
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE
Nouvelle série, tome 89(103) (2011), 37–47 DOI: 10.2298/PIM1103037K

A LOOPLESS IMPLEMENTATION OF
A GRAY CODE FOR SIGNED PERMUTATIONS

James Korsh, Paul LaFollette,
and Seymour Lipschutz

Communicated by Slobodan Simić

Abstract. Conway, Sloane and Wilks [1989] proved the existence of a Gray
code for the reflection group Bn. The elements of this group are the signed
permutations of the set 1, 2, . . . , n. Here we give a loopless algorithm which
generates a specific Gray code for Bn.

1. Introduction

The original idea of a Gray code was to list all n-bit strings, sequences of 0’s
and 1’s of length n, called codewords, so that successive codewords differ in only
one bit. Qn is used to denote all codewords of length n. The fact that this can be
done for any n follows from the construction of the Binary Reflected Gray Code
(BRGC) for Qn (see [5]) which we describe below.

The above idea of a Gray code has been generalized as follows. A Gray code for
any combinatorial family of objects is a listing of the objects such that successive
objects differ in some prescribed, usually “small", way. The definition of “small"
depends on the particular family, its context, and its applications. Gray codes are
useful in studying the properties of the objects being generated because the less
successively generated objects differ from each other, the faster the properties being
studied can be updated in passing from one object to the next. Carla Savage [10]
has an excellent survey of Gray codes with 154 references.

Consider, for example, Sn, the set of all permutations of the integers 1 to n. A
Gray code for Sn may be defined to be a list L of the permutations in Sn such that
successive permutations differ by a transposition, the interchange of two integers.
One such famous Gray code for Sn was given by Johnson [7] and Trotter [12],
apparently independently. In fact, their Gray code uses only adjacent interchanges.
We discuss this Gray code in detail later.

2010 Mathematics Subject Classification: Primary 68R05; Secondary 05A05.
Key words and phrases: algorithms; combinatorial; loopless; gray code; reflection groups;

signed permutations.
37

38 KORSH, LAFOLLETTE, AND LIPSCHUTZ

Now consider any finite group G with a set of generators. A Gray code for G is
a list L of the elements of G such that each element is obtained from the previous
one by applying one of the generators. This is equivalent to a Hamiltonian path in
the Caley graph of the group.

Conway, Sloane and Wilks (CSW) [2] proved the existence of a Gray code for
all the finite reflection groups; the term reflection comes from the fact that each
generator of the group has order two. This includes the infinite family of reflection
groups Bn (n � 2) (which are defined below). The elements of these groups are in
fact the signed permutations of the set {1, 2, . . . , n}. Signed permutations are used,
for example, in bioinformatics [4, 11, 14]. Rankin [9] showed that the alternating
group A(6) with generators (2,4,6,5,3) and (1,6,3)(2,4,5) does not have a Gray code.

We note that an algorithm which generates the elements of a combinatorial
family is said to be loopless if it takes no more than a constant amount of time
between the elements. Gidean Ehrlich [3] first formulated this notion of a loop-
less algorithm. This paper gives a loopless algorithm which generates a specific
Gray code for Bn. The algorithm uses a loopless algorithm by Bitner, Ehrlich
and Reingold (BER) [1] for the BRGC for Qn, and our loopless version of the
Johnson–Trotter listing for Sn.

Our paper is organized as follows. Section 2 discusses the Binary Reflected
Gray Code for Qn, and the loopless algorithm generating it by BER [1]. Section 3
discusses the Johnson–Trotter Gray code listing for Sn and our loopless algorithm
for generating it. Section 4 discusses the reflection group Bn, Section 5 discusses
our algorithm for its generation, and Section 6 gives two loopless versions of the
algorithm. The second version uses integers no larger than n.

2. Binary reflected gray code

Since a Gray code for Qn is a list of all codewords of Qn such that successive
codewords differ by only one bit, the Gray code is completely determined by its
transition sequence, the list of the bit positions which change as we go from one
codeword to the next in the sequence.

