afµ(λn) = limn→∞

1
â(λn) fµ(λn) − Cy =

−Cy and the closedness of A implies −Afµ(λ0)y = Cy, y ∈ E and 0 ∈ ρC(A),
as required. The proof of (ii.2) is complete. In the case p = 1, the existence
of a strongly continuous and uniformly bounded extension of the mapping λ 7→
K(λ) on C+ can be proved as in [21]. Assume now ̺ ∈ R, (λn) is a sequence in
C+ r N and limn→∞ λn = i̺. Let limn→∞

1
â(λn) = z ∈ C; then z ∈ ρC(A) and

limn→∞ K(λn)C = (z − A)−1C2 in L(E). Let limn→∞
1

â(λn) = ∞; then Cy =
1

â(λn) fµ(λn)y − fµ(λn)Ay, limn→∞ K(λn)y = 0, y ∈ D(A), and limn→∞ K(λn)y =

0, y ∈ E. This enables one to see that â(λ) admits a continuous extension on C+

which takes values in C ∪ {∞}. The rest of the proof of (ii.3) simply follows. �

In almost the same way, one can prove the following proposition.

Proposition 2.3. (i) Let A be a subgenerator of an (a, C)-regularized resolvent
family (S(t))t>0 that is integrable and bounded. Then (1.1) is Lp-stable (CS) for
each p ∈ [1, ∞], and (S(t))t>0 is L1-stable (CS) iff (S(t))t>0 is strongly integrable.

(ii) Let (1.1) be Lp-stable (CS) for some p ∈ [1, ∞] and let a(t) satisfy (P1).

(ii.1) Then, for every µ ∈ C+, A is a subgenerator of an (a, 1∗gµ)-regularized C-
resolvent family (Vµ(t))t>0 and there exists c(µ) > 0 such that ‖Vµ(t)‖ 6

c(µ)t1/p′

, where [1, ∞] ∋ p′ satisfies 1
p + 1

p′ = 1.

(ii.2) Let D(A2) 6= {0}. Then ã(λ) admits a meromorphic extension â(λ) on
C+. Denote by N the set which consists of all zeros and possible poles of

â(λ), and assume additionally: D(A) = E or ρ(A) 6= ∅. Then 1/â(λ) ∈
ρC(A), λ ∈ C+ r N , and the mapping λ 7→ H(λ) = (I − â(λ)A)−1C/λ,
λ ∈ C+ r N is uniformly bounded. Furthermore, A is invertible provided
C = I.

(ii.3) Let D(A2) 6= {0} and p = 1. Assume ã(λ), H(λ) and N possess the

same meanings as in (ii.2), and D(A) = E or ρ(A) 6= ∅. Then 1/â(λ) ∈
ρC(A), λ ∈ C+ r N , and the mapping λ 7→ H(λ) admits a strongly
continuous and uniformly bounded extension on C+. The mapping λ 7→
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â(λ) admits a continuous extension on C+ which takes values in C∪{∞},
limλ→0 â(λ) = ∞, and in the case 0 ∈ ρC(A), there exists limλ→0 λâ(λ)
in (C ∪ {∞}) r {0}.

It is worthwhile to mention that it is not clear how one can prove an ana-
logue of [21, Theorem 10.1, p. 262] and its consequences in the case of a gen-
eral (a, k)-regularized C-resolvent family. Nevertheless, in many cases, (S(t))t>0

is not integrable in any sense but (2.1) is solvable provided that the function
t 7→ ‖(C−1g)′(t)‖[D(A)] decays polynomially as t → −∞ (cf. Proposition 2.1, [12,
Example 2.31(iii)], [15, Theorem 4.1], [20, pp. 251–252] and Theorem 2.4(iv) given
below).

A function u ∈ C((−τ, τ) :E) is called a solution of (2.2) iff a ∗ u ∈ C((−τ, τ) :

[D(A)]) and u(t) = f(t) + A
∫ t

0 a(t − s)u(s) ds, t ∈ (−τ, τ).

