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ABSTRACT. We extend the notion of generalized ¢-recurrent S-Kenmotsu man-
ifold and study its various geometric properties with the existence of such
notion.

1. Introduction

In 1972 Kenmotsu [§] introduced a new class of almost contact Riemannian
manifolds which are nowadays called Kenmotsu manifolds. It is well known that
odd dimensional spheres admit Sasakian structures whereas odd dimensional hy-
perbolic spaces can not admit Sasakian structure, but have so-called Kenmotsu
structure. Kenmotsu manifolds are normal (noncontact) almost contact Riemann-
ian manifolds. Kenmotsu [8] investigated fundamental properties on the local
structure of such manifolds. Kenmotsu manifolds are locally isometric to warped
product spaces with one dimensional base and Kahler fiber. As a generalization
of both Sasakian and Kenmotsu manifolds, Oubifia [9] introduced the notion of
trans-Sasakian manifolds, which are closely related to the locally conformal K&hler
manifolds. A trans-Sasakian manifold of type (0,0), (a,0) and (0, 3) are respec-
tively called the cosympletic, a-Sasakian and [-Kenmotsu manifold, «, 3 being
scalar functions. In particular, if « =0, § = 1; and « = 1, § = 0, then a trans-
Sasakian manifold will be a Kenmotsu and Sasakian manifold respectively. As 3
is a scalar function, S-Kenmotsu manifolds provide a large varieties of Kenmotsu
manifolds.

The notion of local symmetry of Riemannian manifolds has been weakened
by many authors in several ways to a different extent. As a weaker version of
local symmetry, Takahashi [14] introduced the notion of local ¢-symmetry on a
Sasakian manifold. Generalizing the notion of local ¢-symmetry of Takahashi [14],
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De et al. [3] introduced the notion of ¢-recurrent Sasakian manifold. Recently De
et al. [4] introduced the notion of ¢-recurrent Kenmotsu manifolds. The locally
¢-symmetric LP-Sasakian manifold is also studied by Shaikh and Baishya [11].
Again locally ¢-symmetric and locally ¢-recurrent (LC'S),-manifolds are respec-
tively studied in [12] and [13].

The notion of generalized recurrent manifolds has been introduced by Dubey [7]
and studied by De and Guha [5]. Again, the notion of generalized Ricci-recurrent
manifolds has been introduced and studied by De et al. [6]. A Riemannian manifold
(M™,g),n > 2,is called generalized recurrent |5} [7] if its curvature tensor R satisfies
the condition

(1.1) VR=A®R+B®G,

where A and B are nonvanishing 1-forms defined by A(:) = g(-, p1), B(:) = g(, p2)
and the tensor G is defined by

(1.2) G(X,Y)Z = g(Y, 2)X — g(X, 2)Y

forall X, Y, Z € x(M); x(M) being the Lie algebra of smooth vector fields on M
and V denotes the operator of covariant differentiation with respect to the metric
g. The 1-forms A and B are called the associated 1-forms of the manifold.

A Riemannian manifold (M™, g),n > 2, is called generalized Ricci-recurrent [6]
if its Ricci tensor S of type (0,2) satisfies the condition V.S = A® S+ B® g, where
A and B are non-vanishing 1-forms defined in (I]).

In 2007, Ozgiir [10] studied generalized recurrent Kenmotsu manifolds. Gener-
alizing the notion of Ozgiir [L0], recently Basari and Murathan [1] introduced the
notion of generalized ¢-recurrent Kenmotsu manifolds. Extending the notion of
Basari and Murathan [I], we here introduce the notion of extended generalized ¢-
recurrent B-Kenmotsu manifolds. The paper is organized as follows. Section 2 deals
with a brief account of f-Kenmotsu manifolds. In Section 3, we study extended
generalized ¢-recurrent S-Kenmotsu manifolds and we obtain a necessary and suf-
ficient condition for such a manifold to be a generalized Ricci-recurrent manifold.
We also study extended generalized concircularly ¢-recurrent S-Kenmotsu mani-
fold and obtain the nature of its associated 1-forms. Finally, the last section deals
with an example for the existence of extended generalized ¢-recurrent S-Kenmotsu
manifolds.

2. Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be an almost contact
metric manifold [2] if it admits an (1,1) tensor field ¢, a vector field £, an 1-form
7 and a Riemannian metric g, which satisfy

(2.1) (a) ¢€=0, (b) n(@X)=0, (c) ¢"X =X +n(X)E,
(2.3) (¢X,0Y) = g(X,Y) = n(X)n(Y)

for all X, Y € x(M). An almost contact metric manifold M2"+1(¢, &, 7, g) is said
to be a B-Kenmotsu manifold if the following conditions hold [8]:
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(2.4) Vx&=pB[X —n(X)¢],
(255) (Vxo)(Y) = Blg(6X,Y)E = n(Y)pX].
If 3 = 1, then a S-Kenmotsu manifold is called a Kenmotsu manifold; and if g

is constant, then it is called a homothetic Kenmotsu manifold. In a S-Kenmotsu
manifold, the following relations hold [8}, [9]:

(2.6) (Vxn)(Y) = Bg(X,Y) - ( )n(Y)]
(2.7) R(X,Y)¢ = -2 [n(Y)X — n(X)Y]
+(X/3>{Y—n< )&h — (YB{X —n(X)¢},
(2.8) R(&, X)Y = [B°+ (¢B)] [n(Y)X — g(X,Y)¢],
(2.9) N(R(X,Y)Z) = B*[n(Y)g(X, Z) = n(X)g(Y, 2)]
— (XB){9(Y, Z) = n(Y)n(Z)}
+ (YB){g(X, Z) = n(Z)n(X)},
(2.10) S(X,€) = —{2n8% + (£B)}n(X) — (2n — 1)(XB),

(2.11) S(€,€) = —{2np” + (€8)}

forall X, Y, Z € x(M).
We now state and prove some basic results in a S-Kenmotsu manifold which
will be frequently used later on.

LEMMA 2.1. Let M*"t1(¢,&,n,g) be a B-Kenmotsu manifold. Then for any
vector fields X, Y, W the following relation holds:

(VwR)(X,Y)E = =28(WB){n(Y)X —n(X)Y} - B*{g(Y,W)X — g(X, W)Y}

— BR(X, Y)W
(2.12) +B(XB) [ = gV, W)E +n(Y)n(W)E = n(Y)W + n(W)Y]
= BYB)[ = (X, W)E + (X )n(W)E — (X)W + (W) X].
PRroOOF. By virtue of (Z4), (26) and (27)) we can easily get (Z12). O
LEMMA 2.2. In a Riemannian manifold (M™, g) the following relation holds:
(2.13) g(VwR)(X,Y)Z,U) = —g((VwR)(X,Y)U, Z)
for all vector fields X, Y, Z, W, U € x(M).
PROOF. . It is easy to prove (ZI3) and hence we omit the proof. O

3. Extended generalized ¢-recurrent 3-Kenmotsu manifolds

DEFINITION 3.1. A -Kenmotsu manifold M2 (¢, & 1, g), n > 1, is said to
be an extended generalized ¢-recurrent B-Kenmotsu manifold if its curvature tensor
R satisfies the relation

(3.1) *(VwR)(X,Y)Z) = AW)¢*(R(X,Y)Z) + BW)$*(G(X,Y)Z)
forall X,Y, Z, W € x(M), where V denotes the operator of covariant differentiation
with respect to the metric g, i.e., V is the Riemannian connection; A and B are
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nonvanishing 1-forms such that A(X) = ¢g(X,p1), B(X) = g(X,p2) and G is a
tensor of type (1,3) defined in (I.2)). The 1-forms A and B are called the associated
1-forms of the manifold.

