ON BOUNDED DUAL-VALUED DERIVATIONS ON CERTAIN BANACH ALGEBRAS

A. L. Barrenechea and C. C. Peña

Communicated by Stevan Pilipović

ABSTRACT. We consider the class $\mathfrak{D}(\mathcal{U})$ of bounded derivations $\mathcal{U} \xrightarrow{d} \mathcal{U}^*$ defined on a Banach algebra \mathcal{U} with values in its dual space \mathcal{U}^* so that $\langle x, d(x) \rangle = 0$ for all $x \in \mathcal{U}$. The existence of such derivations is shown, but lacking the simplest structure of an inner one. We characterize the elements of $\mathfrak{D}(\mathcal{U})$ if $\operatorname{span}(\mathcal{U}^2)$ is dense in \mathcal{U} or if \mathcal{U} is a unitary dual Banach algebra.

1. Introduction

Throughout this article let \mathcal{U} be a complex Banach algebra endowed with a norm $\|\circ\|$. Let \mathcal{U}^{\sharp} be the algebra \mathcal{U} plus an adjoined unit element e with the usual Banach algebra structure. As usual, by \mathcal{U}^* and $(\mathcal{U}^{\sharp})^*$ we will denote the dual spaces of \mathcal{U} and \mathcal{U}^{\sharp} respectively. Let $j : \mathcal{U} \hookrightarrow \mathcal{U}^{\sharp}$ and $p : \mathcal{U}^{\sharp} \to \mathcal{U}$ be the natural injection and the corresponding projection of \mathcal{U} into \mathcal{U}^{\sharp} and of \mathcal{U}^{\sharp} onto \mathcal{U} respectively. Then $\mathcal{U}^{\sharp} = \mathbb{C} \cdot e \bigoplus j(\mathcal{U})$, i.e., any element $\eta \in \mathcal{U}^{\sharp}$ can be written in a unique way as $\eta = ae + j(x)$, with $x \in \mathcal{U}$ and $a \in \mathbb{C}$, and its \mathcal{U}^{\sharp} -norm is given as $\|\eta\|_{\mathcal{U}^{\sharp}} = |a| + \|x\|$. Indeed, since j is an isometric homomorphism then $j(\mathcal{U})$ becomes a closed ideal of \mathcal{U}^{\sharp} . Further, $p \circ j = \mathrm{Id}_{\mathcal{U}}$ while $j \circ p$ is the linear projection of \mathcal{U}^{\sharp} onto $j(\mathcal{U})$. Thus, let $e^* \in (\mathcal{U}^{\sharp})^*$ be defined as $\langle \eta, e^* \rangle \triangleq a$ if $\eta = ae + j(x)$ in \mathcal{U}^{\sharp} . Then

$$\left(\mathcal{U}^{\sharp}\right)^{*} = \mathbb{C} \cdot e^{*} \bigoplus \operatorname{rank}(p^{*}),$$

where $p^* : \mathcal{U}^* \to (\mathcal{U}^{\sharp})^*$ is the adjoint operator of p. It is well known that \mathcal{U}^* admits a Banach \mathcal{U} -bimodule structure if for $x, y \in \mathcal{U}$ and $x^* \in \mathcal{U}^*$ we write

$$\langle y, xx^* \rangle \triangleq \langle yx, x^* \rangle$$
 and $\langle y, x^*x \rangle \triangleq \langle xy, x^* \rangle$.

²⁰⁰⁰ Mathematics Subject Classification: 46H35, 47D30.

Key words and phrases: Dual Banach algebras, approximation property, dual Banach pairs, nuclear operators, shrinking basis and associated sequence of coefficient functionals.

¹⁰⁷

The \mathcal{U}^{\sharp} -bimodule structure on $(\mathcal{U}^{\sharp})^{*}$ is given as

$$\begin{aligned} (ae+j(x))(be^*+p^*(x^*)) &\triangleq (ab+\langle x,x^*\rangle)e^*+p^*(ax^*+xx^*), \\ (be^*+p^*(x^*))(ae+j(x)) &\triangleq (ab+\langle x,x^*\rangle)e^*+p^*(ax^*+x^*x), \end{aligned}$$

where $a, b \in \mathbb{C}, x \in \mathcal{U}, x^* \in \mathcal{U}^*$.