Proposition 2.4. [12] (i) Assume a ∈ L1
loc((−τ, τ)), k ∈ C((−τ, τ)), a 6= 0

and k 6= 0. Let k+(t) = k(t), a+(t) = a(t), t ∈ [0, τ), k−(t) = k(−t) and a−(t) =
a(−t), t ∈ (−τ, 0]. If ±A are subgenerators of (a±, k±)-regularized C-resolvent
families (S±(t))t∈[0,τ), then, for every x ∈ D(A), the function u : (−τ, τ) → E
given by u(t) = S+(t)x, t ∈ [0, τ) and u(t) = S−(−t)x, t ∈ (−τ, 0] is a solution
of (2.2) with f(t) = k(t)Cx, t ∈ (−τ, τ). Furthermore, the solutions of (2.2) are
unique provided that k±(t) are kernels.

(ii) Assume n± ∈ N, f ∈ C((−τ, τ) :E), a ∈ L1
loc((−τ, τ)), a 6= 0, f+(t) = f(t),

a+(t) = a(t), t ∈ [0, τ), f−(t) = f(−t), a−(t) = a(−t), t ∈ (−τ, 0], and ±A are
subgenerators of (n± − 1)-times integrated (a±, C±)-regularized resolvent families.
Assume, additionally, a± ∈ BVloc([0, τ)) if n± > 1 (that is: a+ ∈ BVloc([0, τ)) if
n+ > 1, and a− ∈ BVloc([0, τ)) if n− > 1) as well as:

(ii.1) C−1
± f± ∈ C(n±)([0, τ) :E), f

(k−1)
± (0) ∈ D(An±−k) and

An±−kf (k−1)(0) ∈ R(C±), 1 6 k 6 n±, if n± > 1, resp.

(ii.2) C−1
± f± ∈ C([0, τ) :E) ∩ W 1,1

loc ([0, τ) :E) if n+ = n− = 1.

Then there exists a unique solution of (2.2).

Example 2.1. (i) Assume −∞ < α 6 β < ∞, 1 6 p 6 ∞, 0 < τ 6 ∞,
n ∈ N, E = Lp(Rn) or E = Cb(Rn), P (·) is an elliptic polynomial of degree
m ∈ N, α 6 Re(P (x)) 6 β, x ∈ Rn and A = P (D). Then there exists ω > 0
such that, for every r > n| 1

2 − 1
p |, ±A are the integral generators of exponentially

bounded (ω ∓ A)−r-regularized semigroups in E. Let a ∈ L1
loc(R), a 6= 0, be

such that the mappings t 7→ a+(t) = a(t), t > 0 and t 7→ a−(t) = a(−t), t > 0
are completely positive. By [12, Theorem 2.8(ii)], ±A are the integral generators
of exponentially bounded (a±, (ω ∓ A)−r)-regularized resolvent families provided
E = Lp(Rn) (1 6 p < ∞), resp. (a±, t)-regularized (ω ∓ A)−r-resolvent families
provided E = L∞(Rn) (Cb(Rn)). Let f ∈ C((−τ, τ) : E) and let f±(t) satisfy the
assumption of Proposition 2.4(ii.2), resp. Proposition 2.4(ii.1), with n± = 1, resp.
n± = 2. Then there exists a unique solution of (2.2); it is noteworthy that the
above example can be reformulated in the case when A is the integral generator of
an exponentially bounded integrated group or C-regularized group [10,11,24].
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(ii) Assume E = L2[0, π], A = −∆ with the Dirichlet or Neumann boundary

conditions, τ = ∞, β ∈ [ 1
2 , 1), α > 1 + β, a(t) = |t|β−1

Γ(β) , t ∈ (−τ, τ) and f(t) =

L−1(hα,β(λ))(|t|), t ∈ (−τ, τ), where hα,β(λ) is defined through [12, (2.64)] and
L−1 denotes the inverse Laplace transform. Then Proposition 2.4(i) implies that
there exists a unique solution u(t) of (2.2) and that u|Rr{0} is analytically extendible
to the sector Σ π

2
( 1

β −1). By Proposition 2.4(i) and [12, Example 2.31(iii)], it follows

that, for every n ∈ N, there exists an exponentially bounded kernel kn(t) such that
(2.2) has a unique solution un(t) with A replaced by the polyharmonic operator
∆2n

and f(t) replaced by kn(t); moreover, un|Rr{0} is analytically extendible to
the sector Σ π

2
. We refer the reader to [12] for the analysis of preceding example in

the case β ∈ [1, 2).

