ON BOUNDED DUAL-VALUED DERIVATIONS ON CERTAIN BANACH ALGEBRAS

A. L. Barrenechea and C. C. Peña

Communicated by Stevan Pilipović

Abstract

We consider the class $\mathfrak{D}(\mathcal{U})$ of bounded derivations $\mathcal{U} \xrightarrow{d} \mathcal{U}^{*}$ defined on a Banach algebra \mathcal{U} with values in its dual space \mathcal{U}^{*} so that $\langle x, d(x)\rangle=0$ for all $x \in \mathcal{U}$. The existence of such derivations is shown, but lacking the simplest structure of an inner one. We characterize the elements of $\mathfrak{D}(\mathcal{U})$ if $\operatorname{span}\left(\mathcal{U}^{2}\right)$ is dense in \mathcal{U} or if \mathcal{U} is a unitary dual Banach algebra.

1. Introduction

Throughout this article let \mathcal{U} be a complex Banach algebra endowed with a norm $\|\circ\|$. Let \mathcal{U}^{\sharp} be the algebra \mathcal{U} plus an adjoined unit element e with the usual Banach algebra structure. As usual, by \mathcal{U}^{*} and $\left(\mathcal{U}^{\sharp}\right)^{*}$ we will denote the dual spaces of \mathcal{U} and \mathcal{U}^{\sharp} respectively. Let $j: \mathcal{U} \hookrightarrow \mathcal{U}^{\sharp}$ and $p: \mathcal{U}^{\sharp} \rightarrow \mathcal{U}$ be the natural injection and the corresponding projection of \mathcal{U} into \mathcal{U}^{\sharp} and of \mathcal{U}^{\sharp} onto \mathcal{U} respectively. Then $\mathcal{U}^{\sharp}=\mathbb{C} \cdot e \bigoplus j(\mathcal{U})$, i.e., any element $\eta \in \mathcal{U}^{\sharp}$ can be written in a unique way as $\eta=a e+j(x)$, with $x \in \mathcal{U}$ and $a \in \mathbb{C}$, and its \mathcal{U}^{\sharp}-norm is given as $\|\eta\|_{\mathcal{U}^{\sharp}}=|a|+\|x\|$. Indeed, since j is an isometric homomorphism then $j(\mathcal{U})$ becomes a closed ideal of \mathcal{U}^{\sharp}. Further, $p \circ j=\operatorname{Id}_{\mathcal{U}}$ while $j \circ p$ is the linear projection of \mathcal{U}^{\sharp} onto $j(\mathcal{U})$. Thus, let $e^{*} \in\left(\mathcal{U}^{\sharp}\right)^{*}$ be defined as $\left\langle\eta, e^{*}\right\rangle \triangleq a$ if $\eta=a e+j(x)$ in \mathcal{U}^{\sharp}. Then

$$
\left(\mathcal{U}^{\sharp}\right)^{*}=\mathbb{C} \cdot e^{*} \bigoplus \operatorname{rank}\left(p^{*}\right),
$$

where $p^{*}: \mathcal{U}^{*} \rightarrow\left(\mathcal{U}^{\sharp}\right)^{*}$ is the adjoint operator of p. It is well known that \mathcal{U}^{*} admits a Banach \mathcal{U}-bimodule structure if for $x, y \in \mathcal{U}$ and $x^{*} \in \mathcal{U}^{*}$ we write

$$
\left\langle y, x x^{*}\right\rangle \triangleq\left\langle y x, x^{*}\right\rangle \text { and }\left\langle y, x^{*} x\right\rangle \triangleq\left\langle x y, x^{*}\right\rangle .
$$

[^0]The $\mathcal{U}^{\#}$-bimodule structure on $\left(\mathcal{U}^{\sharp}\right)^{*}$ is given as

$$
\begin{aligned}
& (a e+j(x))\left(b e^{*}+p^{*}\left(x^{*}\right)\right) \triangleq\left(a b+\left\langle x, x^{*}\right\rangle\right) e^{*}+p^{*}\left(a x^{*}+x x^{*}\right), \\
& \left(b e^{*}+p^{*}\left(x^{*}\right)\right)(a e+j(x)) \triangleq\left(a b+\left\langle x, x^{*}\right\rangle\right) e^{*}+p^{*}\left(a x^{*}+x^{*} x\right),
\end{aligned}
$$

