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ON GAUSS–BONNET THEOREM

Jovo Jarić

Abstract. A very simple proof of the Gauss–Bonnet theorem is given in
invariant form, i.e., independent of the coordinate system of a surface.

The Gauss–Bonnet theorem is one of the most important theorem of the theory
of surfaces. This theorem is an example of differential geometry in the large. More-
over, it is analogous to Green’s theorem and can be obtained from this theorem
[1].

Theorem. Let S be a simple connected portion of a surface for which a repre-

sentation x(u1, u2) of class r > 3 exists and whose boundary C is a simple closed

curve which has a representation x(u1(s), u2(s)) of class r∗ > 2, where s is the

arc length of C. Let kg be the geodesic curvature of C and let K be the Gaussian

curvature of S. Then

(1)

∫

C

kgds +

∫∫

S

Kda = 2π,

where da is the element of area of C. The integration along C has to be carried out

in such direction that S stays on the left side.

The integral
∫∫

S
Kda occurring in the Gauss–Bonnet theorem is called the

integral curvature of a surface under consideration [2].
The proof of the theorem can be found in every good book on differential

geometry. There are many different approaches to the proof. The proof is simplified
by the use of special coordinate systems uα, α = 1, 2, on the surface S. But then
the invariant approach to the proof of the theorem is lost. Therefore it is desirable
to give the proof the theorem independently of the choice of coordinate system
on S. This gives the theorem the right sense to its invariant property. Here we
present an approach of this kind, so far unknown to me. For that purpose the
standard notation of tensor calculus of the surface S is applied: aαβ is the metric
tensor, a = det(aαβ), εαβ is the Ricci tensor of alternation; (· ), denote covariant
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derivative. The Greek indices α, β, . . . , indicate values from 1 to 2. The summation
over repeated indices is understood.

Further we shall require the following:
I. If λα and λα are the contravariant and covariant components of a unit vector,

one has λα
,βλα = λα,βλα = 0, from which it follows that

(2) λα
,β = µανβ , λα,β = µανβ ,

where µα is the vector perpendicular to the given vector λα, and νβ is a vector, [3].
Now, it is easy to show that

(3) εαβεγδλγ
,αλδ

,β = 0.

II. Next we have

(4) mα,βγ − mα,γβ = mδRδ
αβγ ,

where

(5) Rαβγδ = Kεαβεγδ

is the Riemann–Christoffel tensor. Then from (4) and (5) we have

(6) εβγmα,βγ = Kmγεγα.

III. From the Green theorem [4] we have

(7)

∮

Aαλα ds =

∫∫

S

εαβAβ,α da.

IV. Now, let C : uα = uα(s) and Ca : ϕ(u1, u2) = a be family of curves on
S; s is the arc length of C, and a is an arbitrary constant. Further, λα = duα/ds
denotes the unit tangent vector of C and mα = ϕ,α/| gradϕ| the unit vector normal

on Ca; | grad ϕ| =
√

aαβϕ,αϕ,β . We assume that C intersects with the family of
curves Ca. At the point of intersection the angle between C and Ca will be denoted
by θ.

We want to calculate the rate of change with respect to s along C of the angle θ.
This can be done making use of θ = π

2 − ϑ, where ϑ is the angle between the unit

vectors λα and mα at the point of intersection since then dθ
dt

= − dϑ
dt

. Obviously,

tan ϑ =
εαβλαmβ

aγδλγmδ

so that

dϑ

dt
=

δϑ

δs
= εαβ

δ

δs

(

εαβλαmβ
)

aγδλγmδ − εαβλαmβ δ

δs

(

aγδλγmδ
)

= εαβaγδ

(

δλα

δs
λγ − λα δλγ

δs

)

mβmδ + εαβaγδ

(

δmβ

δs
mδ − mβ δmδ

δs

)

λαλγ

= εαβaγδδαγ
στ

δλσ

δs
λτ mβmδ + εαβaγδδβδ

στ

δmσ

δs
mτ λαλγ

= aβδmβmδεστ

δλσ

δs
λτ − aγαλαλγεστ

δmσ

δs
mτ .
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Thus,
dϑ

ds
= εστ

δλσ

δs
λτ − εστ

δmσ

δs
mτ

and from this
dϑ

ds
= kg − εστ

δmσ

δs
mτ

since
δλσ

δs
= kgυσ and εστ υσλτ = −1. Hence,

(8)
dθ

ds
= kg + εστ

δmσ

δs
mτ .

Now we are ready to give the proof of the theorem.

Proof. From (8) we have
∮

dθ −
∮

kg ds =

∮

εστ δmσmτ =

∮

εστ mσ
,αmτ λα ds

where we make use of
δmα

δs
= mα

,̺λ̺.

But, in view of Green’s theorem (7), (2), (3) and (6),
∮

εστ mσ
,αmτ λα ds =

∫∫

S

εβα
(

εστ mσ
,αmτ

)

,β
da

=

∫∫

S

εβαεστ

(

mσ
,αβmτ + mσ

,αmτ
,β

)

da

= −
∫∫

S

Kmγεγσεστ mτ da =

∫∫

S

K da.

Thus,
∮

dθ −
∮

kgds =

∫∫

S

Kda

from which (1) follows. �

Of course the Gauss–Bonnet theorem can be formulated for more general cases,
for example for a simply-connected portion of a surface which is bounded by piece-
wise regular curves, but the procedure is the same. Then instead of (1) we have

(9)

∮

kg ds +

n
∑

i=1

(π − θi) +

∫∫

S

K da = 2π,

where θi are the corresponding exterior angles of C at the points of cusps. Usually
we make use of interior angles αi, i.e. of the relation αi = π − θi, so that we write
(9) as

(10) (n − 2)π +

∮

kg ds +

∫∫

S

K da =

n
∑

i=1

αi.
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Remark. The approach is a quite general one. For instance, in [3] it is assumed
that ϕ = uα = const, α = fixed (usually α = 2). Then ϕ,σ = δα

σ , |grad ϕ| =
√

aαα,

mσ =
1√
aαα

δα
σ =

√

a

aββ
δα

σ , (no sum over α, β 6= α). Then, from (8) we have

dθα

ds
= kgα

+ εστ δmσ

δs
mτ = kgα

+ εβα 1√
a

δmβ

δs
mα, (no sum over α, β).

But
δmβ

δs
=

dmβ

ds
− m̺Γ̺

βδ

duδ

ds
= −m̺Γ̺

βδ

duδ

ds
= −

√

a

aββ

Γα
βδ

duδ

ds

and hence
dθα

ds
= kgα

− εβα

√
a

aββ

Γα
βδ

duδ

ds
.

Particularly, for ϕ = u2 = const, from (10) we obtain

dθ2

ds
= kg2

−
√

a

a11
Γ2

1δ

duδ

ds
.

If ϕ = u2 = const is geodesic, then kg2
= 0 and

dθ2

ds
+

√
a

a11
Γ2

1δ

duδ

ds
= 0,

see [3, (32.14)].
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