The next proposition clarifies Abel-ergodic properties of an (a, k)-regularized
C-resolvent family.

Proposition 2.5. Assume a(t) and k(t) satisfy (P1), limλ→+∞,k̃(λ) 6=0 λk̃(λ) =

k(0), there exists ω ∈ R such that
∫ ∞

0 e−ωt|a(t)| dt < ∞ and A is a subgenerator of
an exponentially bounded (a, k)-regularized C-resolvent family (S(t))t>0. Then

(2.6) lim
λ→+∞,k̃(λ) 6=0

λk̃(λ)(I − ã(λ)A)−1Cx = k(0)Cx, x ∈ D(A).

Proof. Let ‖S(t)‖ 6 Meωt, t > 0 for appropriate constants M > 1 and ω > 0.
Let ω0 = max(ω, abs(a), abs(k)). By [12, Theorem 2.6], we have that, for every

λ ∈ C with Re λ > ω0 and k̃(λ) 6= 0, the operator I − ã(λ)A is injective and that
R(C) ⊆ R(I − ã(λ)A). Furthermore, k̃(λ)(I − ã(λ)A)−1Cx =

∫ ∞

0 e−λtR(t)x dt,

x ∈ E, Re λ > ω0, k̃(λ) 6= 0, which implies

(2.7)
∥∥k̃(λ)(I − ã(λ)A)−1C

∥∥ 6
M

Re λ − ω
, Re λ > ω0, k̃(λ) 6= 0.

The proof of (2.6) in the case x ∈ D(A) follows from (2.7), the assumption
limλ→+∞,k̃(λ) 6=0 λk̃(λ) = k(0) and the identity

(I − ã(λ)A)−1Cx = ã(λ)(I − ã(λ)A)−1CAx + Cx, Re λ > ω0, k̃(λ) 6= 0.

The proof of (2.6) in the case x ∈ D(A) follows from the standard limit procedure.
�

The following proposition can be also viewed as of some independent interest
(see e.g. [12, Theorem 2.6(i)] and the proofs of [16, Proposition 2.7] and [17,
Proposition 2.6]).

Proposition 2.6. (i) Assume a(t) and k(t) satisfy (P1), M > 1, ω > 0,
(S(t))t>0 is an (a, k)-regularized C-resolvent family satisfying ‖S(t)‖ 6 Meωt,
t > 0, and AC /∈ L(E). Then, for every λ ∈ C with Re λ > max(ω, abs(a), abs(k))
and k̃(λ) 6= 0, we have ã(λ) 6= 0 and 1/ã(λ) ∈ ρC(A).

(ii) Assume α ∈ (0, 1), A is a subgenerator of a global ( tα−1

Γ(α) , k)-regularized

C-resolvent family (Sα(t))t>0, D(A) 6= {0}, and limt→+∞ |k(t)| does not exist in
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[0, ∞] or limt→+∞ |k(t)| 6= 0. Then there exist no M > 1 and ω > 0 such that
‖Sα(t)‖ 6 Me−ωt, t > 0.

Recall that Webb considered in [23] a class of abstract semilinear Volterra
equations appearing in thermodynamics of materials with memory [4, 5]. An in-
significant modification of the proofs of [23, Theorem 2.1–2.2, Corollary 2.1] implies
the following theorem.

Theorem 2.2. (i) Assume A is a subgenerator of a (local) C-regularized semi-
group (T (t))t∈[0,τ) and there exists t0 ∈ (0, τ) such that:

(i.1) C−1f ∈ C1([0, t0] :E),
(i.2) C−1g ∈ C([0, t0]×D :E), where D is an open subset of [D(A)], C−1g(t, x)

is continuously differentiable with respect to t, and for each x ∈ D there
exists a neighborhood Dx about x and continuous functions b : [0, t0] →
[0, ∞) and c : [0, t0] → [0, ∞) such that

‖C−1g(t, x1) − C−1g(t, x2)‖ 6 b(t)‖x1 − x2‖[D(A)], t ∈ [0, t0], x1, x2 ∈ Dx,
∥∥∥ ∂

∂t
C−1g(t, x1) −

∂

∂t
C−1g(t, x2)

∥∥∥ 6 c(t)‖x1 − x2‖[D(A)], t ∈ [0, t0], x1, x2 ∈ Dx.