We consider a 8-Kenmotsu manifold M2 +1(¢, €, n, g), n > 1, which is extended
generalized ¢-recurrent. Then by virtue of (Z1)), (B1)) yields

(3.2) (VwR)(X,Y)Z =n((VwR)(X,Y)Z)¢
+ AW)[R(X,Y)Z — n(R(X,Y)Z)¢]
+BW)[G(X,Y)Z —n(G(X,Y)Z)¢],
from which it follows that
(3:3) ((vWR> (X,Y)Z,U) =n((VwR)(X,Y)Z)n(U)
AW)[g(R(X,Y)Z,U) —n(R(X,Y)Z)n(U)]
BW)[9(G(X,Y)Z,U) —n(G(X,Y)Z)n(U)].

Let {e;: i =1,2,---,2n+ 1} be an orthonormal basis of the tangent space at any
point of the manifold. Setting X = U =¢; in (33)) and taking summation over i,
1 <i<2n+1, and then using (Z.8]), we obtain

(3.4) (VwS)(Y,Z) = g((VwR)(&,Y)Z,€)
= AW)[S(Y, 2) +{B° + (/) Hy(Y. Z) — n(Y )n(Z)}]
+B(W)[(2n - 1g(Y, Z) +n(Y)n(2)].
Using (Z9) and (ZI3), we get
35  g(VwR)(&Y)Z,&) = 28(WB) [n(Y)n(Z) — g(Y, Z)]
= B[(YB) = (€8)n(Y)] [9(W, Z) — n(W)n(Z)].
By virtue of 1)), it follows from ([B4]) that
(3.6) (VwS)(Y,Z)=AW)S(Y, 2)
+[2n = 1)B(W) = 28(W5) + AW){5* + (£8)}]9(Y. 2)
+ [28(WB) = AW){B* + (£8)} + BOV)|n(Y)n(Z)
= B{YB) = n(Y)(€R)} g(W, Z) — n(W)n(Z)].

From (B.6)), it follows that an extended generalized ¢-recurrent S-Kenmotsu mani-
fold is a generalized Ricci-recurrent manifold if and only if

3.7) [26(WB) — AW){B* + (¢6)} + BW)|n(Y)n(Z)
—B{YB) = n(Y)(€B)} [g(W. Z) = n(W)n(Z)] = 0.
This leads to the following:

THEOREM 3.1. An extended generalized ¢-recurrent 3-Kenmotsu manifold
M+ (¢, € n,9), n > 1, is generalized Ricci-recurrent if and only if the relation

B2 holds.
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Setting Z = ¢ in (3.2), we obtain
(3.8) (VwR)(X,Y)§ = AW)R(X,Y)E + B(W)G(X, Y)E.
By virtue of (7)) and (L2)), it follows from (3.8) that
(39)  (VwR)(X,Y)¢ = [BW) = B2AW)]{n(Y)X —n(X)Y}
+AW) [(XB{Y —n(Y)e} — (VA{X —n(X)&}].
From (ZI2) and (33, we obtain
(3.10) BROX, Y)W = —5*{g(Y, W)X — g(X, W)Y}
+BXB)[ = gV, W) +n(Y)n(W)E = n(¥)W +n(W)Y]

— BYB)[ = g(X, W)E + n(X)n(W)E — (X)W +n(W)X]
+ {52A(W) BW) =28(WB)Hn(Y)X —n(X)Y'}
AW)[(XBHY —n(YV)E} — (YB{X — n(X)EY].

This leads to the following:

THEOREM 3.2. In an extended generalized ¢-recurrent 5-Kenmotsu manifold
Mt (¢, € n,9), n > 1, the curvature tensor is of the form of (B.10).