There are many Gray codes for Qn. We are only interested in the Binary
Reflected Gray Code (BRGC) for Qn. There is a simple recursive construction of
this Gray code. Specifically, Table 1 shows how the BRGC for Q4 can be obtained
from the BRGC for Q3. That is, first we list the Gray code for Q3 which appears
as the upper left 3 × 8 matrix (where the codewords are the columns). Then next
to it we list the Gray code for Q3 but in reverse order. This yields a 3 × 16 matrix.
Finally, we add a fourth row consisting of eight 0’s followed by eight 1’s. This gives
the BRGC for Q4.

We show that this is in fact a Gray code for Q4. Observe that only one bit
changes within the first eight columns since the bottom bit is always 0, and only
one bit changes within the last eight columns since the bottom bit is always 1.
Furthermore, the two middle columns (and also the first and last columns) are
identical except for the added last bits, and so again only one bit changes. The
BRGC for Qn is the one obtained recursively in this way beginning with the matrix
[0, 1] for Q1.

A LOOPLESS IMPLEMENTATION OF A GRAY CODE 39

Frank Gray, for whom Gray codes are named, first specified this recursive
construction in [6]. Discussing the BRGC, Herbert Wilf [14] comments: “This
method of copying a list and its reversal . . . seems to be a good thing to think of
when trying to construct some new kind of Gray code."

T4:

Q3 Q3 reversed
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
4 3 4 2 4 3 4 1 4 3 4 2 4 3 4

Table 1. Binary reflected gray code for Q4

Observe that the transition sequence T4 = [4, 3, 4, . . . , 3, 4] for the BRGC for
Q4 also appears in Table 1, where we view the codewords from the bottom (“first"
row) to the top (“fourth" row). That is, first the fourth bit changes, then the third
bit changes, then the fourth bit changes again, and then the second bit changes, and
so on. BER [1] gave a very clever loopless algorithm which generates the transition
sequence Tn using an array [t0, t1, t2, . . . , tn]. We essentially use this algorithm (in
our loopless algorithm generating a Gray code for Bn) to go both forward and
backward in the BRGC for Qn.

3. Johnson–Trotter list

The Johnson–Trotter permutation list is also defined recursively. The list for
n = 4 is shown in Table 2. Note that the list is partitioned into six “blocks", each
with four successive permutations. Each block corresponds to, and is labeled by, a
permutation in S3 which is in boldface and is on top of the block. We note that
the boldface labels form the Johnson–Trotter list for S3.

123 132 312 321 231 213
1234 4132 3124 4321 2314 4213
1243 1432 3142 3421 2341 2413
1423 1342 3412 3241 2431 2143
4123 1324 4312 3214 4231 2134

Table 2. Johnson–Trotter list for S4

Observe that in the first block, the largest item 4 sweeps from right to left,
in the second block from left to right, in the third block from right to left, and so
on. Also, the relative positions of the remaining items 1, 2, 3 do not change in each
block and correspond to the label of the block. Moreover, the recursive changes of

40 KORSH, LAFOLLETTE, AND LIPSCHUTZ

the relative positions of 1, 2, and 3 occur only from block to block when the largest
item 4 is in an end position so the item 4 does not interfere with any transposition
involving the items 1, 2, and 3. Thus the Johnson–Trotter list JT(n) is a Gray
code for Sn. (In fact, successive permutations in JT(n) differ by only an adjacent
transposition.)

Ehrlich [3] gave the first loopless algorithm to generate the Johnson–Trotter
list. An alternate loopless algorithm for the JT list appears in [8]. We have to
move both forward and backward in the JT list, so our algorithm, although similar
to the Ehrlich [3] algorithm, will be more involved. We describe one part of our
algorithm as follows.

Suppose we first consider moving forward in the JT list. We use two arrays d
and e which we describe below.

(a) Each item (number) in any permutation has a direction, LEFT or RIGHT.
Whenever the item reaches an end position in its respective subpermutation it
changes its direction. All items begin with the direction (moving) LEFT. (For
example, the item 4, in Table 2, changes its direction from LEFT to RIGHT after
the fourth permutation 4123 where 4 has reached an end position.) Array d will
contain the directions of the items in the permutations.

(b) Our algorithm implicitly uses two lists, a “mobile" list and a “finished" list,
and the lists are ordered with the largest element first. Each item is on exactly one
of the two lists. The item that moves will be the first element on the mobile list and,
when it moves, all larger items on the finished list are inserted at the beginning of
the mobile list, retaining their relative order. An item on the mobile list is moved
to the finished list when it reaches an end position in its respective subpermutation.
The algorithm ends when the mobile list is empty or, equivalently, when all items
are on the finished list. Array e keeps track of the items on the mobile lists and on
the finished lists. Similarly, we use arrays D and E, analogous to d and e, when
moving backward in the JT list.

