COMPLEXES OF DIRECTED TREES OF COMPLETE MULTIPARTITE GRAPHS

Duško Jojić

Communicated by Rade Živaljević

Abstract

For every directed graph D we consider the complex of all directed subforests $\Delta(D)$. The investigation of these complexes was started by D. Kozlov. We generalize a result of Kozlov and prove that complexes of directed trees of complete multipartite graphs are shellable. We determine the h-vector of $\Delta\left(\vec{K}_{m, n}\right)$ and the homotopy type of $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$.

1. Introduction

A directed tree is a tree in which one vertex is selected as the root and all edges are oriented away from the root. If $T=(V(T), E(T))$ is a directed tree with root r, then for every $x \in V(T)$ there exists a unique directed path from r to x. We say that a vertex y is below vertex x in a directed tree T if there exists a unique directed path from x to y. A directed forest is a family of disjoint directed trees. In this paper we write $\overrightarrow{x y}$ for a directed edge from x to y.

An abstract simplicial complex Δ is a collection of finite nonempty sets such that $A \subseteq B \in \Delta \Rightarrow A \in \Delta$. The element A of Δ is called a face (simplex) of Δ and its dimension is $|A|-1$. The vertex set of Δ is the union of all faces of Δ. The dimension of the complex Δ is defined as the largest dimension of any of its faces. A facet of Δ is any simplex that is not a face of any larger simplex of Δ. A simplicial complex is pure if every of its facets has the same dimension. We denote the number of i-dimensional faces of Δ by f_{i}, and $f(\Delta)=\left(f_{-1}, f_{0}, \ldots, f_{d-1}, f_{d}\right)$ is called the f-vector. A new invariant, the h-vector of a d-dimensional complex Δ is $h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{d}, h_{d+1}\right)$ defined by the formula

$$
h_{k}=\sum_{i=0}^{k}(-1)^{k-i}\binom{d+1-i}{d+1-k} f_{i-1} .
$$

We refer the reader to [8] for definitions of topological concepts used in this paper.

[^0]Definition 1.1. Let D be a directed graph. The vertices of the complex of directed trees $\Delta(D)$ are oriented edges of D. The faces of $\Delta(D)$ are all directed forests that are subgraphs of D.

The question of shellability of complexes of directed trees was posed by R . Stanley. Kozlov in [6] showed that the existence of a complete source in a directed graph provides a shelling of its complex of directed trees. The complex of directed trees of a graph G is recognized in [3] as a discrete Morse complex of a 1-dimensional complex. These complexes are also studied in [4] and 7].

Geometrically, a shelling of a cell complex is a way of gluing it together from its maximal cells in a well-behaved way. In this paper we use the following definition of shellability for pure simplicial complexes.

Definition 1.2. A pure simplicial complex Δ is shellable if there exists a linear ordering (shelling order) $F_{1}, F_{2}, \ldots, F_{k}$ of facets of Δ such that for every $i<j \leqslant k$ there exist some $l<j$ and a vertex v of F_{j} such that

$$
F_{i} \cap F_{j} \subseteq F_{l} \cap F_{j}=F_{j} \backslash\{v\} .
$$

For a fixed shelling order $F_{1}, F_{2}, \ldots, F_{k}$ of Δ, the restriction $\mathcal{R}\left(F_{j}\right)$ of the facet F_{j} is defined by $\mathcal{R}\left(F_{j}\right)=\left\{v\right.$ is a vertex of $F_{j}: F_{j} \backslash\{v\} \subset F_{i}$ for some $\left.1 \leqslant i<j\right\}$. The type of the facet F in the given shelling order is the cardinality of $\mathcal{R}(F)$, i.e., type $(F)=|\mathcal{R}(F)|$. If we build up Δ according to a shelling order, then $\mathcal{R}(F)$ is the unique minimal new face that appears when we add the facet F. For a shellable simplicial complex we have the following combinatorial interpretation of its h-vector: $h_{k}(\Delta)=\mid\{F$ is a facet of $\Delta: \operatorname{type}(F)=k\} \mid$. Further, we know that a shellable d-dimensional simpilicial complex Δ is homotopy equivalent to a wedge of h_{d} spheres of dimension d. A set of maximal simplices \mathcal{G} of Δ is a generating set of simplices if the removal of interiors of all simplices from \mathcal{G} makes Δ contractible. For a shellable simplicial complex Δ the set of simplices $\mathcal{G}=\{F$ is a facet of $\Delta: \mathcal{R}(F)=F\}$ is a generating set of Δ, i.e., the simplicial complex $\Delta \backslash\left(\bigcup_{F \in \mathcal{G}} F\right)$ is contractible.