Given a Banach \mathcal{U} -bimodule \mathfrak{X} let $\mathcal{Z}^1(\mathcal{U}, \mathfrak{X})$ be the Banach space of bounded derivations $d: \mathcal{U} \to \mathfrak{X}$, i.e., those $d \in \mathcal{B}(\mathcal{U}, \mathfrak{X})$ that satisfy the Leibnitz rule d(xy) = d(x)y + xd(y) for all $x, y \in \mathcal{U}$. A bounded derivation d is said to be inner if there is an element $\phi \in \mathfrak{X}$ so that $d(x) = x\phi - \phi x$ if $x \in \mathcal{U}$. In that case we write $d = \mathrm{ad}_{\phi}$ and the class of inner derivations from \mathcal{U} into \mathfrak{X} is denoted as $\mathcal{N}^1(\mathcal{U}, \mathfrak{X})$. The quotient $\mathcal{H}^1(\mathcal{U}, \mathfrak{X}) \triangleq \mathcal{Z}^1(\mathcal{U}, \mathfrak{X})/\mathcal{N}^1(\mathcal{U}, \mathfrak{X})$ defines the first Hochschild cohomology group of \mathcal{U} with coefficients in \mathfrak{X} . Kamowitz lay the functional analytic overtones required to adapt the theory of Banach algebras to the Hochschild algebraic setting (cf. [6]; see also [4]). The theory of amenable Banach algebras was greatly influenced by Johnson's memoire in 1972 (cf. [5]). A Banach algebra \mathcal{U} is called amenable if $\mathcal{H}^1(\mathcal{U}, \mathfrak{X}^*) = \{0\}$ for any Banach \mathcal{U} -bimodule \mathfrak{X} . A Banach algebra \mathcal{U} it is called weakly amenable if $\mathcal{H}^1(\mathcal{U}, \mathcal{U}^*) = \{0\}$. This last notion generalizes that introduced by Bade, Curtis and Dales in [2].

In [3] it was proved that a non-unital abelian Banach algebra \mathcal{U} is weakly amenable if and only if \mathcal{U}^{\sharp} is weakly amenable but the general case still remains open. Our goal in this article is to seek relationships between derivations on a non-abelian non-unital Banach algebra \mathcal{U} with values in \mathcal{U}^* and derivations in \mathcal{U}^{\sharp} with values in $(\mathcal{U}^{\sharp})^*$. Our investigation naturally bring us to introduce the notion of \mathfrak{D} -derivations on \mathcal{U} in Definition 2.1. Althought any element of $\mathcal{N}^1(\mathcal{U},\mathcal{U}^*)$ is a \mathfrak{D} -derivation on \mathcal{U} sometimes there exist non-inner \mathfrak{D} -derivations as we will see in the examples 2.2 and 2.3. In Proposition 2.1 we consider certain Banach projective tensor products all of whose derivations are \mathfrak{D} -derivations. In Theorem 2.1 we characterize \mathfrak{D} -derivations on \mathcal{U} on Banach algebras \mathcal{U} so that \mathcal{U}^2 is dense in \mathcal{U} , where $\mathcal{U}^2 = \operatorname{span}\{xy : x, y \in \mathcal{U}\}$. The relationship between \mathfrak{D} -derivations on \mathcal{U} and their extensions to the unitization \mathcal{U}^{\sharp} are studied in Proposition 2.2. In this context, inner \mathfrak{D} -derivations on \mathcal{U} are characterized in Corollary 2.1. Finally, in Proposition 2.3 we characterize \mathfrak{D} -derivations on dual Banach algebras.

2. On D-derivations

DEFINITION 2.1. A derivation $d \in \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*)$ is called a \mathfrak{D} -derivation on \mathcal{U} if $\langle x, d(x) \rangle = 0$ for all $x \in \mathcal{U}$. Let $\mathfrak{D}(\mathcal{U})$ be the set of \mathfrak{D} -derivations on \mathcal{U} .