where $a, b \in \mathbb{C}, x \in \mathcal{U}, x^{*} \in \mathcal{U}^{*}$.
Given a Banach \mathcal{U}-bimodule \mathfrak{X} let $\mathcal{Z}^{1}(\mathcal{U}, \mathfrak{X})$ be the Banach space of bounded derivations $d: \mathcal{U} \rightarrow \mathfrak{X}$, i.e., those $d \in \mathcal{B}(\mathcal{U}, \mathfrak{X})$ that satisfy the Leibnitz rule $d(x y)=$ $d(x) y+x d(y)$ for all $x, y \in \mathcal{U}$. A bounded derivation d is said to be inner if there is an element $\phi \in \mathfrak{X}$ so that $d(x)=x \phi-\phi x$ if $x \in \mathcal{U}$. In that case we write $d=\operatorname{ad}_{\phi}$ and the class of inner derivations from \mathcal{U} into \mathfrak{X} is denoted as $\mathcal{N}^{1}(\mathcal{U}, \mathfrak{X})$. The quotient $\mathcal{H}^{1}(\mathcal{U}, \mathfrak{X}) \triangleq \mathcal{Z}^{1}(\mathcal{U}, \mathfrak{X}) / \mathcal{N}^{1}(\mathcal{U}, \mathfrak{X})$ defines the first Hochschild cohomology group of \mathcal{U} with coefficients in \mathfrak{X}. Kamowitz lay the functional analytic overtones required to adapt the theory of Banach algebras to the Hochschild algebraic setting (cf. [6]; see also [4]). The theory of amenable Banach algebras was greatly influenced by Johnson's memoire in 1972 (cf. [5]). A Banach algebra \mathcal{U} is called amenable if $\mathcal{H}^{1}\left(\mathcal{U}, \mathfrak{X}^{*}\right)=\{0\}$ for any Banach \mathcal{U}-bimodule \mathfrak{X}. A Banach algebra \mathcal{U} it is called weakly amenable if $\mathcal{H}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)=\{0\}$. This last notion generalizes that introduced by Bade, Curtis and Dales in [2].

In [3] it was proved that a non-unital abelian Banach algebra \mathcal{U} is weakly amenable if and only if \mathcal{U}^{\sharp} is weakly amenable but the general case still remains open. Our goal in this article is to seek relationships between derivations on a non-abelian non-unital Banach algebra \mathcal{U} with values in \mathcal{U}^{*} and derivations in \mathcal{U}^{\sharp} with values in $\left(\mathcal{U}^{\sharp}\right)^{*}$. Our investigation naturally bring us to introduce the notion of \mathfrak{D}-derivations on \mathcal{U} in Definition 2.1. Althought any element of $\mathcal{N}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ is a \mathfrak{D}-derivation on \mathcal{U} sometimes there exist non-inner \mathfrak{D}-derivations as we will see in the examples 2.2 and 2.3. In Proposition 2.1 we consider certain Banach projective tensor products all of whose derivations are \mathfrak{D}-derivations. In Theorem 2.1 we characterize \mathfrak{D}-derivations on \mathcal{U} on Banach algebras \mathcal{U} so that \mathcal{U}^{2} is dense in \mathcal{U}, where $\mathcal{U}^{2}=\operatorname{span}\{x y: x, y \in \mathcal{U}\}$. The relationship between \mathfrak{D}-derivations on \mathcal{U} and their extensions to the unitization \mathcal{U}^{\sharp} are studied in Proposition 2.2. In this context, inner \mathfrak{D}-derivations on \mathcal{U} are characterized in Corollary 2.1 Finally, in Proposition 2.3 we characterize \mathfrak{D}-derivations on dual Banach algebras.

2. On \mathfrak{D}-derivations

Definition 2.1. A derivation $d \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ is called a \mathfrak{D}-derivation on \mathcal{U} if $\langle x, d(x)\rangle=0$ for all $x \in \mathcal{U}$. Let $\mathfrak{D}(\mathcal{U})$ be the set of \mathfrak{D}-derivations on \mathcal{U}.