For more information on shellability see [1], 2] and chapter 8 of [9].

2. Graphs with a dominant pair

Kozlov in [6] used the following variant of a shelling. Let $\mathcal{F}(\Gamma)$ denote the set of all facets of a pure simplicial complex Γ. Assume that we can partition $\mathcal{F}(\Gamma)$ into the blocks $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{m}$ such that the following holds:

$$
\begin{equation*}
\left|\mathcal{F}_{0}\right|=1 ; \text { for all } i \leqslant j \text { and two different facets } F \in \mathcal{F}_{i}, F^{\prime} \in \mathcal{F}_{j} \tag{2.1}
\end{equation*}
$$

there exists $k<j$, a facet $F^{\prime \prime} \in \mathcal{F}_{k}$, and a vertex $v \in F^{\prime}$ such that $F \cap F^{\prime} \subseteq F^{\prime \prime} \cap F^{\prime}=F^{\prime} \backslash\{v\}$.

It is easy to check that any linear order that refines partition $\mathcal{F}_{0}, \mathcal{F}_{1}, \mathcal{F}_{2}, \ldots, \mathcal{F}_{m}$ (for $i<j$ we list facets from \mathcal{F}_{i} before facets from \mathcal{F}_{j}) is a shelling order of Γ in the sense of Definition 1.2

A vertex c is a complete source in a digraph D if $\overrightarrow{c x} \in E(D)$ for all $x \in$ $V(D) \backslash\{c\}$. The partition of $\mathcal{F}(\Delta(D))$ defined by Kozlov in [6] substantially uses
the out-degree $d_{T}(c)=|\{x: \overrightarrow{c x} \in E(T)\}|$ of c :

$$
\mathcal{F}_{i}=\left\{T \in \mathcal{F}(\Delta(D)): d_{T}(c)-1-i\right\}
$$

It is not complicated to prove for a digraph with a complete source, that the above partition of the facets of $\Delta(D)$ satisfies the condition described in 2.1) (see the proof of Theorem 3.1 in [6]).

We now describe a broader family of graphs whose complexes of directed trees are shellable. For a directed graph D and a vertex $u \in V(D)$ we set $N(u)=\{x \in$ $V(D): \overrightarrow{u x} \in E(D)\}$. We say that a directed graph D has a dominant pair of vertices if there exist vertices $u, v \in V(D)$ such that
(i) $V(D)=N(u) \cup N(v)$. Therefore, we have that $\overrightarrow{u v}, \overrightarrow{v u} \in E(D)$.
(ii) For all $x \in N(u) \backslash N(v)$ and $y \in N(v) \backslash N(u)$ we have that $\overrightarrow{x y}, \vec{y} \vec{x} \in E(D)$.

Theorem 2.1. If a directed graph D has a dominant pair of vertices the complex $\Delta(D)$ is shellable.

Proof. We will define a partition of the facets of $\Delta(D)$ and show that this partition satisfies 2.1. Recall that facets of the complex $\Delta(D)$ correspond to subtrees of D.

Let D be a graph with a dominant pair of vertices u, v. For a directed tree T with the root r let $h_{T}(x)$ denotes the length of the unique directed path from r to x. We classify directed trees of D by using $d_{T}(u), d_{T}(v), h_{T}(u)$ and $h_{T}(v)$. The trees of D in which the above defined parameters are the same form a block

$$
\mathcal{F}_{p, q, r, s}=\left\{T: d_{T}(u)=p, d_{T}(v)=q, h_{T}(u)=r, h_{T}(v)=s\right\}
$$

of our partition of the facets of $\Delta(D)$. We say that $\mathcal{F}_{p, q, r, s}$ is before $\mathcal{F}_{p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}}$, and write $\mathcal{F}_{p, q, r, s}<\mathcal{F}_{p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}}$, if and only if $p>p^{\prime}$, or $p=p^{\prime}$ and $q>q^{\prime}$, or $p^{\prime}=p$, $q=q^{\prime}$ and $r<r^{\prime}$, or $p^{\prime}=p, q=q^{\prime}, r=r^{\prime}$ and $s<s^{\prime}$. Note that the first block in this partition $\mathcal{F}_{|N(u)|,|N(v) \backslash N(u)|-1,0,1}$ contains only the tree with the edge set $\{\overrightarrow{u x}: x \in N(u)\} \cup\{\overrightarrow{v y}: y \in N(v) \backslash(N(u) \cup\{u\})\}$.