Then, for each x ∈ C(D), there exist a number t1 ∈ (0, t0) and a unique function
u : [0, t1] → E such that u ∈ C1([0, t1] :E) ∩ C([0, t1] : [D(A)]),

(2.8) u′(t) = Au(t) +

∫ t

0
g(t − s, u(s)) ds + f(t), t ∈ [0, t1] and u(0) = x.

Assume further n ∈ N, x ∈ C(D(An)), τ = ∞ as well as (i.1) and (i.2) hold with
C−1f , C−1g, D = Dy (y ∈ D(A)), [0, t0], b : [0, t0] → [0, ∞) and c : [0, t0] →
[0, ∞), replaced by C−nf , C−ng, [D(A)], [0, nt0], bn : [0, nt0] → [0, ∞) and cn :
[0, nt0] → [0, ∞), respectively. Then there exists a unique function un : [0, nt1] → E
such that un ∈ C1([0, nt1] : E) ∩ C([0, nt1] : [D(A)]) and that (2.8) holds with u(t)
and [0, t1] replaced by un(t) and [0, nt1], respectively.

(ii) Assume x ∈ D, (i.1)–(i.2) hold, M > 1, ω ∈ R, ‖T (t)‖ 6 Meωt, t ∈ [0, τ)
and x1, x2 ∈ C(D). Denote by u1(t) and u2(t) the solutions of (2.8) with initial

values x1 and x2, respectively, and set α(t) =
∫ t

0 e−ωs(b(s) + c(s)) ds, t ∈ [0, t1] and

β(t) = maxs∈[0,t] e−ωsb(s), t ∈ [0, t1]. Then the assumption {u1(t), u2(t)} ⊆ Dx,
t ∈ [0, t1] implies:

‖u1(t) − u2(t)‖ 6 M‖C−1x1 − C−1x2‖[D(A)]e
(Mα(t)+β(t)+Mb(0)+ω)t, t ∈ [0, t1].

Furthermore, if D = Dx = [D(A)], x ∈ D(A) and Mα(t) + β(t) + Mb(0) + ω 6

γ, for some γ ∈ R and every t ∈ [0, t1], then ‖u1(t) − u2(t)‖ 6 M‖C−1x1 −
C−1x2‖[D(A)]e

γt, t ∈ [0, t1].

Let α > 0, β > 0 and γ ∈ (0, 1). Then Dα
t denotes the Caputo fractional

derivative of order α, Eβ(z) denotes the Mittag-Leffler function which is given by

Eβ(z) :=
∑∞

n=0
zn

Γ(βn+1) , z ∈ C and Φγ(t) denotes the Wright function which is

given by Φγ(t) := L−1(Eγ(−λ))(t), t > 0 (for further information, see e.g. [2,9,22]
and references therein).
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The following theorem extends [2, Theorem 2.26] and can be applied to the
coercive differential operators considered by Li, Li and Zheng in [15, Section 4].

Theorem 2.3. Assume that α ∈ (1, 2) and A is a subgenerator of an
(

tα−1

Γ(α) , C
)
-

regularized resolvent family (Sα(t))t>0 which satisfies ‖Sα(t)‖ 6 Meωt for appro-
priate constants M > 1 and ω > 0. Let (B(t))t>0 ⊆ L(E), R(B(t)) ⊆ R(C), t > 0,
C−1B(·) ∈ C([0, ∞) : L(E)) and CB(t)x = B(t)Cx, x ∈ D(A). Then, for every
x ∈ D(A), there exists a unique solution u(t) of the problem

Dα
t u(t, x) = (A + B(t))u(t, x), t > 0,

u(0, x) = Cx, u′(0, x) = 0.

The solution u(t, x) is given by u(t, x) =
∑∞

n=0 Sα,n(t)x, t > 0, where we define
Sα,n(t) (t > 0) recursively by

Sα,0(t) = Sα(t) and Sα,n(t) =

∫ t

0

(t − s)α−1

Γ(α)
Sα(s)C−1B(s)Sα,n−1(s) ds.