EXAMPLE 2.1. All inner \mathcal{U}^* -valued derivations on \mathcal{U} are \mathfrak{D} -derivations on \mathcal{U} .

EXAMPLE 2.2. Let $\mathcal{U} \triangleq C_0^{(1)}[a, b]$ be the commutative Banach algebra of functions $x : [a, b] \to \mathbb{C}$ with continuous derivative \dot{x} so that x(a) = x(b) endowed with the norm $||x|| \triangleq ||x||_{\infty} + ||\dot{x}||_{\infty}$. Then we define $d : \mathcal{U} \to \mathcal{U}^*$ as

$$\langle y, d(x) \rangle = \int_{a}^{b} y \, dx \quad \text{if } x, y \in \mathcal{U}.$$

108

The above Riemann–Stieltjes integral is well defined, d becomes clearly a $\mathbb{C}\text{-linear}$ functional and

$$|\langle y, d(x) \rangle| \leqslant \int_{a}^{b} |y| \, d|x| \leqslant \|y\|_{\infty} |\dot{x}\|_{\infty} \leqslant \|y\| \, \|x\|,$$

i.e., $d \in \mathcal{B}(\mathcal{U}, \mathcal{U}^*)$ and $||d(x)|| \leq ||x||$ for all $x \in \mathcal{U}$. Indeed,

$$\langle y, d(x_1 x_2) \rangle = \int_a^b y \frac{d}{dt} (x_1 x_2) dt$$

$$= \int_a^b y \Big(\frac{dx_1}{dt} x_2 + x_1 \frac{dx_2}{dt} \Big) dt$$

$$= \int_a^b y x_2 dx_1 + \int_a^b y x_1 dx_2$$

$$= \langle y x_2, d(x_1) \rangle + \langle y x_1, d(x_2) \rangle$$

$$= \langle y, d(x_1) x_2 + x_1 d(x_2) \rangle,$$

i.e., $d \in \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*)$. Certainly, it is a nonzero \mathfrak{D} -derivation since for $x \in \mathcal{U}$ we see that

$$\langle x, d(x) \rangle = \int_{a}^{b} x \frac{dx}{dt} dt = \frac{x^2}{2} \Big|_{a}^{b} = 0.$$

Further, d is not inner because \mathcal{U} is abelian and so $\mathcal{N}^1(\mathcal{U}, \mathcal{U}^*) = \{0\}$.

REMARK 2.1. Given a *dual Banach pair* $(\mathfrak{X}, \mathfrak{Y}, \langle \circ, \circ \rangle)$ by the universal property characteristic of general tensor products there is a unique operation on $\mathfrak{X} \otimes \mathfrak{Y}$ so that

 $(x_1 \otimes y_1) (x_2 \otimes y_2) = \langle x_2, y_1 \rangle (x_1 \otimes y_2) \text{ if } x_1, x_2 \in \mathfrak{X}, y_1, y_2 \in \mathfrak{Y}.$

Then $\mathfrak{X} \otimes \mathfrak{Y}$ becomes an algebra. Further, if for $u \in \mathfrak{X} \otimes \mathfrak{Y}$ we write

$$||u||_{\pi} = \inf\left\{\sum_{j=1}^{n} ||x_j|| ||y_j|| : u = \sum_{j=1}^{n} x_j \otimes y_j\right\}$$

then $(\mathfrak{X} \otimes \mathfrak{Y}, \| \circ \|_{\pi})$ becomes a normed algebra. The completion of this algebra is the well known projective Banach tensor algebra $\mathfrak{X} \otimes \mathfrak{Y}$ (cf. [8, B.2.2, p. 250]). Then, $\mathfrak{X} \otimes \mathfrak{Y}$ is amenable if and only if dim $(\mathfrak{X}) = \dim(\mathfrak{Y}) < \infty$ (cf. [8, Th. 4.3.5, p. 98]). So, if \mathfrak{X} is an infinite dimensional Banach space the determination of structure theorems of bounded derivations on $\mathfrak{X} \otimes \mathfrak{X}^*$ has its own interest. Moreover, several Banach operator algebras can be represented as certain tensor products of the above type. For instance, if the Banach space \mathfrak{X} has the approximation property, then $\mathcal{N}_{\mathfrak{X}^*}(\mathfrak{X}) \approx \mathfrak{X} \otimes \mathfrak{X}^*$, where \approx denotes an isometric isomorphism and $\mathcal{N}_{\mathfrak{X}^*}(\mathfrak{X})$ is the Banach space of \mathfrak{X}^* -nuclear operators on \mathfrak{X} (cf. [8, Th. C.1.5, p. 256]). In this setting the authors recently researched on structure theorems and properties of derivations on some non-amenable nuclear Banach algebras (see [1]).