Now, we consider two different directed trees $T \in \mathcal{F}_{p, q, r, s}, T^{\prime} \in \mathcal{F}_{p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}}$ such that $\mathcal{F}_{p, q, r, s} \leqslant \mathcal{F}_{p^{\prime}, q^{\prime}, r^{\prime}, s^{\prime}}$. Assume that the edges $E(T) \cap E\left(T^{\prime}\right)$ span a directed forest $F=T_{1} \cup T_{2} \cup \cdots \cup T_{m}$, and let r_{i} denote the root of T_{i}. Assume that $r_{i_{0}}$ is the root of T^{\prime}. Note that $E\left(T^{\prime}\right) \backslash E(T)$ contains $m-1$ edges of the form $\overrightarrow{x r_{i}}$, where $i \neq i_{0}$.

The following analysis will show that there is a tree $T^{\prime \prime}$ such that T, T^{\prime} and $T^{\prime \prime}$ satisfy the conditions described in 2.1). First, we consider the case when u, v are in the same tree of F (w.l.o.g. we assume $v, u \in T_{1}$).
(1) If the root of T^{\prime} is a vertex $r_{i} \neq r_{1}$, then there exists $\overrightarrow{x r_{1}} \in E\left(T^{\prime}\right) \backslash E(T)$ such that $x \neq u$ and $x \neq v$. We set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{1}}\right\} \cup\left\{\overrightarrow{u r_{i}}\right\}$ (if $r_{i} \in N(u)$) or $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{1}}\right\} \cup\left\{\overrightarrow{v r_{i}}\right\}\left(\right.$ if $r_{i} \notin N(u)$).
(2) Assume that r_{1} is the root of T^{\prime}. If there is a vertex $r_{j} \in N(u)$ for some $j>1$, the assumption $d_{T}(u) \geqslant d_{T^{\prime}}(u)$ guarantees that there exists an edge $\overrightarrow{x r_{i}} \in E\left(T^{\prime}\right) \backslash E(T)$ such that $x \neq u, i>1$ and $r_{i} \in N(u)$. Otherwise, if all of the edges $\overrightarrow{u r_{i}}$ (for all $r_{i} \in N(u), i>1$) are contained in $E\left(T^{\prime}\right)$, then we obtain that $d_{T}(u)<d_{T^{\prime}}(u)$. In the above described situation we set
$T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{i}}\right\} \cup\left\{\overrightarrow{u r_{i}}\right\}$.
If $r_{i} \in N(v) \backslash N(u)$ for all $i=2,3, \ldots, m$, then there exists $\overrightarrow{y r_{i}} \in E\left(T^{\prime}\right) \backslash$ $E(T)$, such that $y \neq v$ (otherwise we obtain that $d_{T}(u)=d_{T^{\prime}}(u)$ and $d_{T}(v)<$ $\left.d_{T^{\prime}}(v)\right)$. Then we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{y r_{i}}\right\} \cup\left\{\overrightarrow{v r_{i}}\right\}$.
Now, we consider the situation when the vertices u and v belong to different trees of F (w.l.o.g. we assume that $u \in T_{1}$ and $v \in T_{2}$).
(3) If the root of T^{\prime} is $r_{i}, r_{i} \neq r_{1}$ and $r_{i} \in N(u)$, then there exists $\overrightarrow{x r_{1}} \in$ $E\left(T^{\prime}\right) \backslash E(T)$ such that $x \neq u$ and we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{1}}\right\} \cup\left\{\overrightarrow{u r_{i}}\right\}$.
(4) If the root r_{i} of T^{\prime} (again $r_{i} \neq r_{1}$) is not contained in $N(u)$ and $r_{i} \neq r_{2}$, then there exists $\overrightarrow{x_{2}} \in E\left(T^{\prime}\right) \backslash E(T)$. If $x \neq u$ we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{2}}\right\} \cup\left\{\overrightarrow{v r_{i}}\right\}$.