Denote K(T ) = maxt∈[0,T ] ‖C−1B(t)‖, T > 0. Then

‖u(t, x)‖ 6 MeωtEα(MKT tα)‖x‖, t ∈ [0, T ],

‖u(t, x) − Sα(t)x‖ 6 Meωt(Eα(MKT tα) − 1)‖x‖, t ∈ [0, T ].

Theorem 2.4. [2, Section 3] Assume kβ(t) satisfies (P1), 0 < α < β, γ = α
β

and A is a subgenerator of an
(

tβ−1

Γ(β) , kβ

)
-regularized C-resolvent family (Sβ(t))t>0

which satisfies ‖Sβ(t)‖ = O(eωt), t > 0 for some ω > max(0, abs(kβ)). Assume
additionally that (H5) holds and that there exists a function kα(t) satisfying (P1),

kα(0) = kβ(0) and k̃α(λ) = λ
α
β −1k̃β(λ

α
β ) for all sufficiently large positive real

numbers λ. Then A is a subgenerator of a
(

tα−1

Γ(α) , kα

)
-regularized C-resolvent family

(Sα(t))t>0 which satisfies ‖Sα(t)‖ = O(eω
β
α t), t > 0 and

Sα(t)x =

∫ ∞

0
t−γΦγ(st−γ)Sβ(s)x ds, x ∈ E, t > 0.

Furthermore:

(i) The mapping t 7→ Sα(t), t > 0 has an analytic extension to the sector
Σmin(( 1

γ −1) π
2

,π).

(ii) If ω = 0 and ε ∈ (0, min(( 1
γ − 1)π

2 , π)), then there exists Mγ,ε > 0 such

that ‖Sα(z)‖ 6 Mγ,ε, z ∈ Σmin(( 1
γ −1) π

2
,π)−ε.

(iii) If ω > 0 and ε ∈ (0, min(( 1
γ − 1)π

2 , π
2 )), then there exist δγ,ε > 0 and

Mγ,ε > 0 such that ‖Sα(z)‖ 6 Mγ,εeδγ,ε Re z, z ∈ Σmin(( 1
γ −1) π

2
, π

2
)−ε.

(iv) Let ζ > 0. Then the assumption ‖Sβ(t)‖ = O(1 + tζ), t > 0, resp.
‖Sβ(t)‖ = O(tζ), t > 0, implies ‖Sα(t)‖ = O(1 + tγζ), t > 0, resp.
‖Sα(t)‖ = O(tγζ), t > 0.

We close this section with the assertion that [2, Theorem 3.12] remains true in
the case of non-densely defined operators.
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3. The nonscalar case

In this section, X and Y denote non-trivial complex Banach spaces such that Y
is continuously embedded in X ; L(X) ∋ C is an injective operator and τ ∈ (0, ∞].
The norm in X , resp. Y , is denoted by ‖ · ‖X , resp. ‖ · ‖Y , and [R(C)] stands for
the Banach space R(C) equipped with the norm ‖x‖R(C) = ‖C−1x‖X , x ∈ R(C).
Given a closed linear operator A in X , we use the abbreviation [D(A)] for the
Banach space D(A) equipped with the graph norm ‖x‖[D(A)] = ‖x‖X + ‖Ax‖X ,
x ∈ D(A). Let A(t) be a locally integrable function from (−τ, τ) into L(Y, X). In
the sequel, we assume that A(t) is not of scalar type, which means that there exist
neither a function a ∈ L1

loc((−τ, τ)), a 6= 0, nor a closed linear operator A in X
such that Y = [D(A)] and that A(t) = a(t)A for a.e. t ∈ (−τ, τ).

Definition 3.1. [14] Let τ ∈ (0, ∞], k ∈ C([0, τ)), k 6= 0 and A ∈ L1
loc([0, τ) :

L(Y, X)), A 6= 0. An operator family (S(t))t∈[0,τ) is called an (A, k)-regularized
C-pseudoresolvent family iff the following holds:

(S1) The mapping t 7→ S(t)x, t ∈ [0, τ) is continuous in X for every fixed
x ∈ X and S(0) = k(0)C.

(S2) Put U(t)x :=
∫ t

0 S(s)x ds, x ∈ X , t ∈ [0, τ). Then (S2) is equivalent to
say that U(t)Y ⊆ Y , U(t)|Y ∈ L(Y ), t ∈ [0, τ) and that (U(t)|Y )t∈[0,τ) is
locally Lipschitz continuous in L(Y ).