PROPOSITION 2.1. Let \mathfrak{X} is an infinite dimensional Banach space endowed with and shrinking basis $\{x_n\}_{n=1}^{\infty}$ and an associated sequence of coefficient functionals $\{x_n^*\}_{n=1}^{\infty}$ and let $\mathcal{U} \triangleq \mathfrak{X} \otimes \mathfrak{X}^*$. Then $\mathfrak{D}(\mathcal{U}) \supseteq \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*)$. PROOF. Let $d \in \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*)$. The system of basic tensor products $z_{n,m} \triangleq x_n \otimes x_m^*$ can be arranged into a basis $\{z_{n,m}\}_{n,m=1}^{\infty}$ of $\mathfrak{X} \otimes \mathfrak{X}^*$ (the reader can see [9], or else [10, Th. 18.1, p. 172]). Given $p, q, r, s, t \in \mathbb{N}$ we have

(2.1)
$$\langle z_{p,q}, d(z_{r,t}) \rangle = \langle z_{p,q}, d(z_{r,s}) \cdot z_{s,t} + z_{r,s} \cdot d(z_{s,t}) \rangle$$
$$= \langle z_{s,t} \cdot z_{p,q}, d(z_{r,s}) \rangle + \langle z_{p,q} \cdot z_{r,s}, d(z_{s,t}) \rangle$$
$$= \delta_{p,t} \langle z_{s,q}, d(z_{r,s}) \rangle + \delta_{q,r} \langle z_{p,s}, d(z_{s,t}) \rangle,$$

where δ denotes the usual Kronecker's symbol. By (2.1), $\langle z_{p,q}, d(z_{r,t}) \rangle = 0$ if $p \neq t$ and $q \neq r$. Using (2.1) we also get

(2.2)
$$\langle z_{p,q}, d(z_{q,p}) \rangle = \langle z_{s,q}, d(z_{q,s}) \rangle + \langle z_{p,s}, d(z_{s,p}) \rangle$$

if $p, q, s \in \mathbb{N}$. By (2.2) we see that

(2.3)
$$\langle z_{p,p}, d(z_{p,p}) \rangle = 0 \text{ if } p \in \mathbb{N}.$$

On the other hand, by (2.1) we obtain

(2.4)
$$\langle z_{p,q}, d(z_{p,q}) \rangle = 0 \text{ if } p, q \in \mathbb{N}, \ p \neq q.$$

Now, let F be a finite subset of $\mathbb{N} \times \mathbb{N}$, $\{\lambda_{(n,m)}\}_{(n,m) \in F} \subseteq \mathbb{C}$ and let

$$u = \sum_{(n,m)\in F} \lambda_{(n,m)} z_{n,m}.$$

By (2.3) and (2.4) we see that

(2.5)
$$\langle u, d(u) \rangle = \sum_{(n,m), (p,q) \in F} \lambda_{(n,m)} \lambda_{(p,q)} [\langle z_{n,m}, d(z_{p,q}) \rangle + \langle z_{p,q}, d(z_{n,m}) \rangle].$$

As we already observed, those summands in (2.5) so that $n \neq q$ and $m \neq p$ are zero. By symmetry, it suffices to consider n = q and then

$$\begin{aligned} \langle z_{n,m}, d(z_{p,n}) \rangle + \langle z_{p,n}, d(z_{n,m}) \rangle &= \langle z_{n,n}, z_{n,m} \cdot d(z_{p,n}) + d(z_{n,m}) \cdot z_{p,n} \rangle \\ &= \langle z_{n,n}, d(z_{n,n}) \rangle \\ &= 0. \end{aligned}$$

Consequently $\langle u, d(u) \rangle = 0$. Finally, the result holds since $u \to \langle u, d(u) \rangle$ is continuous on \mathcal{U} and $\mathfrak{X} \otimes \mathfrak{X}^*$ is dense in \mathcal{U} .