If $x=u$, then v is below u and there exists $\overrightarrow{y r_{1}} \in E\left(T^{\prime}\right)$ such that $y \neq u$ and $y \neq v$. In that case we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{y r_{1}}\right\} \cup\left\{\overrightarrow{v r_{i}}\right\}$.
(5) If r_{2} is the root of T^{\prime} (recall that $r_{2} \in N(v) \backslash N(u)$ and therefore $r_{2} \neq v$), then there exists an edge $\overrightarrow{x r_{1}} \in E\left(T^{\prime}\right) \backslash E(T)$. If $r_{1} \in N(v)$ and $x \neq v$, we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{1}}\right\} \cup\left\{\overrightarrow{v r_{1}}\right\}$.

If $x=v$ (and therefore $r_{1} \in N(v)$), then we find an edge $\overrightarrow{y r_{i}} \in E\left(T^{\prime}\right) \backslash$ $E(T)$ such that $y \neq u, i>2$ and $r_{i} \in N(u)\left(\right.$ or $\overrightarrow{z r_{j}} \in E\left(T^{\prime}\right) \backslash E(T)$ such that $\left.z \neq v, r_{j} \in N(v) \backslash N(u), j>2\right)$ by using the same arguments as in the proof of (2). Then we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{y r_{i}}\right\} \cup\left\{\overrightarrow{u r_{i}}\right\}$ or $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{z r_{j}}\right\} \cup\left\{\overrightarrow{v r_{j}}\right\}$.

If $r_{1} \notin N(v)$, then there exists $\overrightarrow{x r_{1}} \in E\left(T^{\prime}\right) \backslash E(T), x \neq u, x \neq v$ and we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{1}}\right\} \cup\left\{\overrightarrow{r_{1} r_{2}}\right\}$. In that case we obtain that $d_{T^{\prime \prime}}(u)=$ $d_{T^{\prime}}(u), d_{T^{\prime \prime}}(v)=d_{T^{\prime}}(v)$ and $h_{T^{\prime \prime}}(u)<h_{T^{\prime}}(u)$.
If the root of T^{\prime} is r_{1}, then we have the following possibilities.
(6) There exists $i>1$ such that $r_{i} \in N(u)$. Because we have that $d_{T}(u) \geqslant d_{T^{\prime}}(u)$ it follows that there exists $\overrightarrow{x r_{j}} \in E\left(T^{\prime}\right) \backslash E(T)$ such that $x \neq u, r_{j} \in N(u)$ and $j>1$. In that case we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{j}}\right\} \cup\left\{\overrightarrow{u r_{j}}\right\}$.
(7) If all vertices r_{i} for $i=2,3, \ldots, m$ are contained in $N(v) \backslash N(u)$ and $r_{1} \in N(v)$ (recall that r_{1} is the root of T^{\prime}), then there exists $\overrightarrow{x r_{2}} \in E\left(T^{\prime}\right) \backslash E(T), x \neq u$ and we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{2}}\right\} \cup\left\{\overrightarrow{v r_{1}}\right\}$.
(8) Finally, we assume that $r_{1} \in N(u) \backslash N(v), r_{i} \in N(v) \backslash N(u)$ for all $i>1$, and r_{1} is the root of T^{\prime}. In that case we have that $d_{T}(u)=d_{T^{\prime}}(u)$.

If $m>2$, from $d_{T}(v) \geqslant d_{T^{\prime}}(v)$ we conclude that there exists $r_{i} \in N(v)$ for $i>2$ and an edge $\overrightarrow{y r_{i}} \in E\left(T^{\prime}\right) \backslash E(T)$ such that $y \neq v$. Then we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{y r_{i}}\right\} \cup\left\{\overrightarrow{v r_{i}}\right\}$.

For $m=2$, we again consider the edge $\overrightarrow{x_{2}} \in E\left(T^{\prime}\right) \backslash E(T)$. If $x=r_{1}$, we have that $d_{T}(u)=d_{T^{\prime}}(u), d_{T}(v)=d_{T^{\prime}}(v)$ and

$$
T=T^{\prime} \backslash\left\{\overrightarrow{r_{1} r_{2}}\right\} \cup\left\{\overrightarrow{z r_{1}}\right\} \text { or } T=T^{\prime} \backslash\left\{\overrightarrow{r_{1} r_{2}}\right\} \cup\left\{\overrightarrow{y r_{2}}\right\} .
$$

But, then we have that $h_{T}(u)>h_{T^{\prime}}(u)$ or $h_{T}(u)=h_{T^{\prime}}(u), h_{T}(v)>h_{T^{\prime}}(v)$ which is a contradiction with the assumption. Therefore, in this case $(m=2)$ we have that $x \neq r_{1}$. If we set $T^{\prime \prime}=T^{\prime} \backslash\left\{\overrightarrow{x r_{2}}\right\} \cup\left\{\overrightarrow{r_{1} r_{2}}\right\}$, then we obtain that $d_{T^{\prime}}(u)=d_{T^{\prime \prime}}(u), d_{T^{\prime}}(v)=d_{T^{\prime \prime}}(v), h_{T^{\prime \prime}}(u)=h_{T^{\prime}}(u)$ and $h_{T^{\prime \prime}}(v)<h_{T^{\prime}}(v)$.