To explain how these arrays can be updated in constant time consider array e.
The item at the front of the mobile list is always in e[n + 1]. If this item is j, then
its successor, j1, will be in e[j]. Similarly, j1’s successor will be in e[j1] and so on.
As an example, if n is 6 and e[1] e[2] e[3] e[4] e[5] e[6] e[7] are 0 1 1 3 4 5 4, then the
list is 1, 3, 4 where 4 is e[7], 3 is e[4], and 1 is e[3]. The finished list contains items
not on the mobile list (2, 5, and 6 here).

If the moving item j finishes, it must be removed from the list. It is removed
by setting e[j + 1] to e[j]. This works because e[j + 1] must hold the successor of
j + 1 in the updated list and this successor is the current successor of j, which is
in e[j].

In addition, e[j] is set to j − 1. Since j can move only when j + 1 to n are all
finished, as j+1 to n finish, this will have set e[j+1] to j, e[j+2] to j+2, . . . , and e[n]
to n−1. Consequently, when e[n+1] is set to n, the list becomes j +1, j +2, . . . , n.

If the moving item does not finish, then n should become the item at the front
of the list and setting e[n + 1] to n accomplishes this.

E must also be updated. Remember that E controls the reverse generation
of Sn. When j is finished, this entails simply setting E[n+1] to j. Suppose j is not

A LOOPLESS IMPLEMENTATION OF A GRAY CODE 41

finished. If E[j + 1] is j, then j is on the mobile list of E so all that is required is
again setting E[n + 1] to j. However, if E[j + 1] is not j, then j must have finished
(in the reverse generation) and so was taken off E’s list by first setting E[j + 1]
to E[j] and then setting E[j] to j − 1. Restoring it requires first setting E[j] to
E[j + 1] then setting E[j + 1] to j and again setting E[n + 1] to j.

These changes and determining when j is finished take at most constant time.
Updating d and D is straightforward and also takes at most constant time.

4. Reflection group Bn

The reflection group Bn with generators R1, R2, . . . , Rn may be represented by
the permutations of 1, 2, . . . , n with each integer having a + or − sign attached to
it, so each integer can be positive or negative – the signed permutations. (We will
let boldface numbers indicate integers with − signs.) Thus Bn has order 2nn!. In
particular, B2 has |B2| = 222! = 8 elements which follow:

B2 : {12, 12, 21, 21, 12, 12, 21, 21}
The generators R1, R2, . . . , Rn−1 of Bn correspond to the adjacent transpositions
(12), (23), (34), . . . , (n − 1, n) and hence R1, R2, . . . , Rn−1 generate a subgroup H
of Bn which is isomorphic to Sn. The generator Rn changes the sign of the last
coordinate. Observe that the above list for B2 is in fact a Gray code for B2.

Using 0 to denote + and 1 to denote −, an element z in Bn may be represented
by a pair (p, g) where:

(i) p (for permutation) belongs to Sn: p is the list of the numbers in z without
any signs;

and
(ii) g (for Gray code) belongs to Qn: g denotes the numbers (not positions) in

z which are negative.
For example:

z = 364251 in B6 corresponds to (364251, 010011) and
z = 41856327 in B8 corresponds to (41856327, 00110001)

Our algorithm will output the elements of Bn as pairs (p, g). We will illustrate
our algorithm using B3 and then B4 as examples.

Table 3 pictures B3, where the |B3| = 233! = 48 elements of B3 are arranged
in an array. Note that the columns of the array are labeled by the BRGC for Q3
and the rows are labeled by the Johnson–Trotter list for S3.

The first column H under 000, which consists of all permutations where the
signs are all +, is the subgroup H of B3, which is isomorphic to S3. Each of the
other columns is a coset of H . Since the first column H is a Johnson–Trotter list for
S3, we can move up or down any column using the generators R1, R2, . . . , Rn−1. On
the other hand, we can move between adjacent columns using only the generator
Rn which negates the last item in the permutation. The double arrow in Table 3
indicates an edge between the adjacent cosets (columns). Observe there are exactly
two edges between any two adjacent columns.