EXAMPLE 2.3. Let $\mathcal{U} \triangleq l^p \widehat{\otimes} l^q$, with $1 < p, q < \infty$, 1/p + 1/q = 1. If $x \in l^p$, $x^* \in l^q$ let

$$\underline{d}_{x,x^*}: l^p \times l^q \to \mathbb{C}, \underline{d}_{x,x^*}(y,y^*) \triangleq \langle x,y^* \rangle - \langle y,x^* \rangle$$

Then $\underline{d}_{x,x^*} \in \mathcal{B}^2(l^p, l^q, \mathbb{C})$, i.e., \underline{d}_{x,x^*} is a bounded bilinear form between $l^p \times l^q$ and \mathbb{C} . By the universal characteristic property of the projective tensor product of Banach spaces there is a unique $\overline{d}_{x,x^*} \in \mathcal{U}^*$ so that $\|\overline{d}_{x,x^*}\| = \|\underline{d}_{x,x^*}\|$ and $\langle y \otimes y^*, \overline{d}_{x,x^*} \rangle = \underline{d}_{x,x^*}(y,y^*)$ if $y \in l^p$, $y^* \in l^q$. The following map is then induced

$$\overline{d}: l^p \times l^q \to \mathcal{U}^*, \overline{d}(x, x^*) \triangleq \overline{d}_{x, x^*}.$$

It is readily seen that $\overline{d} \in \mathcal{B}^2(l^p, l^q, \mathcal{U}^*)$ and so there is a unique $d \in \mathcal{B}(\mathcal{U}, \mathcal{U}^*)$ so that $||d|| = ||\overline{d}||$ and $d(x \otimes x^*) = \overline{d}(x, x^*)$ if $x \in l^p$, $x^* \in l^q$. Consequently, the following identity

$$\langle y \otimes y^*, d(x \otimes x^*) \rangle = \langle x, y^* \rangle - \langle y, x^* \rangle$$

holds if $x, y \in l^p$ and $x^*, y^* \in l^q$. It is straightforward to see that $d \in \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*)$ and hence it is a \mathfrak{D} -derivation. Let us see that $d \notin \mathcal{N}^1(\mathcal{U}, \mathcal{U}^*)$. For, let us assume that d is inner, say $d = \operatorname{ad}_T$ for some $T \in \mathcal{U}^*$. Let us consider the usual basis $\{x_n\}_{n=1}^{\infty}$ of l^p , $x_n = \{\delta_{n,m}\}_{m=1}^{\infty}$ if $n \in \mathbb{N}$. So, $\{x_n\}_{n=1}^{\infty}$ is obviously a shrinking basis and its associated sequence of coefficient functionals are $x_n^* = \{\delta_{n,m}\}_{m=1}^{\infty}$ if $n \in \mathbb{N}$. With the notation of Proposition 2.1, since $\langle z_{n,m}, d(z_{p,q}) \rangle = \delta_{m,p} - \delta_{n,q}$ for all $n, m, p, q \in \mathbb{N}$ we deduce that $T(z_{n,m}) = 1$ if $n, m \in \mathbb{N}$ and $n \neq m$. However, let us write

$$u \triangleq \frac{1}{\zeta(q)^{1/q}} \sum_{n=1}^{\infty} \frac{1}{n} \cdot z_{1,1+n}$$

where ζ denotes the Riemann zeta function. Then $u \in \mathcal{U}$ is well defined,