3. A complete multipartite graph

Let $K_{n_{1}, n_{2}, \ldots, n_{k}}$ denote a complete multipartite graph. Assume that its vertex set is $V=V_{1} \cup V_{2} \cup \cdots \cup V_{k}$, where $\left|V_{i}\right|=n_{i}$. Furthermore, we assume that all sets V_{i} are linearly ordered. We may choose one vertex in V_{1} and one in V_{2} and denote them by 1 and -1 .

Let $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$ denote a directed graph obtained from a complete multipartite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ when one replaces all edges by pairs of directed edges going in opposite directions. Note that $1,-1$ is a dominant pair of vertices in $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$ and from Theorem 2.1 we know that $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$ is shellable. We use a slight modification of the algorithm described in [5] to encode directed trees in $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$.

REMARK 3.1. For each directed tree T of $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$ we associate the set of sequences $\left\{C_{0}, C_{1}, \ldots, C_{k}\right\}$ of the vertex set such that
(i) The length of the sequence C_{0} is $k-1$ and any $x \in V$ can occur in C_{0}.
(ii) For any $i>0$ the length of C_{i} is $n_{i}-1$ and C_{i} contains vertices from $V \backslash V_{i}$.

Let r denote the root of T. For a vertex $v \in V, v \neq r$, let $U_{T}(v)$ denote the unique vertex u such that $\overrightarrow{u v} \in E(T)$. We say that the depth of a vertex v in T (denoted by $\operatorname{depth}(v)$) is the length of the longest directed path from v to a leaf of T. For all $i=1,2, \ldots, k$ let v_{i}^{\prime} denote the vertex from V_{i} with the maximal depth in T (if there are more than one vertex in V_{i} with maximal depth for v_{i}^{\prime}, we choose the greatest one among them in the linear order of V_{i}).
If the root of T is a vertex that belongs to $V_{i_{0}}$, then we have that $v_{i_{0}}^{\prime}=r$.
The sequence C_{0} contains vertices $\left\{U_{T}\left(v_{i}^{\prime}\right): i \neq i_{0}\right\}$, and the vertex $U_{T}\left(v_{j}^{\prime}\right)$ is before $U_{T}\left(v_{s}^{\prime}\right)$ in C_{0} if and only if $\operatorname{depth}\left(v_{j}^{\prime}\right)<\operatorname{depth}\left(v_{s}^{\prime}\right)$ or $\operatorname{depth}\left(v_{j}^{\prime}\right)=\operatorname{depth}\left(v_{s}^{\prime}\right)$ and $j<s$. For any $i>0$ the entries of the sequence C_{i} are $n_{i}-1$ vertices $\left\{U_{T}(v): v \in V_{i}, v \neq v_{i}^{\prime}\right\}$ and we order the set of these vertices in the same way as in C_{0}. Vertices from V_{j} that appear in C_{i} and have the same depth, we order in C_{i} by using the linear order defined on V_{j}. We say that $\left\{C_{0}, C_{1}, \ldots, C_{k}\right\}$ is the code for the tree T. The proof that the map $T \mapsto\left\{C_{0}, C_{1}, \ldots, C_{k}\right\}$ is a bijection, as well as more details about this construction can be found in [5].