From (BI0), we have
BR(X,YW,U) = —B*{g(Y, W)g(X,U) - g(X, W)g(Y, U)}

+BXB) [{—g(Y, W) + (Y )n(W)}n(U) = n(Y)g(W,U) + n(W)g(Y,U)]
(3.11) = BYB) [{-g(X, W) +n(X)n(W)}n(U ) N(X)g(W.U) +n(W)g(X,U)]

+{B2AW) = B(W) = 28(WB) H{n(Y)g(X,U) —n(X)g(Y,U)}
— AW [(XB){g(Y.U) = n(Y)n(U)} - (Yﬁ){g(K U) = n(X)n(U)}],
where R(X,Y,W,U) = g(R(X,Y)W,U). Setting X = U = ¢; in (3II) and taking
summation over ¢, 1 <17 < 2n 4+ 1, we get
(812)  BS(Y,W) = —B{20A" + (€8)}g(Y, W)
— (40 + )BWB(Y) — (2n — 1)Bn(W)(Y )
+ AW ({208 + EA)IN(Y) + (20 — 1)(YB)]
—2mBW)n(Y) + BEBNY In(W).

This leads to the following:

THEOREM 3.3. In an extended generalized ¢-recurrent 5-Kenmotsu manifold
MY (¢ €. n,g), n > 1, the Ricci tensor is of the form of ([B.12).

Replacing Y = ¢ in (B12) and then using (ZI0), we get
(3:13) (n+1BWB) + (n = 1)BELNW) —n{B? + (£8)}AW) +nB(W) = 0.
If 5 =1, then from (BI3]), we can state the following:

COROLLARY 3.1. In an extended generalized ¢-recurrent Kenmotsu manifold
M+ (¢, € n,9), n > 1, the 1-forms A and B are equal.
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Again by virtue of Corollary 3.1, it follows from ([BI2) that
(3.14) SY,W)=—-2ng(Y,W).
Thus we can state the following:

COROLLARY 3.2. FEvery extended generalized ¢-recurrent Kenmotsu manifold
M* (¢, € n,9), n > 1, is an Einstein manifold.

Also, if 8 =1, then from BI0), we get
(3.15) R(X, Y)W = {A(W) = BW)H{n(Y)X —n(X)Y}
—{gY, W)X —g(X, W)Y}
So, by virtue of Corollary 3.1, it follows from [B.I3]) that
RX, Y)W =—{g(Y, W)X —g(X,W)Y}.
This leads to the following:

COROLLARY 3.3. An extended generalized ¢-recurrent Kenmotsu manifold
M+ (¢, € m,9), n > 1, is of a constant curvature —1.

Changing W, X,Y cyclically in (B:2]) and adding them, we get by virtue of the
Bianchi identity that
(3.16)
AW)[R(X,Y)Z-n(R(X,Y)Z)]+B(W)[G(X,Y)Z-n(G(X,Y)Z)¢]
+AX) [R(Y,W)Z—n(R(Y,W)Z)¢]+B(X)[G(Y,W)Z—0(G(Y,W)Z)¢]
+AY)[R(W, X)Z —n(R(W, X)Z)¢]+B(Y)[G(W. X)Z—n(G(W, X) Z)¢] = 0.
Taking the inner product on both sides of (BI6]) by U and then contracting over
Y and Z, we obtain

(3.17)  AW)[S(X,U) + {208 + (£6)}n(X)n(U) + (2n — 1)(XB)n(U)]

)

+2nB(W)[g(X,U) —n(X)n(U)]

—AX)[SW,U) + {2n8% + (£8)}n(W)n(U) + (2n — 1)(WB)n(U)]

—2nB(X) [g(W,U) = n(W)n(U)] — ( ( . X)U)

—B*{n(X )—n( VJAX) Jn(U) + (WB){AX) = n(X)A(E) }n(U)

Xﬂ {A —n(W)A) }n(U) + B(X)[g(W, ) (W)TI(U)]
—B(W)[g(X,U) = n(X)n(U)] =

By virtue of (812)), it follows from [BI7) that
(3.18)  A(W)[— 5{4nBUB) + (U(£B))}In(X) — {2nf° + (€8)}9(X, V)
+3AU{2n° + (€6)In(X) + 5(2n — DAU)(XB)
—52nB(U)n(X) + {2n5 + (£8)n(X)n(U)]
+2nB(W)[g(X,U) — n(X)n(U)]
—AX)[ = {4nBUB) + (U(ER)}n(W) — {2n° + (£6)}9(W,U)
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(WnB)
W)n(U)]