$$\begin{aligned} \|u\|_{\pi} &= \lim_{N \to \infty} \left\| \frac{1}{\zeta(q)^{1/q}} \sum_{n=1}^{N} \frac{1}{n} \cdot z_{1,1+n} \right\|_{\pi} \\ &= \frac{1}{\zeta(q)^{1/q}} \lim_{N \to \infty} \left\| x_1 \otimes \sum_{n=1}^{N} \frac{1}{n} x_{n+1}^* \right\|_{\pi} \\ &= \frac{1}{\zeta(q)^{1/q}} \lim_{N \to \infty} \left\| \sum_{n=1}^{N} \frac{1}{n} x_{n+1}^* \right\|_{l^q} \\ &= 1, \end{aligned}$$

and as

$$T(u) = \frac{1}{\zeta(q)^{1/q}} \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

then T can not be bounded.

THEOREM 2.1. Let \mathcal{U} be a Banach algebra so that \mathcal{U}^2 is dense in \mathcal{U} . Let us denote $k_{\mathcal{U}} : \mathcal{U} \hookrightarrow \mathcal{U}^{**}$ to the usual isometric embedding of \mathcal{U} into its second dual space \mathcal{U}^{**} by means of evaluations. Given $d \in \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*)$ the following assertions are equivalent:

 $\begin{array}{ll} (\mathrm{i}) & d \in \mathfrak{D}(\mathcal{U}). \\ (\mathrm{ii}) & \langle x, d(y) \rangle + \langle y, d(x) \rangle = 0 \ for \ all \ x, y \in \mathcal{U}. \\ (\mathrm{iii}) & d^* \circ k_{\mathcal{U}} \in \mathcal{Z}^1(\mathcal{U}, \mathcal{U}^*). \\ (\mathrm{iv}) & d + d^* \circ k_{\mathcal{U}} = 0. \end{array}$

PROOF. (i) \Rightarrow (ii) Given $x, y \in \mathcal{U}$ we have

$$0 = \langle x + y, d(x + y) \rangle = \langle x, d(y) \rangle + \langle y, d(x) \rangle.$$

(ii) \Rightarrow (iii) If $x,y,z\in\mathcal{U}$ we have

$$\begin{split} \langle z, (d^* \circ k_{\mathcal{U}})(xy) \rangle &= \langle (d(z), k_{\mathcal{U}}(xy)) \rangle \\ &= \langle xy, d(z) \rangle \\ &= \langle x, yd(z) \rangle \\ &= \langle x, d(yz) - d(y)z \rangle \\ &= \langle x, d(yz) \rangle - \langle zx, d(y) \rangle \\ &= \langle d(yz), k_{\mathcal{U}}(x) \rangle + \langle y, d(zx) \rangle \\ &= \langle yz, d^*(k_{\mathcal{U}}(x)) \rangle + \langle d(zx), k_{\mathcal{U}}(y) \rangle \\ &= \langle z, d^*(k_{\mathcal{U}}(x))y \rangle + \langle z, xd^*(k_{\mathcal{U}}(y)) \rangle \\ &= \langle z, (d^* \circ k_{\mathcal{U}})(x)y + x(d^* \circ k_{\mathcal{U}})(y) \rangle. \end{split}$$

(iii) \Rightarrow (iv) For $x, y, z \in \mathcal{U}$ we have

$$\begin{split} \langle xy, d(z) \rangle &= \langle d(z), k_{\mathcal{U}}(xy) \rangle \\ &= \langle z, (d^* \circ k_{\mathcal{U}})(xy) \rangle \\ &= \langle z, (d^* \circ k_{\mathcal{U}})(x)y + x(d^* \circ k_{\mathcal{U}})(y) \rangle \\ &= \langle yz, (d^* \circ k_{\mathcal{U}})(x) \rangle + \langle zx, (d^* \circ k_{\mathcal{U}})(y) \rangle \\ &= \langle x, d(y)z + yd(z) \rangle + \langle y, d(z)x + zd(x) \rangle \\ &= \langle zx, d(y) \rangle + 2\langle xy, d(z) \rangle + \langle yz, d(x) \rangle. \end{split}$$