It is easily seen from the above remark that there are

$$
n^{k-1}\left(n-n_{1}\right)^{n_{1}-1}\left(n-n_{2}\right)^{n_{2}-1} \cdots\left(n-n_{k}\right)^{n_{k}-1}
$$

directed trees in $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$. These are the facets of $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$.
Theorem 3.1. The h-vector of $\Delta\left(\vec{K}_{m, n}\right)$ is given by

$$
\begin{aligned}
h_{k}\left(\Delta\left(K_{m, n}\right)\right)= & \sum_{p+q=k}\binom{m-1}{p}(n-1)^{p}\binom{n-1}{q}(m-1)^{q} \\
& +(m+n-1) \sum_{p+q=k-1}\binom{m-1}{p}(n-1)^{p}\binom{n-1}{q}(m-1)^{q}
\end{aligned}
$$

Proof. Note that $\Delta\left(\vec{K}_{m, n}\right)$ is $(m+n-2)$-dimensional complex. We consider the shelling order of $\Delta\left(\vec{K}_{m, n}\right)$ described in Theorem 2.1 Recall that

$$
\mathcal{R}(T)=\{\overrightarrow{x y} \in E(T): E(T) \backslash\{\overrightarrow{x y}\} \subset E(S) \text { for some tree } S \text { that precedes } T\} .
$$

In other words, an edge $\overrightarrow{x y} \in E(T)$ is in $\mathcal{R}(T)$ if it can be replaced with another edge $\overrightarrow{z w} \notin E(T)$ such that $(T \backslash\{\overrightarrow{x y}\}) \cup\{\overrightarrow{z w}\}$ is a new directed tree which precedes T in considered shelling order.

It is easy to check that the following statements hold:
(i) The restriction $\mathcal{R}(T)$ does not contain the edge $\overrightarrow{1 x}$. A replacement of $\overrightarrow{1 x}$ will decrease the out-degree of 1 .
(ii) A replacement of the edge $\overrightarrow{-1 x}$ in T will decrease the out-degree of -1 . A new tree $T^{\prime}=(T \backslash\{\overrightarrow{-1 x}\}) \cup\{\overrightarrow{y z}\}$ precedes T in the considered shelling order only if we increase the out-degree of 1 . We can do this if and only if the vertex $y=1$ is below -1 in T and $z \in V_{2}$ is the root of T. Other edges $\overrightarrow{-1 x^{\prime}}$ can not be replaced.
(iii) Let r be the root of T. For a vertex $x \in V_{1}, x \neq 1$, and an edge $\overrightarrow{x y}$ we have:
(a) if 1 is not below y the tree $(T \backslash\{\overrightarrow{x y}\}) \cup\{\overrightarrow{1 y}\}$ precedes T.
(b) If 1 is below y and if r belongs V_{2}, we have that $(T \backslash\{\overrightarrow{x y}\}) \cup\{\overrightarrow{1 y}\}$ is before T.
(c) If $r \in V_{1}$ (recall that 1 is below $\left.y\right)$ we set $S=(T \backslash\{\overrightarrow{x y}\}) \cup\{\overrightarrow{y r}\}$. Then we have $d_{T}(1)=d_{S}(1), d_{T}(-1)=d_{S}(-1), h_{T}(1)>h_{S}(1)$ and therefore the tree S precedes T.
So, any of the considered edges $\overrightarrow{x y}$ is contained in $\mathcal{R}(T)$.
A similar analysis shows that an edge $\overrightarrow{x y}$, where $x \in V_{2}, x \neq-1$, is contained in $\mathcal{R}(T)$ except when x is the root of $T,-1$ is below y and 1 is not below y.

From the above remarks we have that for a directed tree T

$$
\begin{equation*}
\operatorname{type}(T)=m+n-1-d_{T}(1)-d_{T}(-1) \tag{3.1}
\end{equation*}
$$

except for the following trees:
(A1) Trees in which the root r belongs to V_{2} and the vertex 1 is below of -1 . The type of a such tree T is $\operatorname{type}(T)=m+n-d_{T}(1)-d_{T}(-1)$.
(A2) Trees in which the root $r \in V_{2}, r \neq-1$, there exists an edge $\overrightarrow{r x} \in E(T)$ such that -1 is below x and 1 is not below x. The type of this tree is $\operatorname{type}(T)=m+n-d_{T}(1)-d_{T}(-1)-2$.
Now, we count the number of trees in $\Delta\left(\vec{K}_{m, n}\right)$ with given $d_{T}(1)+d_{T}(-1)$. Let $\left\{\{r\}, C_{1}, C_{2}\right\}$ be the set of sequences of vertices associated to a tree $T(r$ is the root of T) in Remark 3.1. We set

$$
p=\left|\left\{x \in C_{1}: x \neq-1\right\}\right|, \quad q=\left|\left\{y \in C_{2}: y \neq 1\right\}\right| .
$$

From Remark 3.1 we obtain that there are

$$
\begin{array}{r}
(m+n-2) \sum_{p+q=k-1}\binom{m-1}{p}(n-1)^{p}\binom{n-1}{q}(m-1)^{q} \\
+2 \sum_{p+q=k}\binom{m-1}{p}(n-1)^{p}\binom{n-1}{q}(m-1)^{q}
\end{array}
$$

directed trees in $\vec{K}_{m, n}$ such that $d_{T}(1)+d_{T}(-1)=m+n-1-k$. Note that the summands in the second row correspond with the trees in which the root is 1 or -1 . From the relation 3.1 we have that all of these trees are of the type k, except the trees described in (A1) and (A2).