Our algorithm will generate the following Hamiltonian path (Gray code) for B3:

42 KORSH, LAFOLLETTE, AND LIPSCHUTZ

000 001 011 010 110 111 101 100
123 123 ↔ 123 123 ↔ 123 123 ↔ 123 123 ↔ 123
132 132 132 ↔ 132 132 132 132 ↔ 132 132
312 312 312 ↔ 312 312 312 312 ↔ 312 312
321 321 321 321 321 ↔ 321 321 321 321
231 231 231 231 231 ↔ 231 231 231 231
213 213 ↔ 213 213 ↔ 213 213 ↔ 213 213 ↔ 213

Table 3. Reflection group B3

123 → 123, 132 → 132, 123 → 123, 132, 312, 321 → 321, 312, 132, 123 → 123, 132 →
132, 123→123 and down the column to 213
�→ 213, 231, 321, 312 �→ 312, 321, 231, 213 �→ 213, 231 �→ 231, 213 �→ 213, 231, 321,
312 �→312, 321, 231, 213 �→213 and up the column to 132.
That is, the path moves from the first column to the last and then back again, and:

(i) Each of the seven → denotes a move from a column to the next column.
(ii) Each of the seven �→ denotes a move from a column to the preceding column.

(iii) Each comma “," denotes a move up or a move down within a column.
It would be very instructive if the reader followed the path through Table 3.
Table 4 pictures B4 where the |B4| = 244! = 384 elements of B4 are again

arranged in an array. The columns are labeled by the BRGC for Q4 and the rows
are labeled by the Johnson–Trotter list for S4. Here a star ∗ is used instead of ↔
to denote an edge between columns. Observe that here there are six edges between
adjacent columns. We will also use the underlined star ∗ to denote the first edge
between the columns.

5. Algorithm generating a gray code for Bn

This section presents our algorithm generating a Gray code for Bn which is
similar to the one for B3. First of all we assume the elements of Bn are arranged
in an array where the columns of the array are labeled by the BRGC for Qn and
the rows are labeled by the Johnson–Trotter list for Sn. (This was done in Table 3
for B3 and in Table 4 for B4).

The first column H under 00. . . 0 is the subgroup of Bn which is isomorphic to
Sn, and each of the other columns is a coset of H . There will always be an edge in
our path for Bn in the first row and in the last row between each odd column and
the next even column, that is, between columns 1 and 2, between columns 3 and 4,
and so on until between (the last two) columns 2n − 1 and 2n. These edges will be
called special edges.

Our path will have two parts, A and B, where A moves forward through the
array and down the last column and B moves backward through the array and up
the first column. Specifically:

(A) Part A begins at the element x = 123 . . . n (in the first row, first column).
Then either:

A LOOPLESS IMPLEMENTATION OF A GRAY CODE 43

00
00

00
01

00
11

00
10

01
10

01
11

01
01

01
00

11
00

11
01

11
11

11
10

10
10

10
11

10
01

10
00

12
34

12
34

∗
12

34
12

34
∗

12
34

12
34

∗
12

34
12

34
∗

12
34

12
34

∗
12

34
12

34
∗

12
34

12
34

∗
12

34
12

34
∗

12
34

12
43

12
43

12
43

∗
12

43
12

43
12

43
12

43
∗

12
43

12
43

12
43

12
43

∗
12

43
12

43
12

43
12

43
∗

12
43

12
43

14
23

14
23

14
23

∗
14

23
14

23
14

23
14

23
∗

14
23

14
23

14
23

14
23

∗
14

23
14

23
14

23
14

23
∗

14
23

14
23

41
23

41
23

41
23

∗
41

23
41

23
41

23
41

23
∗

41
23

41
23

41
23

41
23

∗
41

23
41

23
41

23
41

23
∗

41
23

41
23

41
32

41
32

41
32

41
32

41
32

∗
41

32
41

32
41

32
41

32
41

32
41

32
41

32
41

32
∗

41
32

41
32

41
32

41
32

14
32

14
32

14
32

14
32

14
32

∗
14

32
14

32
14

32
14

32
14

32
14

32
14

32
14

32
∗

14
32

14
32

14
32

14
32

13
42

13
42

13
42

13
42

13
42

∗
13

42
13

42
13

42
13

42
13

42
13

42
13

42
13

42
∗

13
42

13
42

13
42

13
42

13
24

13
24

∗
13

24
13

24
∗

13
24

13
24

∗
13

24
13

24
∗

13
24

13
24

∗
13

24
13

24
∗

13
24

13
24

∗
13

24
13

24
∗

13
24

31
24

31
24

∗
31

24
31

24
∗

31
24

31
24

∗
31

24
31

24
∗

31
24

31
24

∗
31

24
31

24
∗

31
24

31
24

∗
31

24
31

24
∗

31
24

31
42

31
42

31
42

31
42

31
42

∗
31

42
31

42
31

42
31

42
31

42
31

42
31

42
31

42
∗

31
42

31
42

31
42

31
42

34
12

34
12

34
12

34
12

34
12

∗
34

12
34

12
34

12
34

12
34

12
34

12
34

12
34

12
∗

34
12

34
12

34
12

34
12

43
12

43
12

43
12

43
12

43
12

∗
43

12
43

12
43

12
43

12
43

12
43

12
43

12
43

12
∗

43
12

43
12

43
12

43
12

43
21

43
21

43
21

43
21

43
21

43
21

43
21

43
21

43
21

∗
43

21
43

21
43

21
43

21
43

21
43

21
43

21
43

21
34

21
34

21
34

21
34

21
34

21
34

21
34

21
34

21
34

21
∗

34
21

34
21

34
21

34
21

34
21

34
21

34
21

34
21

32
41

32
41

32
41

32
41

32
41

32
41

32
41

32
41

32
41

∗
32

41
32

41
32

41
32

41
32

41
32

41
32

41
32

41
32

14
32

14
∗

32
14

32
14

∗
32

14
32

14
∗

32
14

32
14

∗
32

14
32

14
∗

32
14

32
14

∗
32

14
32

14
∗

32
14

32
14

∗
32

14
23

14
23

14
∗

23
14

23
14

∗
23

14
23

14
∗

23
14

23
14

∗
23

14
23

14
∗

23
14

23
14

∗
23

14
23

14
∗

23
14

23
14

∗
23

14
23

41
23

41
23

41
23

41
23

41
23

41
23

41
23

41
23

41
∗

23
41

23
41

23
41

23
41

23
41

23
41

23
41

23
41

24
31

24
31

24
31

24
31

24
31

24
31

24
31

24
31

24
31

∗
24

31
24

31
24

31
24

31
24

31
24

31
24

31
24

31
42

31
42

31
42

31
42

31
42

31
42

31
42

31
42

31
42

31
∗

42
31

42
31

42
31

42
31

42
31

42
31

42
31

42
31

42
13

42
13

42
13

∗
42

13
42

13
42

13
42

13
∗

42
13

42
13

42
13

42
13

∗
42

13
42

13
42

13
42

13
∗

42
13

42
13

24
13

24
13

24
13

∗
24

13
24

13
24

13
24

13
∗

24
13

24
13

24
13

24
13

∗
24

13
24

13
24

13
24

13
∗

24
13

24
13

21
43

21
43

21
43

∗
21

43
21

43
21

43
21

43
∗

21
43

21
43

21
43

21
43

∗
21

43
21

43
21

43
21

43
∗

21
43

21
43

21
34

21
34

∗
21

34
21

34
∗

21
34

21
34

∗
21

34
21

34
∗

21
34

21
34

∗
21

34
21

34
∗

21
34

21
34

∗
21

34
21

34
∗

21
34

T
ab

le
4.

R
efl

ec
tio

n
gr

ou
p

B
4

44 KORSH, LAFOLLETTE, AND LIPSCHUTZ

(i) it will move from one column to the next column using the topmost edge
between successive columns. This edge is alternately the top special edge and
another topmost edge, starting and ending with the top special edge or

(ii) it will move up or down within a column. After arriving at the last column
using the top special edge it will move all the way down the last column to the last
entry y = 213 . . . n in the column.

(b) Part B begins at the element y (in the last row, last column). Then either:
(i) it will move from one column to the preceding column using alternately the

bottom special edge and the edge just below the topmost edge between successive
columns (which is not a top special edge), starting and ending with the bottom
special edge or

(ii) it will move up or down within a column. After arriving at the first column
using the bottom special edge it will move all the way up the first column to its
second entry, 123 . . . (n − 2)n(n − 1).