Example 2.1. All inner \mathcal{U}^{*}-valued derivations on \mathcal{U} are \mathfrak{D}-derivations on \mathcal{U}.
Example 2.2. Let $\mathcal{U} \triangleq C_{0}^{(1)}[a, b]$ be the commutative Banach algebra of functions $x:[a, b] \rightarrow \mathbb{C}$ with continuous derivative \dot{x} so that $x(a)=x(b)$ endowed with the norm $\|x\| \triangleq\|x\|_{\infty}+\|\dot{x}\|_{\infty}$. Then we define $d: \mathcal{U} \rightarrow \mathcal{U}^{*}$ as

$$
\langle y, d(x)\rangle=\int_{a}^{b} y d x \quad \text { if } x, y \in \mathcal{U}
$$

The above Riemann-Stieltjes integral is well defined, d becomes clearly a \mathbb{C}-linear functional and

$$
|\langle y, d(x)\rangle| \leqslant \int_{a}^{b}|y| d|x| \leqslant\|y\|_{\infty} \mid \dot{x}\left\|_{\infty} \leqslant\right\| y\| \| x \|
$$

i.e., $d \in \mathcal{B}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ and $\|d(x)\| \leqslant\|x\|$ for all $x \in \mathcal{U}$. Indeed,

$$
\begin{aligned}
\left\langle y, d\left(x_{1} x_{2}\right)\right\rangle & =\int_{a}^{b} y \frac{d}{d t}\left(x_{1} x_{2}\right) d t \\
& =\int_{a}^{b} y\left(\frac{d x_{1}}{d t} x_{2}+x_{1} \frac{d x_{2}}{d t}\right) d t \\
& =\int_{a}^{b} y x_{2} d x_{1}+\int_{a}^{b} y x_{1} d x_{2} \\
& =\left\langle y x_{2}, d\left(x_{1}\right)\right\rangle+\left\langle y x_{1}, d\left(x_{2}\right)\right\rangle \\
& =\left\langle y, d\left(x_{1}\right) x_{2}+x_{1} d\left(x_{2}\right)\right\rangle
\end{aligned}
$$

i.e., $d \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$. Certainly, it is a nonzero \mathfrak{D}-derivation since for $x \in \mathcal{U}$ we see that

$$
\langle x, d(x)\rangle=\int_{a}^{b} x \frac{d x}{d t} d t=\left.\frac{x^{2}}{2}\right|_{a} ^{b}=0
$$

Further, d is not inner because \mathcal{U} is abelian and so $\mathcal{N}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)=\{0\}$.
Remark 2.1. Given a dual Banach pair $(\mathfrak{X}, \mathfrak{Y},\langle\circ, \circ\rangle)$ by the universal property characteristic of general tensor products there is a unique operation on $\mathfrak{X} \otimes \mathfrak{Y}$ so that

$$
\left(x_{1} \otimes y_{1}\right)\left(x_{2} \otimes y_{2}\right)=\left\langle x_{2}, y_{1}\right\rangle\left(x_{1} \otimes y_{2}\right) \text { if } x_{1}, x_{2} \in \mathfrak{X}, y_{1}, y_{2} \in \mathfrak{Y} .
$$

Then $\mathfrak{X} \otimes \mathfrak{Y}$ becomes an algebra. Further, if for $u \in \mathfrak{X} \otimes \mathfrak{Y}$ we write

$$
\|u\|_{\pi}=\inf \left\{\sum_{j=1}^{n}\left\|x_{j}\right\|\left\|y_{j}\right\|: u=\sum_{j=1}^{n} x_{j} \otimes y_{j}\right\}
$$

then $\left(\mathfrak{X} \otimes \mathfrak{Y},\|\circ\|_{\pi}\right)$ becomes a normed algebra. The completion of this algebra is the well known projective Banach tensor algebra $\mathfrak{X} \hat{\otimes} \mathfrak{Y}$ (cf. [8, B.2.2, p. 250]). Then, $\mathfrak{X} \hat{\otimes} \mathfrak{Y}$ is amenable if and only if $\operatorname{dim}(\mathfrak{X})=\operatorname{dim}(\mathfrak{Y})<\infty(c f .[\mathbf{8}$, Th. 4.3.5, p. 98]). So, if \mathfrak{X} is an infinite dimensional Banach space the determination of structure theorems of bounded derivations on $\mathfrak{X} \hat{\otimes} \mathfrak{X}^{*}$ has its own interest. Moreover, several Banach operator algebras can be represented as certain tensor products of the above type. For instance, if the Banach space \mathfrak{X} has the approximation property, then $\mathcal{N}_{\mathfrak{X}}(\mathfrak{X}) \approx \mathfrak{X} \hat{\otimes} \mathfrak{X}^{*}$, where \approx denotes an isometric isomorphism and $\mathcal{N}_{\mathfrak{X}}{ }^{*}(\mathfrak{X})$ is the Banach space of \mathfrak{X}^{*}-nuclear operators on \mathfrak{X} (cf. [8 Th. C.1.5, p. 256]). In this setting the authors recently researched on structure theorems and properties of derivations on some non-amenable nuclear Banach algebras (see [1]).