The remaining trees of $\overrightarrow{K_{m, n}}$ of the type k are all
(B1) trees described in (A2) in which $d_{T}(1)+d_{T}(-1)=m+n-2-k$; or
(B2) trees described in (A1) in which $d_{T}(1)+d_{T}(-1)=m+n-k$.
Let T be a directed tree as considered in $(B 1)$. If $\overrightarrow{r y}$ is the first edge on the path from r to 1 , then $T^{\prime}=(T \backslash\{\overrightarrow{r y}\}) \cup\{-\overrightarrow{1 y}\}$ is a tree as described in $(A 1)$. Note that the map $T \mapsto T^{\prime}$ is an injection, and all trees described in $(A 1)$ are contained in the image of this map except the trees whose root is -1 . From Remark 3.1 it follows that there are

$$
\sum_{p+q=k}\binom{m-1}{p}(n-1)^{p}\binom{n-1}{q}(m-1)^{q}
$$

trees with -1 as the root and $d_{T}(1)+d_{T}(-1)=m+n-1-k$, which should be subtracted while calculating $h_{k}\left(\Delta\left(\vec{K}_{m, n}\right)\right)$.

Further, if T is a tree described in (A2), and $\overrightarrow{r x}$ is the first edge of the path from r to 1 , then $T^{\prime}=(T \backslash\{\overrightarrow{r x}\}) \cup\{-\overrightarrow{1 x}\}$ is a tree as in (B2). This map is an injection, and a tree from $(B 2)$ is not in the image of this map if and only if its root is -1 .

There are

$$
\sum_{p+q=k-1}\binom{m-1}{p}(n-1)^{p}\binom{n-1}{q}(m-1)^{q}
$$

trees with -1 as the root and $d(1)+d(-1)=m+n-k$ that should be added when determining $h_{k}\left(\Delta\left(\vec{K}_{m, n}\right)\right)$.

From the above theorem we obtain that the generating facets for $\Delta\left(\vec{K}_{m, n}\right)$ are:
(i) All directed trees of $\vec{K}_{m, n}$ in which the vertices 1 and -1 are leaves and the root of such a tree is a vertex contained in V_{1}.
(ii) All directed trees of $\vec{K}_{m, n}$ in which the root is from V_{2}, the vertex 1 is a leaf below -1 , and the out-degree of the vertex -1 in such a tree is one.
Corollary 3.1. The complex $\Delta\left(\vec{K}_{m, n}\right)$ is homotopy equivalent to a wedge of $(m+n-1)(m-1)^{n-1}(n-1)^{m-1}$ spheres of dimension $m+n-2$.

Theorem 3.2. The complex $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$ is homotopy equivalent to a wedge of $(n-1)^{k-1}\left(n-n_{1}-1\right)^{n_{1}-1}\left(n-n_{2}-1\right)^{n_{2}-1} \cdots\left(n-n_{k}-1\right)^{n_{k}-1}$ spheres of dimension $n-2$.

