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Abstract. Let α be an algebraic number with no nonnegative conjugates
over the field of the rationals. Settling a recent conjecture of Kuba, Dubickas
proved that the number α is a root of a polynomial, say P , with positive
rational coefficients. We give in this note an upper bound for the degree of
P in terms of the discriminant, the degree and the Mahler measure of α; this
answers a question of Dubickas.

1. Introduction

An element α of the set C of complex numbers is called an algebraic number if
it is a root of a nonzero polynomial with coefficients in the field of the rationals Q.
Among nonzero elements P of the ring Q[x] and satisfying the condition P (α) =
0, there is only one monic polynomial having the smallest possible degree; this
polynomial is called the minimal polynomial of α and is usually noted Minα. The
roots of Minα are the conjugates of α, and the degree of α is the degree of Minα.
In these pages, the notions of minimal polynomial, conjugates and degree of an
algebraic number are considered over Q.

In his study of some classes of algebraic numbers on the unit circle, Kuba [3]
considered the roots of polynomials with positive rational coefficients. A complex
number is said to be positively algebraic if it is a root of a polynomial, say P ,
with positive rational coefficients [3]. In fact (as it was signaled in [2] and [3]) we
may replace in this last definition the word positive by the sentence nonnegative
and such that P (0) �= 0, because the coefficients of the polynomial P (x)(1 + x +
· · · + xdeg(P )), where deg(P ) is the degree of P , are positive when the coefficients
of P are nonnegative and P (0) > 0. Clearly, a positively algebraic number is
an algebraic number, and none of its conjugates is a nonnegative real number.
Kuba conjectured that the converse of the last proposition is true, and verified
this conjecture for some particular cases, especially when α is quadratic or when
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the Galois group of the extension Q(α)/Q is isomorphic to the symmetric group
Sdeg(Minα) [3]. The question of Kuba did not remain open for a long time, since
Dubickas has shown that “an algebraic number with no nonnegative conjugates is
a root of a polynomial, say again P , with positive rational coefficients" [2]. At
the end of his paper, Dubickas has remarked that the proof of the last mentioned
proposition does not provide any estimation for the degree of P . In fact, replacing
the arguments of the distribution modulo 1, by a simple geometrical argument we
obtain the following result.

Theorem 1.1. Let α be an algebraic number with no nonnegative conjugates.
Then, there is a polynomial with positive rational coefficients, vanishing at α and
with degree less than

2dπ

arcsin
(|Δ| 1

2 d− d+3
2 M−d+1

) ,

where d, Δ and M are the degree, the discriminant, and the Mahler measure of α,
respectively.

Recall that if

Minα(x) =
∏

1�j�d

(x − αj) = xd + ad−1

bd−1
xd−1 + · · · + a0

b0
,

where the rational integers a0, . . . , ad−1, and the positive rational integers b0, . . . , bd−1
are so that the fractions ad−1

bd−1
, . . . , a0

b0
are irreducible, then

Δ = lcm(b0, . . . , bd−1)2d−2
∏

1�j<k�d

(αj − αk)2

and
M = lcm(b0, . . . , bd−1)

∏
1�j�d

max{1, |αj |}.

The proof of Theorem 1.1 appears in the last section and is based on two auxiliary
results, due essentially to Dubickas, and explained in the next section.

2. Two lemmas

The following result is an improvement of Lemma 2 of [2].

Lemma 2.1. Let ω = |ω|eiθ ∈ C − {0}, where i2 = −1, θ ∈ [
π

2n+1 , π
2n

[
and n

is a nonnegative rational integer. Then, there is T ∈ Q[x], with degree 2n+2 − 3
and such that the coefficients of the polynomial (x − ω)(x − ω̄)T (x), where ω̄ is the
complex conjugate of ω, are positive.

Proof. The scheme of the proof is identical to the one of Lemma 2 of [2] with
minor modifications. We prefer to give some details of this proof. To simplify the
notation set m = 2n. Then, ωm = |ω|meimθ, π

2 � mθ < π, |ω|2m > 0, cos mθ � 0
and the coefficients of the polynomial

(xm − ωm)(xm − ω̄m) = x2m − 2|ω|m(cos mθ)xm + |ω|2m,
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are nonnegative real numbers. A simple calculation shows that the coefficients of

(xm − ωm)(xm − ω̄m)
2m−1∑
k=0

xk

are positive. For z ∈ C let

Tz(x) := (xm − zm)(xm − z̄m)
(x − z)(x − z̄)

2m−1∑
k=0

xk.