Proposition 2.1. Let \mathfrak{X} is an infinite dimensional Banach space endowed with and shrinking basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ and an associated sequence of coefficient functionals $\left\{x_{n}^{*}\right\}_{n=1}^{\infty}$ and let $\mathcal{U} \triangleq \mathfrak{X} \hat{\otimes} \mathfrak{X}^{*}$. Then $\mathfrak{D}(\mathcal{U}) \supseteq \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$.

Proof. Let $d \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$. The system of basic tensor products $z_{n, m} \triangleq$ $x_{n} \otimes x_{m}^{*}$ can be arranged into a basis $\left\{z_{n, m}\right\}_{n, m=1}^{\infty}$ of $\mathfrak{X} \hat{\otimes} \mathfrak{X}^{*}$ (the reader can see [9], or else [10] Th. 18.1, p. 172]). Given $p, q, r, s, t \in \mathbb{N}$ we have

$$
\begin{align*}
\left\langle z_{p, q}, d\left(z_{r, t}\right)\right\rangle & =\left\langle z_{p, q}, d\left(z_{r, s}\right) \cdot z_{s, t}+z_{r, s} \cdot d\left(z_{s, t}\right)\right\rangle \tag{2.1}\\
& =\left\langle z_{s, t} \cdot z_{p, q}, d\left(z_{r, s}\right)\right\rangle+\left\langle z_{p, q} \cdot z_{r, s}, d\left(z_{s, t}\right)\right\rangle \\
& =\delta_{p, t}\left\langle z_{s, q}, d\left(z_{r, s}\right)\right\rangle+\delta_{q, r}\left\langle z_{p, s}, d\left(z_{s, t}\right)\right\rangle,
\end{align*}
$$

where δ denotes the usual Kronecker's symbol. By 2.1), $\left\langle z_{p, q}, d\left(z_{r, t}\right)\right\rangle=0$ if $p \neq t$ and $q \neq r$. Using 2.1 we also get

$$
\begin{equation*}
\left\langle z_{p, q}, d\left(z_{q, p}\right)\right\rangle=\left\langle z_{s, q}, d\left(z_{q, s}\right)\right\rangle+\left\langle z_{p, s}, d\left(z_{s, p}\right)\right\rangle \tag{2.2}
\end{equation*}
$$

if $p, q, s \in \mathbb{N}$. By 2.2 we see that

$$
\begin{equation*}
\left\langle z_{p, p}, d\left(z_{p, p}\right)\right\rangle=0 \quad \text { if } p \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

On the other hand, by (2.1) we obtain

$$
\begin{equation*}
\left\langle z_{p, q}, d\left(z_{p, q}\right)\right\rangle=0 \quad \text { if } p, q \in \mathbb{N}, p \neq q \tag{2.4}
\end{equation*}
$$

Now, let F be a finite subset of $\mathbb{N} \times \mathbb{N},\left\{\lambda_{(n, m)}\right\}_{(n, m) \in F} \subseteq \mathbb{C}$ and let

$$
u=\sum_{(n, m) \in F} \lambda_{(n, m)} z_{n, m}
$$

By (2.3) and (2.4) we see that

$$
\begin{equation*}
\langle u, d(u)\rangle=\sum_{(n, m),(p, q) \in F} \lambda_{(n, m)} \lambda_{(p, q)}\left[\left\langle z_{n, m}, d\left(z_{p, q}\right)\right\rangle+\left\langle z_{p, q}, d\left(z_{n, m}\right)\right\rangle\right] . \tag{2.5}
\end{equation*}
$$

As we already observed, those summands in 2.5 so that $n \neq q$ and $m \neq p$ are zero. By symmetry, it suffices to consider $n=q$ and then

$$
\begin{aligned}
\left\langle z_{n, m}, d\left(z_{p, n}\right)\right\rangle+\left\langle z_{p, n}, d\left(z_{n, m}\right)\right\rangle & =\left\langle z_{n, n}, z_{n, m} \cdot d\left(z_{p, n}\right)+d\left(z_{n, m}\right) \cdot z_{p, n}\right\rangle \\
& =\left\langle z_{n, n}, d\left(z_{n, n}\right)\right\rangle \\
& =0 .
\end{aligned}
$$

Consequently $\langle u, d(u)\rangle=0$. Finally, the result holds since $u \rightarrow\langle u, d(u)\rangle$ is continuous on \mathcal{U} and $\mathfrak{X} \otimes \mathfrak{X}^{*}$ is dense in \mathcal{U}.