Proof. We use a shelling of $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$ described in Theorem 2.1 to recognize generating faces. These are
(A) directed trees in which the vertex 1 is a leaf, and there does not exist an edge $\overrightarrow{-1 v}$, for a vertex $v \in V_{1}$
except the tress of the above form in which
$\left(A_{1}\right)$ the root is a vertex $v_{2} \in V_{2}$, there is an edge $\overrightarrow{v_{2} v_{1}}$ for a vertex $v_{1} \in V_{1}$, the vertex -1 is below v_{1}, and 1 is not below v_{1}; and
$\left(A_{2}\right)$ the root is a vertex $v_{1} \in V_{1}$ and the leaf 1 is below -1 .
Generating facets of $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$ are also:
(B) directed trees in which the root is a vertex $r \in V \backslash V_{1}$, there is only one edge of the form $-1 v_{1}$ for a vertex $v_{1} \in V_{1}$ and 1 is a leaf below v_{1}.
Now, we define a map between a subset of the trees of the type (B) and directed trees of type $\left(A_{1}\right)$ or $\left(A_{2}\right)$. If T is a tree of the type (B) with the root $r \in V \backslash V_{1}$ and $-1 \rightarrow v_{1} \rightarrow x \rightarrow y \rightarrow \cdots \rightarrow 1$ is the unique path from -1 to 1 , then
$T^{\prime}=T \backslash\left\{\overrightarrow{-1 v_{1}}, \overrightarrow{v_{1} x}\right\} \cup\left\{\overrightarrow{x v_{1}}, \overrightarrow{v_{1} r}\right\}$ is a tree of type A_{1} if $x \in V_{2}$,
$T^{\prime \prime}=T \backslash\left\{\overrightarrow{-1 v_{1}}, \overrightarrow{v_{1} x}\right\} \cup\left\{\overrightarrow{-1 x}, \overrightarrow{v_{1} r}\right\}$ is a tree of type A_{2} if $x \in V \backslash\left(V_{1} \cup V_{2}\right)$.
The above map is a bijection that exhausts all trees of type (B) except the trees in which $\overrightarrow{-11}$ is an edge. Therefore, in order to estimate the number of the generating simplices of $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$ we have to count directed trees in $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$ in which
${ }^{(*)} 1$ is a leaf, there are no other edges of the form $\overrightarrow{-1 v}$, for a vertex $v \in V_{1}$; or
$\left.{ }^{* *}\right) 1$ is a leaf, $\overrightarrow{-11}$ is an edge, there are no other edges of the form $\overrightarrow{-1 v}$, for a vertex $v \in V_{1}$, and the root is a vertex $r \in V \backslash V_{1}$.

From Remark 3.1 we obtain that the code of a tree described in $\left(^{*}\right)$ or $\left({ }^{* *}\right)$ does not contain label -1 in the sequences C_{0} at the place reserved for the deepest vertex of V_{1}. Also, a tree described in $\left(^{*}\right)$ does not contain -1 in the sequence C_{1}. For a tree described in $\left({ }^{* *}\right)$ the vertex -1 appears in C_{1} only in the first place, and the last entry of C_{0} (the root of such a tree) is not from V_{1}. Therefore, in the code of such a tree there exists $v \in V \backslash V_{1}$ that appears in C_{0} as $U\left(v_{1}^{\prime}\right)$. We replace this vertex v with -1 and obtain the bijection between generating simplices of $\Delta\left(\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}\right)$ and directed trees of $\vec{K}_{n_{1}, n_{2}, \ldots, n_{k}}$ in which -1 does not occur in C_{1} and 1 does not occur at all. For a tree described in $\left(^{*}\right)$ the code remains unchanged. The number of these trees is

$$
(n-1)^{k-1}\left(n-n_{1}-1\right)^{n_{1}-1}\left(n-n_{2}-1\right)^{n_{2}-1} \cdots\left(n-n_{k}-1\right)^{n_{k}-1}
$$

References

1. A. Björner, Topological methods, in: R. L. Graham, M. Grötschel, and L. Lovász (eds.), Handbook of Combinatorics, Elsevier, Amsterdam, 1995, 1819-1872.
2. A. Björner and M. L. Wachs, Shellable nonpure complexes and posets I, Trans. Amer. Math. Soc. 348(4) (1996), 1299-1327.
3. M. K. Chari and M. Joswig, Complexes of discrete Morse functions, Discrete Math. 302(1-3) (2005), 39-51.
4. A. Engström, Complexes of directed trees and independence complexes, Discrete Math. 309(10) (2009), 3299-3309.
5. G. H. Hurlbert, On encodings of spanning trees, Discrete Appl. Math. 155(18) (2007), 25942600.
6. D. N. Kozlov, Complexes of directed trees, J. Combin. Theory Ser. A 88(1) (1999), 112-122.
7. D. N. Kozlov, Directed trees in a string, real polynomials with triple roots, and chain mails, Discrete Comput. Geom. 32(3) (2004), 373-382.
8. J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA, 1984.
9. G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.

Department of Mathematics
(Received 1404 2012)
University of Banja Luka
Banja Luka
Bosnia and Herzegovina
ducci68@blic.net

[^0]: 2010 Mathematics Subject Classification: Primary 52B22 ; Secondary 05C20.
 Key words and phrases: shellability, directed trees, multipartite graph.