Therefore,

$$\langle z, d(xy) \rangle = -\langle xy, d(z) \rangle = -\langle d(z), k_{\mathcal{U}}(xy) \rangle = -\langle z, (d^* \circ k_{\mathcal{U}})(xy) \rangle,$$

i.e., $(d + d^* \circ k_{\mathcal{U}})(xy) = 0$ if $x, y \in \mathcal{U}$. Since \mathcal{U}^2 is dense in \mathcal{U} the claim follows. (iv) \Rightarrow (i) If $x \in \mathcal{U}$ then

$$0 = \langle x, d(x) + (d^* \circ k_{\mathcal{U}})(x) \rangle = 2 \langle x, d(x) \rangle.$$

PROPOSITION 2.2. Let \mathcal{U} be a Banach algebra and let $d \in \mathfrak{D}(\mathcal{U})$. There is a unique $d^{\sharp} \in \mathfrak{D}(\mathcal{U}^{\sharp})$ so that the following diagram commutes

$$\begin{array}{cccc} \mathcal{U} & \stackrel{d}{\longrightarrow} & \mathcal{U}^* \\ \downarrow^j & & \downarrow^{p^*} \\ \mathcal{U}^{\sharp} & \stackrel{d^{\sharp}}{\longrightarrow} & t(\mathcal{U}^{\sharp})^*. \end{array}$$

PROOF. Consider $d^{\sharp} \triangleq p^* \circ d \circ p$. Thus, $d^{\sharp} \in \mathcal{B}(\mathcal{U}^{\sharp}, (\mathcal{U}^{\sharp})^*)$ and $d^{\sharp} \circ j = p^* \circ d$. If $\eta, \mu \in \mathcal{U}^{\sharp}$ we get

(2.6)
$$\langle \eta, d^{\sharp}(\eta) \rangle = \langle p(\eta), d(p(\eta)) \rangle = 0$$

112

and if $\eta = ae + j(x), \ \mu = be + j(y)$ for uniquely determined $a, b \in \mathbb{C}$ and $x, y \in \mathcal{U}$ then

(2.7)
$$d^{\sharp}(\eta)\mu + \eta d^{\sharp}(\mu) = p^{*}(d(x))(be + j(y)) + (ae + j(x))p^{*}(d(y))$$
$$= (\langle y, d(x) \rangle + \langle x, d(y) \rangle)e^{*} + p^{*}(ad(y) + bd(x) + d(xy))$$
$$= ad^{\sharp}(y) + bd^{\sharp}(x) + p^{*}(d(xy))$$
$$= p^{*}(d(ay + bx + xy))$$
$$= d^{\sharp}(\eta\mu).$$

Thus, by (2.6) and (2.7) we conclude that $d^{\sharp} \in \mathfrak{D}(\mathcal{U}^{\sharp})$. As we already observed, $j \circ p$ projects \mathcal{U}^{\sharp} onto $j(\mathcal{U})$. Since $j(\mathcal{U})$ is complemented in \mathcal{U}^{\sharp} by $\mathbb{C} \cdot e$ then d^{\sharp} is uniquely determined.

COROLLARY 2.1. A \mathfrak{D} -derivation on \mathcal{U} is inner if and only if its associated derivation $d^{\sharp}: \mathcal{U}^{\sharp} \to (\mathcal{U}^{\sharp})^*$ by Proposition 2.2 is inner.

PROOF. Let $x^* \in \mathcal{U}^*$, $a \in \mathbb{C}$. Hence, it is easy to see that $(\mathrm{ad}_{x^*})^{\sharp} = \mathrm{ad}_{p^*(x^*)}$ and if $d^{\sharp} = \mathrm{ad}_{ae^*+p^*(x^*)}$, then $d = \mathrm{ad}_{x^*}$.

REMARK 2.2. Let us consider a dual Banach algebra \mathcal{U} , i.e., $\mathcal{U} \approx (\mathcal{U}_*)^*$, where \mathcal{U}_* is a closed submodule of \mathcal{U}^* . Although \mathcal{U}_* need not be unique, we will assume that \mathcal{U} is realized as the dual space of a fixed closed submodule \mathcal{U}_* of \mathcal{U}^* . It is known that a dual Banach algebra has a unit if and only if it has a bounded approximate identity (see [7, Prop. 1.2]).