EXAmple 2.3. Let $\mathcal{U} \triangleq l^{p} \widehat{\otimes} l^{q}$, with $1<p, q<\infty, 1 / p+1 / q=1$. If $x \in l^{p}$, $x^{*} \in l^{q}$ let

$$
\underline{d}_{x, x^{*}}: l^{p} \times l^{q} \rightarrow \mathbb{C}, \underline{d}_{x, x^{*}}\left(y, y^{*}\right) \triangleq\left\langle x, y^{*}\right\rangle-\left\langle y, x^{*}\right\rangle .
$$

Then $\underline{d}_{x, x^{*}} \in \mathcal{B}^{2}\left(l^{p}, l^{q}, \mathbb{C}\right)$, i.e., $\underline{d}_{x, x^{*}}$ is a bounded bilinear form between $l^{p} \times l^{q}$ and \mathbb{C}. By the universal characteristic property of the projective tensor product of Banach spaces there is a unique $\bar{d}_{x, x^{*}} \in \mathcal{U}^{*}$ so that $\left\|\bar{d}_{x, x^{*}}\right\|=\left\|\underline{d}_{x, x^{*}}\right\|$ and $\left\langle y \otimes y^{*}, \bar{d}_{x, x^{*}}\right\rangle=\underline{d}_{x, x^{*}}\left(y, y^{*}\right)$ if $y \in l^{p}, y^{*} \in l^{q}$. The following map is then induced

$$
\bar{d}: l^{p} \times l^{q} \rightarrow \mathcal{U}^{*}, \bar{d}\left(x, x^{*}\right) \triangleq \bar{d}_{x, x^{*}} .
$$

It is readily seen that $\bar{d} \in \mathcal{B}^{2}\left(l^{p}, l^{q}, \mathcal{U}^{*}\right)$ and so there is a unique $d \in \mathcal{B}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ so that $\|d\|=\|\bar{d}\|$ and $d\left(x \otimes x^{*}\right)=\bar{d}\left(x, x^{*}\right)$ if $x \in l^{p}, x^{*} \in l^{q}$. Consequently, the following identity

$$
\left\langle y \otimes y^{*}, d\left(x \otimes x^{*}\right)\right\rangle=\left\langle x, y^{*}\right\rangle-\left\langle y, x^{*}\right\rangle
$$

holds if $x, y \in l^{p}$ and $x^{*}, y^{*} \in l^{q}$. It is straightforward to see that $d \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ and hence it is a \mathfrak{D}-derivation. Let us see that $d \notin \mathcal{N}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$. For, let us assume that d is inner, say $d=\operatorname{ad}_{T}$ for some $T \in \mathcal{U}^{*}$. Let us consider the usual basis $\left\{x_{n}\right\}_{n=1}^{\infty}$ of $l^{p}, x_{n}=\left\{\delta_{n, m}\right\}_{m=1}^{\infty}$ if $n \in \mathbb{N}$. So, $\left\{x_{n}\right\}_{n=1}^{\infty}$ is obviously a shrinking basis and its associated sequence of coefficient functionals are $x_{n}^{*}=\left\{\delta_{n, m}\right\}_{m=1}^{\infty}$ if $n \in \mathbb{N}$. With the notation of Proposition 2.1. since $\left\langle z_{n, m}, d\left(z_{p, q}\right)\right\rangle=\delta_{m, p}-\delta_{n, q}^{m=1}$ for all $n, m, p, q \in \mathbb{N}$ we deduce that $T\left(z_{n, m}\right)=1$ if $n, m \in \mathbb{N}$ and $n \neq m$. However, let us write

$$
u \triangleq \frac{1}{\zeta(q)^{1 / q}} \sum_{n=1}^{\infty} \frac{1}{n} \cdot z_{1,1+n}
$$

where ζ denotes the Riemann zeta function. Then $u \in \mathcal{U}$ is well defined,

$$
\begin{aligned}
\|u\|_{\pi} & =\lim _{N \rightarrow \infty}\left\|\frac{1}{\zeta(q)^{1 / q}} \sum_{n=1}^{N} \frac{1}{n} \cdot z_{1,1+n}\right\|_{\pi} \\
& =\frac{1}{\zeta(q)^{1 / q}} \lim _{N \rightarrow \infty}\left\|x_{1} \otimes \sum_{n=1}^{N} \frac{1}{n} x_{n+1}^{*}\right\|_{\pi} \\
& =\frac{1}{\zeta(q)^{1 / q}} \lim _{N \rightarrow \infty}\left\|\sum_{n=1}^{N} \frac{1}{n} x_{n+1}^{*}\right\|_{l^{q}} \\
& =1
\end{aligned}
$$