It would be instructive if the reader used our algorithm to follow the Gray code
for B4 in Table 4. We note that we move from Column 4 to Column 5 in Row 5, and
hence on the way back we move from Column 5 to Column 4 in Row 6. Similarly,
we move from Column 8 to Column 9 in Row 13, and hence on the way back we
move from Column 9 to Column 8 in Row 14.

The path this algorithm traces is Hamiltonian because each topmost edge that
is not the top special edge has a second edge immediately below it in the next row.
In Section 6 we will see that this second edge always exists.

Note that this Gray code is circular since the last element differs from the first
by an adjacent interchange, so the Hamiltonian path we generate can be extended
to a Hamiltonian cycle by adding one more edge.

We emphasize that there are many Gray codes for Bn. We use the first edge
when moving forward; but other edges could also have been used to yield a Gray
code for Bn. It is important to note that we cannot simply generate entire columns,
one after another, because the generator Rn must be used to go between columns.

6. Loopless algorithm for our gray code for Bn

Implementing our algorithm looplessly, we need to do the following three things:
(1) Looplessly move from one column to an adjacent column or, equivalently,

looplessly move between elements of the BRGC for Qn. This we do using a modi-
fication of the algorithm by BER [1].

(2) Looplessly move up and down a column or, equivalently, looplessly move
between elements of the symmetric group Sn. This we do using a loopless version
of the JT list. This version uses the arrays d, e, D and E described above. When
moving down, our algorithm uses d and e and looplessly updates D and E; and
when moving up it uses D and E and looplessly updates d and e.

(3) Keep track of each row where we move from one column to the next column
so on the way back we know the row we must use to go backward. This can be
done in two different ways:

(a) We can use an array to keep track of the row position when we move to the
next column. Unfortunately the row position may be a very large number, that is,
of order n!.

A LOOPLESS IMPLEMENTATION OF A GRAY CODE 45

(b) We can keep in memory a two-dimensional n × n array r whose rows are
the permutations corresponding to those edges where we move forward from one
column to the next.

For example, for B4:

r =

⎡
⎢⎢⎣

4 3 2 1
4 1 3 2
1 2 4 3
1 2 3 4

⎤
⎥⎥⎦ .

The numbers in the last column are all different since we move from column to
column depending on the last number in the permutation. Row s of array r is
always the first permutation in the JT list, where s occurs at the right end of the
permutation. Also, s is the position of the bit that changes in the codeword as we
move to the next column.

When s < n, row s is where our algorithm moves forward to the next column
using a topmost edge that is not the top special edge. Since s will have just
occurred at the right end, s must remain at the right end in the next row with its
sign unchanged and the element to its right must differ from it only in the sign of s.
The next element in the path traced by our algorithm is in the same row as row s
but the next column and differs from row s only in the sign of s. Hence there is
always an edge in the row just below row s.

In general, row s has the form
[evens > (s + 2)], (s + 2), 1, 2, . . . , (s − 1), (s + 1), [odds > (s + 2)], s

where the evens decrease from left to right and the odds increase from left to right.
For example, for n = 16 and s = 7, we have the row

16, 14, 12, 10, 9, 1, 2, 3, 4, 5, 6, 8, 11, 13, 15, 7
This second version uses only integers that are no larger than n.

We also point out that this version must looplessly determine when, as it moves
up a column on the way back, it has encountered the permutation corresponding
to the (first) edge where it earlier moved forward to the current column. When
that permutation is encountered, we backtrack to the edge below it and then move
left to the preceding column. Since the last permutation in each column is always
2134 . . . n, it is not necessary to check for that permutation until p[n] is s in the
current permutation. After that has occurred, we compare exactly one item in the
current permutation with the corresponding item in row s of the array r. There
are only two cases that can occur for this comparison, when the first item of row
r, r[s][1] is n, and when it is not n. These are illustrated below for n = 7. When s
is 5, row s is 7 1 2 3 4 6 5 so r[s][1] is 7 and when s is 4, row s is 6 1 2 3 5 7 4 so r[s][1]
is not 7:

46 KORSH, LAFOLLETTE, AND LIPSCHUTZ

s = 5 s = 4
7 1 2 3 4 6 5
1 7 2 3 4 6 5
1 2 7 3 4 6 5
1 2 3 7 4 6 5
1 2 3 4 7 6 5
1 2 3 4 6 7 5

6 1 2 3 5 7 4
6 1 2 3 7 5 4
6 1 2 7 3 5 4
6 1 7 2 3 5 4
6 7 1 2 3 5 4
7 6 1 2 3 5 4

These are the permutations that are encountered when moving up in a column
looking for row s in the two cases. In the first case, n = 7 is moving left and in the
second case, n = 7 is moving right. We can looplessly determine when row s has
been reached by checking that the corresponding item in the current permutation
matches the boldface item in row s. When all these required matches have occurred,
we are at the permutation we must backtrack from.

Our two loopless algorithms for n > 2 written in C++, are available at:
http://www.cis.temple.edu/~korsh/reflectionswithcounts.c++ and
http://www.cis.temple.edu/~korsh/reflectionswithnocounts.c++
Both programs represent the elements using an array g and an array p as

described in Section 4. Array p contains positive integers from 1 to n.
Two loopless programs which represent the elements more directly as signed

permutations using an array p of positive and negative integers from 1 to n are
available at:

http://www.cis.temple.edu/~korsh/signedpermutationswithcounts.c++ and
http://www.cis.temple.edu/~korsh/signedpermutationswithnocounts.c++

Acknowledgement. The authors would like to thank a referee for suggestions
which significantly improved the paper.

References
1. J. R. Bitner, G. Ehrlich, and E. M. Reingold, Efficient generation of the binary reflected Gray

code and its applications, Comm. Assoc. Comput. Mach. 19 (1976), 517–521.
2. J. H. Conway, N. J. A. Sloane and A. R. Wilks, Gray codes for reflection groups, Graphs Com-

bin. 5 (1989) 315–325.
3. G. Ehrlich, Loopless algorithms for generating permutations, combinations, and other com-

binatorial configurations J. Assoc. Comput. Mach. 20 (1973), 500–513.
4. M. Figeac and J.-S. Varre, Sorting by Reversals with Common Intervals, in: Algorithms in

Bioinformatics: 4th International Workshop, WABI 2004, Bergen, Norway, September 17–
21, 2004, Proceedings (Lect. Notes Comput. Sci. and Lect. Notes Bioinformatics), 26–37.

5. E. N. Gilbert, Gray codes and paths on the n-cube, Bell Syst. Tech. J. 37 (1958), 815–826.
6. F. Gray, Pulse code communication, March 17, 1953 (filed Nov. 1947). U.S. Patent 2,632,058.
7. S. M. Johnson, Generation of permutations by adjacent transposition, Math. Comput. 17

(1963), 282–285.
8. J. Korsh and S. Lipschutz, Generating multiset permutations in constant time, J. Algorithms

25 (1997), 321–335.
9. R. A. Rankin, A campanological problem in group theory, Proc. Camb. Philos. Soc. 44 (1948),

17–25.
10. C. Savage, A survey of combinatorial Gray codes, SIAM Rev. 39(4) (1997), 605–629.

A LOOPLESS IMPLEMENTATION OF A GRAY CODE 47

11. K. M. Swenson, V. Rajan, Yu Lin, and B. M. Moret, Sorting Signed Permutations by Inver-
sions in O(n log n) Time, RECOMB 2’09, Proc. 13th Annual Internat. Conf. on Research in
Computational Molecular Biology, 386–399.

12. H. F. Trotter, Algorithm 115, Permutations, Comm. Assoc. Comput. Mach. 5 (1962), 434–
435.

13. H. Wilf, Combinatorial Algorithms – an Update, SIAM, Philadelphia, 1989.
14. S. Yancopoulos, O. Attie, and R. Friedberg, Efficient sorting of genomic permutations by

translocation, inversion and block interchange, Bioinformatics 21(16) (2005), 3340–3346.

Department of CIS (Korsh and LaFollette) (Received 06 01 2010)
Department of Mathematics (Lipschutz) (Revised 19 01 2011 and 08 02 2011)
Temple University
Philadelphia, PA 19122
U.S.A.

korsh@temple.edu
paul.lafollette@temple.edu

seymour@temple.edu