+5AU){2nB% + (€6)}n(W) + 5 (2n — 1)A(U)
—52nB(U)n (W)+{2n52 + (€8)}n(W)n(U)
—2nB(X)[g(W,U) = n(W)n(U)] — A(R(W, X)U)

=B{n(X)AW) = n(W)AX)}n(U) + (WH{AX) = n(X)A(§)}n(U)
)
)

(
—(XBH{AW) = n(W)AE)n(U) + B(X)[g(W.U) = n(W)n(U)]
~B(W)[g (X U) = n(X)n(U)] =
Setting X = U = ¢ in (BI1), we get by virtue of [22) and (27 that
(3.19) [4nB(€8) + (£(£8)) — {2n5° + (£B)}A(E) + 2nB(E)] [A(W) — n(W) A(€)]
= (2n = DA [AW)(EB) — A()(WB)].

If the vector fields € and p; are co-directional, then we have

(3.20) AGW) = AE)n(W).
From [BI9) and B20) it follows that
(3.21) AW)(EB) — A(§)(WB) = 0.

Conversely, if the relation (B2I)) holds, then (BI9) yields (320) provided that
(3.22) AnB(ER) + (£(¢8)) — {2n8° + (£6)}A(E) +2nB(€) # 0.

Thus we can state the following;:

THEOREM 3.4. Let M?"*1(¢,€,m,9), n > 1, be an extended generalized ¢-
recurrent 3-Kenmotsu manifold satisfying the condition B22). Then & and p1 are
co-directional if and only if B2ZI) holds.

DEFINITION 3.2. A -Kenmotsu manifold M?"*1(¢,&,n,g), n > 1, is said to
be an extended generalized concircularly ¢-recurrent B-Kenmotsu manifold if its
concircular curvature tensor C satisfies the relation

(323)  P*(VwO)(X,Y)Z)=AW)¢*(C(X,Y)Z)+ BW)¢*(G(X,Y)Z),

where A and B are nonvanishing 1-forms defined in (3IJ), V denotes the operator
of covariant differentiation with respect to the metric g i.e., V is the Riemannian
connection, and the concircular curvature tensor C' of type (1, 3) is given by [15]

(3.24) C(X,Y)Z = R(X,Y)Z — m G(X,Y)Z,

where r is the scalar curvature of the manifold.

Let us consider an extended generalized concircularly ¢-recurrent S-Kenmotsu
manifold M?" (¢, &,m,9), n > 1. Then by virtue of (ZI)), it follows from (3:23)
that

(3.25) (VwO)(X,Y)Z = n((VwO)(X,Y)Z)¢
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from which it follows that

(3.26)  g((VwO)(X,Y)Z,U) —n(( O) X, Y)Z)n(U)
W) [g( C Y)Z,U) = n(C(X,Y)Z)n(U)]
W) [9(G(X,Y)Z,U) = n(G(X,Y)Z)n(U)].
Taking contraction of (3.28) over X and U, we get
dr(W)

(3.27) (VwS)(Y, Z) - 9(Y,Z2) = g(VwC)(& Y)Z,¢€)

——g(¥,2) —n(C(&,Y)2)]
]

2n+1
= AW)|S(v, 2) -

2n+1
+B(W)[(2n —1)g(Y, Z) +n(Y)n(Z)

In view of (3:24) and (B.5), we get
(328)  g((VwO)EV)Z.8) = [260V8) + 3 0|l in2) - (v, 2)]

—Bl(YB) = (8)n(YV)] [9(W, Z) — n(W)n(Z)].
Also from 324) and (29), we get
(329)  WCEN) = [ +E)+ 55—