(S3) The resolvent equations

S(t)y = k(t)Cy +

∫ t

0
A(t − s) dU(s)y ds, t ∈ [0, τ), y ∈ Y,(3.1)

S(t)y = k(t)Cy +

∫ t

0
S(t − s)A(s)y ds, t ∈ [0, τ), y ∈ Y,(3.2)

hold; (3.1), resp. (3.2), is called the first resolvent equation, resp. the
second resolvent equation.

An (A, k)-regularized C-pseudoresolvent family (S(t))t∈[0,τ) is said to be an (A, k)-
regularized C-resolvent family if additionally:

(S4) For every y ∈ Y , S(·)y ∈ L∞
loc([0, τ) :Y ).

A family (S(t))t∈[0,τ) in L(X) is called a weak (A, k)-regularized C-pseudoresolvent
family iff (S1) and (3.2) hold; in the case τ = ∞, (S(t))t>0 is said to be exponentially
bounded iff there exist M > 1 and ω > 0 such that ‖S(t)‖L(X) 6 Meωt, t > 0.

In what follows, a (weak) (A, k)-regularized C-(pseudo)resolvent family with

k(t) ≡ tα

Γ(α+1) (α > 0) is also called a (weak) α-times integrated A-regularized

C-(pseudo)resolvent family; a (weak) 0-times integrated A-regularized C-(pseudo)-
resolvent family is also said to be a (weak) A-regularized C-(pseudo)resolvent fam-
ily, and a (weak) (A, k)-regularized C-(pseudo)resolvent family with C = I is also
said to be a (weak) (A, k)-regularized (pseudo)resolvent family.

Let us consider the equations

(3.3) u(t) =

∫ ∞

0
A(s)u(t − s) ds +

∫ t

−∞

k(t − s) g′(s) ds,
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where g : R → X , A ∈ L1
loc([0, ∞) :L(Y, X)), A 6= 0, k ∈ C([0, ∞)), k 6= 0, and

(3.4) u(t) = f(t) +

∫ t

0
A(t − s)u(s) ds, t ∈ (−τ, τ),

where τ ∈ (0, ∞], f ∈ C((−τ, τ) : X) and A ∈ L1
loc((−τ, τ) : L(Y, X)), A 6= 0. The

following proposition can be applied to a class of nonscalar parabolic equations
considered by Friedman and Shinbrot in [8].

Proposition 3.1. Assume that there exists an (A, k)-regularized C-resolvent
family (S(t))t>0, g : R → R(C), C−1g(·) is differentiable for a.e. t ∈ R, C−1g(t) ∈
Y for a.e. t ∈ R,

(i) the mapping s 7→ S(t − s)(C−1g)′(s), s ∈ (−∞, t] is an element of the
space L1((−∞, t] :Y ) for a.e. t ∈ R, and

(ii) the mapping s 7→ k(t − s) g′(s), s ∈ (−∞, t] is an element of the space
L1((−∞, t] :X) for a.e. t ∈ R.

Let u(t) =
∫ t

−∞ S(t − s)(C−1g)′(s) ds, t ∈ R. Then C(R :X) ∋ u satisfies (3.3).

A function u ∈ C((−τ, τ) :X) is said to be:

(i) a strong solution of (3.4) iff u ∈ L∞
loc((−τ, τ) : Y ) and (3.4) holds on

(−τ, τ),
(ii) a mild solution of (3.4) iff there exist a sequence (fn) in C((−τ, τ) : X)

and a sequence (un) in C([0, τ) : X) such that un(t) is a strong solution
of (3.4) with f(t) replaced by fn(t) and that limn→∞ fn(t) = f(t) and
limn→∞ un(t) = u(t), uniformly on compact subsets of (−τ, τ).