PROPOSITION 2.3. Let \mathcal{U} be a dual Banach algebra with unit and let $d \in \mathcal{Z}^1(\mathcal{U},\mathcal{U}^*)$ so that $d(\mathcal{U}) \subseteq k_{\mathcal{U}_*}(\mathcal{U}_*)$. Then $d \in \mathfrak{D}(\mathcal{U})$ if and only if $d^* + d \circ k_{\mathcal{U}_*}^* = 0$.

PROOF. (\Rightarrow) Given $x \in \mathcal{U}$ let $x_* \in \mathcal{U}_*$ be the unique element so that $d(x) = k_{\mathcal{U}_*}(x_*)$. If $x^{**} \in \mathcal{U}^{**}$ by Theorem 2.1(iv) we have

$$\langle x, (d \circ k_{\mathcal{U}_*}^*)(x^{**}) \rangle = \langle d(k_{\mathcal{U}_*}^*(x^{**})), k_{\mathcal{U}}(x) \rangle$$

$$= \langle k_{\mathcal{U}_*}^*(x^{**}), (d^* \circ k_{\mathcal{U}})(x) \rangle$$

$$= -\langle k_{\mathcal{U}_*}^*(x^{**}), d(x) \rangle$$

$$= -\langle x_*, k_{\mathcal{U}_*}^*(x^{**}) \rangle$$

$$= -\langle k_{\mathcal{U}_*}(x_*), x^{**} \rangle$$

$$= -\langle d(x), x^{**} \rangle$$

$$= -\langle x, d^*(x^{**}) \rangle.$$

 (\Leftarrow) If $x, y \in \mathcal{U}$ we obtain

$$\langle y, (d^* \circ k_{\mathcal{U}})(x) \rangle = -\langle y, (d \circ k_{\mathcal{U}_*}^* \circ k_{\mathcal{U}})(x) \rangle = -\langle y, d(x) \rangle,$$

i.e., $d + d^* \circ k_{\mathcal{U}} = 0$ and our claim follows.

Acknowledgement. The authors express their recognition to the reviewer for his care reading of this manuscript and his insight to improve their results.

BARRENECHEA AND PEÑA

References

- A. L. Barrenechea, C. C. Peña, On the structure of derivations on certain non-amenable nuclear Banach algebras, New York J. Math. 15 (2009), 199–209; Zbl pre05561324.
- [2] W. Bade, P.C. Curtis, H.G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), 359–377; Zbl 0634.46042.
- H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Stud. Math. 128, 1 (1998), 19–54; Zlb 0903.46045.
- [4] A. Guichardet, Sur l'homologie et la cohomologie des algèbres de Banach, C. R. Acad. Sci. Paris, Ser. A 262 (1966), 38–42; Zlb 0131.13101.
- [5] B.E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127, 1972; MR 51#11130.
- [6] H. Kamowitz, Cohomology groups of commutative Banach algebras, Trans. Amer. Math. Soc. 102, 1962, 352–372; MR 30#458.
- [7] V. Runde, Amenability for dual Banach algebras, Stud. Math. 148 (2001), 47-66.
- [8] V. Runde, Lectures on amenability, Lect. Notes Math. 1774 (2002), Springer-Verlag, Berlin, xiv+296 pp. ISBN 3-540-42852-6, MR 1874893 (2003h:46001), Zlb 0999.46022.
- R. Schatten, A theory of cross spaces, Ann. Math. Stud. 26, Princeton University Press, 1950, vii+153 pp; MR 0036935 (12,186e), Zlb 0041.43502.
- [10] I. Singer, Bases in Banach spaces. I, Grundlehren Math. Wiss. 154, Springer-Verlag, New York and Berlin, 1970, viii+668 pp; MR 0298399 (45#7451), Zlb 0198.16601.

NUCOMPA - Departamento de Matemáticas Universidad Nacional del Centro Tandil Argentina analucia@exa.unicen.edu.ar ccpenia@exa.unicen.edu.ar (Received 10 09 2008) (Revides 20 07 2009)