Using (B28)) and (329) in (321), we obtain
(VwS)(Y,Z) = AW)S(Y, Z)

+[(2n = 1)BW) - 28Wp)
oo V) AV + AV + €9} o0%: )

dr(W)

| n(z) = 9(v, 2)):

(3.30) + [25(Wﬁ) * oyt HEW)

= AW B+ (€9) + 555 | n(2)
= Bl(YB) = (€B)n(YV)] [9(W, Z) = n(W)n(Z)].
From ([330), we can state the following;:

THEOREM 3.5. An extended generalized concircularly ¢-recurrent 5-Kenmotsu
manifold M*" (¢, &, m,9), n > 1, is generalized Ricci-recurrent if and only if the
following relation holds:

2600 5)+ s = AW F+68) + s |+ BOV) [0V 2)

(3.31) —B[(YB) = (€B)n(Y)] [g(W, Z) = n(W)n(Z)] = 0.
Setting Y = Z =¢ in (BBIII) and using (2.11)), we get

(3.32) {2n52 (€B) + czi;(—li/ i

] A(W)=2nB(W) =

" HAnB(W B)+(W (¢5)).
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This leads to the following:

THEOREM 3.6. In an extended generalized concircularly ¢-recurrent [5-Ken-
motsu manifold M?"*1(¢,€,m,9), n > 1, the 1-forms A and B are related by the

relation (332).

COROLLARY 3.4. In an extended generalized concircularly ¢-recurrent Ken-
motsu manifold M?" (¢, €,m,9), n > 1, the 1-forms A and B are related by the
relation

r _dr(W)
2n +1 S 2n4 1

COROLLARY 3.5. In an extended generalized concircularly ¢-recurrent Ken-
motsu manifold M*"T1(p,€,m,g), n > 1, with constant scalar curvature, the asso-
ciated 1-forms A and B are related by A = kB, where k is a nonzero constant.

[2n + }A(W) — 2uB(W)

4. Example of extended generalized
¢-recurrent B-Kenmotsu manifolds

We consider a 3-dimensional manifold M = {(z,y,2) € R3 : 2z # 0}, where
(7,1, z) are the standard coordinates of R®. Let {E;, F2, E3} be a linearly inde-
pendent global frame on M given by

E1222%7 EQZZQ%, E3:%
Let g be the Riemannian metric defined by g(E1, E3) = g(E2, Es) = g(F1, E2) =0,
g(E1, E1) = g(E2, Es) = g(Es, E3) = 1. Let n be the 1-form defined by n(U) =
g(U, Es) for any U € x(M). Let ¢ be the (1, 1) tensor field defined by ¢E; = —E»,
¢FE> = Ey and ¢E3 = 0. Then using the linearity of ¢ and g we have n(Es) = 1,
$?U = —U+n(U)Es and g(oU, pW) = g(U, W) —n(U)n(W) for any U, W € x(M).
Thus for E3 =&, (¢,£,n,g) defines an almost contact metric structure on M.
Let V be the Riemannian connection of g. Then we have

[Ey,E] =0, [ByEs] = —%El, [, B3] = _EEQ.
Using the Koszul formula for the Riemannian metric g, we can easily calculate
Vi By = 2E;, Vi, Ey =0, Vi, Es = —2E),
Ve, E1 =0, Vg, B = %E& Ve, B3 = _%EQ;
Ve, E1=0, Vi, Ey =0, Ve, B3 =0.