Then, the coefficients of the polynomial Tz are real,

Tz(x) = (xm−1 + zxm−2 + · · · + zm−1)(xm−1 + z̄xm−2 + · · · + z̄m−1)
2m−1∑
k=0

xk

and deg(Tz) = 2n+2 −3. For each k ∈ {0, . . . , 2n+2 −3} let ck(z) be the “coefficient"
function defined by the identity

Tz(x) =
∑

0�k�2n+2−3

ck(z)xk.

Since the complex conjugation is a continuous map on C, then so is each function
ck; in particular we have limz→ω ck(z) = ck(ω), and the coefficients of

(x − ω)(x − ω̄)Tz(x)
are positive when z is close to ω. Finally, as the set Q(i) = {a + ib, (a, b) ∈ Q2}
is dense in C, and Tz(x) ∈ Q[x] when z ∈ Q(i), it is enough to choose z in an
appropriate neighborhood of ω in C which meets Q(i), and T the corresponding
polynomial Tz. �

The following lemma is a corollary of a theorem of [1]. In [4], Mignotte obtained
a slight improvement of this result.

Lemma 2.2. Let ω be a nonreal algebraic number. Then

|ω − ω̄| � 2|ω| |Δ| 1
2

d
d+3

2 Md−1
,

where d, Δ and M are the degree, the discriminant and the Mahler measure of ω,
respectively.

Proof. See [1]. �

3. Proof of Theorem 1.1

Let {α1, . . . , αr} and {αr+1, αr+1, . . . , αr+s, αr+s} be a partition of the set of
the conjugates of α, where the first subset is real (if it is not empty) and the second
one does not meet the real line. It is clear that r � 0, s � 0, r + 2s = d and the
numbers α1, . . . , αr are negative. Let

Minα(x) = (x − α1) . . . (x − αr)
s∏

j=1
(x − αj+r)(x − αj+r),
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where αj+r = |αj+r | eiθj for j ∈ {1, . . . , s}, and 0 < θ := θ1 � . . . � θs < π when
s � 1. We want to show that there is a multiple, say Q, of Minα with positive
rational coefficients and degree at most Cαd, where

Cα = 2π

arcsin
(|Δ| 1

2 d− d+3
2 M−d+1

) − 1
2

<
2π

arcsin
(|Δ| 1

2 d− d+3
2 M−d+1

) .

As a finite product of polynomials with nonnegative coefficients is also a polynomial
with nonnegative coefficients, we obtain immediately that the coefficients of Minα

are nonnegative when θ � π
2 , because

(x − αj+r)(x − αj+r) = x2 − 2|αj+r|(cos θj+r)x + |αj+r |2

and cos θj+r � 0 for each j ∈ {1, . . . , s}. It follows that the polynomial

Q(x) := Minα(x)(1 + x + · · · + xd−1),

has positive rational coefficients, and satisfy Q(α) = 0. From the trivial inequality
arcsin

(|Δ| 1
2 d− d+3

2 M−d+1)
� π

2 , we have Cαd � 7
2 d > deg(Q) = 2d − 1, and so

Theorem 1.1 is true. Now, suppose θ < π
2 , and let t be the largest rational integer

satisfying θt < π
2 . For each j ∈ {1, . . . , t} let nj be the largest rational integer

satisfying

(3.1) θj <
π

2nj
.

Then

(3.2) n := n1 � · · · � nt

and θj � π
2nj +1 , for each j ∈ {1, . . . , t}. Lemma 2.1 asserts that there is Tj(x) ∈ Q[x]

with degree 2nj+2 − 3 and such that the coefficients of the polynomial (x − αj+r) ×
(x − αj+r)Tj(x) are positive. Set

Q(x) := (x−α1) · · · (x−αr)
( t∏

j=1
(x−αj+r)(x−αj+r)Tj(x)

) s∏
j=t+1

(x−αj+r)(x−αj+r).

Then, the coefficients of Q are positive, Q(x) = Minα(x)
∏t

j=1 Tj(x) ∈ Q[x], and
deg(Q) = d +

∑t
j=1(2nj+2 − 3). It follows by the relation (3.2) that

(3.3) deg(Q) � d +
t∑

j=1
(2n+2 − 3) � d +

s∑
j=1

(2n+2 − 3) � 2n+1d − d

2
,

since t � s � d
2 . By Lemma 2.2 we have

|α1+r − α1+r| = 2|α1+r| sin θ � 2|α1+r| |Δ| 1
2

d
d+3

2 Md−1
,

and so

θ � arcsin
( |Δ| 1

2

d
d+3

2 Md−1

)
.
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The last inequality together with the relation (3.1) (with j = 1) yield

2n+1 <
2π

arcsin
(|Δ| 1

2 d− d+3
2 M−d+1

) ,

and the result follows immediately by (3.3).
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