Proposition 3.2. [14] (i) Assume k ∈ C((−τ, τ)), k 6= 0 and A ∈ L1
loc((−τ, τ) :

L(Y, X)), A 6= 0. Let k+(t) = k(t), A+(t) = A(t), t ∈ [0, τ), k−(t) = k(−t) and
A−(t) = −A(−t), t ∈ (−τ, 0]. If there exist (A±, k±)-regularized C-resolvent fam-
ilies (S±(t))t∈[0,τ), then for every x ∈ Y the function u : (−τ, τ) → X given by
u(t) = S+(t)x, t ∈ [0, τ) and u(t) = S−(−t)x, t ∈ (−τ, 0] is a strong solution of
(3.4) with f(t) = k(t)Cx, t ∈ (−τ, τ). Furthermore, strong solutions of (3.4) are
unique provided that k±(t) are kernels.

(ii) Assume n± ∈ N, f ∈ C((−τ, τ) : X), A ∈ L1
loc((−τ, τ) : L(Y, X)), A 6= 0,

f+(t) = f(t), A+(t) = A(t), t ∈ [0, τ), f−(t) = f(−t), A−(t) = −A(−t), t ∈ (−τ, 0]
and there exist (n± − 1)-times integrated A±-regularized C±-resolvent families. Let

f± ∈ C(n±)([0, τ) :X) and f
(i)
± (0) = 0, 0 6 i 6 n± − 1. Then the following holds:

(ii.1) Let (C−1
± f±)(n±−1) ∈ ACloc([0, τ) :Y ) and

(C−1
± f±)(n±) ∈ L1

loc([0, τ) :Y ). Then there exists a unique strong solution
u(t) of (3.4), and moreover u ∈ C((−τ, τ) :Y ).

(ii.2) Let (C−1
± f±)(n±) ∈ L1

loc([0, τ) : X) and Y
X

= X. Then there exists a
unique mild solution of (3.4).

Example 3.1. (i) ([14, Example 2.1], cf. also Example 2.1(i)) Assume −∞ <
α 6 β < ∞, 1 6 p 6 ∞, 0 < τ 6 ∞, n ∈ N, X = Lp(Rn) or X = Cb(R

n), P (·) is
an elliptic polynomial of degree m ∈ N, α 6 Re(P (x)) 6 β, x ∈ R

n, A = P (D) and
Y = [D(A)]. Let r > | 1

2 − 1
p |, C± = (ω ∓ A)−r and let a ∈ L1

loc(R), a 6= 0, be such
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that the mappings t 7→ a+(t), t > 0 and t 7→ a−(t) = a(−t), t > 0 are completely
positive kernels which fulfill (P1); in the case X = L∞(Rn) or X = Cb(Rn), we
assume a(t) ≡ 1. Suppose, in addition, (B0,±(t))t∈[0,τ) ⊆ L(Y ) ∩ L(X, [R(C±)]),
(B1,±(t))t∈[0,τ) ⊆ L(Y, [R(C±)]),

(i.1) C−1
± B0,±(·)y ∈ BVloc([0, τ) :Y ) for all y ∈ Y , C−1

± B0,±(·)x ∈ BVloc([0, τ) :
X) for all x ∈ X ,

(i.2) C−1
± B1,±(·)y ∈ BVloc([0, τ) :X) for all y ∈ Y ,

(i.3) C±B±(t)y = B±(t)C±y, y ∈ Y , t ∈ [0, τ), where B±(t)y = B0,±(t)y +
(a± ∗ B1,±)(t)y, y ∈ Y , t ∈ [0, τ), and

(i.4) C−1
± f± ∈ ACloc([0, τ) :Y ) and (C−1

± f±)′ ∈ L1
loc([0, τ) :Y ).

Set B(t) = B+(t), t ∈ [0, τ) and B(t) = B−(−t), t ∈ (−τ, 0). Then there exists a
unique strong solution of (3.4) with A(t) = a(t)P (D) + B(t), t ∈ (−τ, τ).

(ii) [14] Let 1 < p < ∞, X = Lp(R), Y = W 4,p(R),

A(t)f = −tf ′′′′ − tf ′′ − 2if ′ − tf, t ∈ R, f ∈ Y,

s ∈ (1, 2) and f(t) = ks(t) = L−1(e−λ1/s

)(|t|), t ∈ R. Then there exist no exponen-
tially bounded (±A(±t), ks)-regularized resolvent families, and Proposition 3.2(i)
implies that there exists a unique strong solution u(t) of (3.4) on R. Finally, one
can simply prove that u(t) is hyponalytic in the sense of [12, Definition 2.19].
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