From the above it can be easily seen that (¢,&,7, g) is a 8-Kenmotsu structure on
M. Consequently M3(¢,€&,n,g) is a B-Kenmotsu manifold with 8 = —%. Using
the above relations, we can easily calculate the nonvanishing components of the

curvature tensor as follows:
4 4 6
R(E1, Es)Ey = ;E% R(Ey1, Es)Es = —Z—2E1, R(E1, E3)Ey = ;E?n

6 6 6
R(E:,E3)E3 = —z—zEl, R(E3,E3)Ey = §E37 R(E3,E3)E3 = —Z—QEQ-
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and the components which can be obtained from these by the symmetry properties.
Since {E1, Eo, E3} forms a basis of the S-Kenmotsu manifold, any vector field X,
Y, Z € x(M) can be written as

X =a1F1 +b1Ey+ c1E3,
Y =asF1 + boFEs + coFs,
Z = a3k +b3Es + c3E3,

where a;, b;, ¢; € RT (the set of all positive real numbers), ¢ = 1,2,3. Then
(4.1) R(X,Y)Z = — z%[z(ale ~ ash)bs + 3(ares — aper)es] By

+ Z%[z(albz — asby)ag — 3(brca — bacr)es) B

+ Z%[(mcz — azcy)ag + (biez — bacy)bs| Es,

(4.2) G(X, Y)Z = (a2a3 + bobs + 0263)(G1E1 + b1 By + ClEg)
— (a1a3 + b1bs + c1c3)(a2E1 + baEs + c2E3).
By virtue of (£I]) we have the following:

4 20
(43) (VEl R)(X, Y)Z = 2—3(517102 — bgcl)ngl + Z—3(a1b2 — agbl)ngg
4
_ ; [5(a1b2 — a2b1)03 -+ (5b102 — bgcl)ag] EQ,

20
(4.4) (Ve R)(X,Y)Z = = [(a1b2 — agb1)es — (arc2 — ager)bs) By

2
+ ;(alcQ —ascr)azEy — ;(aﬂb — asby)azEs,

4
(45) (VEJR)(X, Y)Z = ; [2(&1()2 — agbl)bg + 3(&162 — agcl)(}g] F4

4
— ; [2(&1()2 — agbl)ag — 3(b162 — bQCl)Cg] EQ

12
_ ; [(alcg — agcl)a3 —+ (blcg — bgcl)bg} FEs.

From (@I and ([@2), we get

(4.6) P*(R(X,Y)Z) = pEy + qFs, ¢*(G(X,Y)Z) = mE; + sE,
where
2
P== [2(a1bz — azb1)bs + 3(arcy — azer)cs],

2
= _2_2 [2(a1b2 — agbl)ag — 3(b102 — b261)03],

m = az(b1bz + c1c3) — a1(babs + cac3),

s = bg(alag + 0163) — bl(agag + 0203).
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Also from ([@3)—(£5), we obtain

(4.7) ?*(Ve,R)(X,Y)Z) = w;Ey +v;Ey fori=1,2,3,
where
4 4
Uy = —;(5b162 - bgcl)bg, v = ; [5(a1b2 - a2b1)03 + (5b102 - bgcl)ag],
20 20
Uz = —g [(ale - a2b1)03 - (a162 - a261)53}7 Vg = _g(alcQ - GZCl)a37
4
Uz = —; [2(a1b2 — a2b1)b3 + 3(@102 — a201)03],
4
V3 = ; [2(a1b2 — agbl)ag — 3(b102 — b261)03].

Let us now consider the 1-forms as
(4.8) AE) =287 nd B(Ey) = T4
bs —qgm ps —gm

such that ps — gm # 0, su; — muv; # 0 and pv; — qu; # 0, i = 1,2,3. From B1I), we
have

(4.9) ¢*(VER)(X,Y)Z) = A(E:)¢*(R(X,Y)Z) + B(E;)¢*(G(X,Y)Z),
i=1,2,3.

By virtue of (Z6)—(£38), it can be easily shown that the manifold satisfies rela-

tion ([@3). Hence the manifold under consideration is an extended generalized

¢-recurrent S-Kenmotsu manifold, which is neither ¢-recurrent nor generalized ¢-
recurrent. This leads to the following;:

fori=1,2,3

THEOREM 4.1. There exists an extended generalized ¢-recurrent 5-Kenmotsu
manifold M>(¢p,€,m,g), which is neither ¢-recurrent nor generalized ¢-recurrent.
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