and as

$$
T(u)=\frac{1}{\zeta(q)^{1 / q}} \sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

then T can not be bounded.
Theorem 2.1. Let \mathcal{U} be a Banach algebra so that \mathcal{U}^{2} is dense in \mathcal{U}. Let us denote $k_{\mathcal{U}}: \mathcal{U} \hookrightarrow \mathcal{U}^{* *}$ to the usual isometric embedding of \mathcal{U} into its second dual space $\mathcal{U}^{* *}$ by means of evaluations. Given $d \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ the following assertions are equivalent:
(i) $d \in \mathfrak{D}(\mathcal{U})$.
(ii) $\langle x, d(y)\rangle+\langle y, d(x)\rangle=0$ for all $x, y \in \mathcal{U}$.
(iii) $d^{*} \circ k_{\mathcal{U}} \in \mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$.
(iv) $d+d^{*} \circ k_{\mathcal{U}}=0$.

Proof. (i) \Rightarrow (ii) Given $x, y \in \mathcal{U}$ we have

$$
0=\langle x+y, d(x+y)\rangle=\langle x, d(y)\rangle+\langle y, d(x)\rangle .
$$

(ii) \Rightarrow (iii) If $x, y, z \in \mathcal{U}$ we have

$$
\begin{aligned}
\left\langle z,\left(d^{*} \circ k_{\mathcal{U}}\right)(x y)\right\rangle & =\left\langle\left(d(z), k_{\mathcal{U}}(x y)\right)\right\rangle \\
& =\langle x y, d(z)\rangle \\
& =\langle x, y d(z)\rangle \\
& =\langle x, d(y z)-d(y) z\rangle \\
& =\langle x, d(y z)\rangle-\langle z x, d(y)\rangle \\
& =\left\langle d(y z), k_{\mathcal{U}}(x)\right\rangle+\langle y, d(z x)\rangle \\
& =\left\langle y z, d^{*}\left(k_{\mathcal{U}}(x)\right)\right\rangle+\left\langle d(z x), k_{\mathcal{U}}(y)\right\rangle \\
& =\left\langle z, d^{*}\left(k_{\mathcal{U}}(x)\right) y\right\rangle+\left\langle z, x d^{*}\left(k_{\mathcal{U}}(y)\right)\right\rangle \\
& =\left\langle z,\left(d^{*} \circ k_{\mathcal{U}}\right)(x) y+x\left(d^{*} \circ k_{\mathcal{U}}\right)(y)\right\rangle .
\end{aligned}
$$

(iii) \Rightarrow (iv) For $x, y, z \in \mathcal{U}$ we have

$$
\begin{aligned}
\langle x y, d(z)\rangle & =\left\langle d(z), k_{\mathcal{U}}(x y)\right\rangle \\
& =\left\langle z,\left(d^{*} \circ k_{\mathcal{U}}\right)(x y)\right\rangle \\
& =\left\langle z,\left(d^{*} \circ k_{\mathcal{U}}\right)(x) y+x\left(d^{*} \circ k_{\mathcal{U}}\right)(y)\right\rangle \\
& =\left\langle y z,\left(d^{*} \circ k_{\mathcal{U}}\right)(x)\right\rangle+\left\langle z x,\left(d^{*} \circ k_{\mathcal{U}}\right)(y)\right\rangle \\
& =\langle x, d(y) z+y d(z)\rangle+\langle y, d(z) x+z d(x)\rangle \\
& =\langle z x, d(y)\rangle+2\langle x y, d(z)\rangle+\langle y z, d(x)\rangle .
\end{aligned}
$$

Therefore,

$$
\langle z, d(x y)\rangle=-\langle x y, d(z)\rangle=-\left\langle d(z), k_{\mathcal{U}}(x y)\right\rangle=-\left\langle z,\left(d^{*} \circ k_{\mathcal{U}}\right)(x y)\right\rangle
$$

i.e., $\left(d+d^{*} \circ k_{\mathcal{U}}\right)(x y)=0$ if $x, y \in \mathcal{U}$. Since \mathcal{U}^{2} is dense in \mathcal{U} the claim follows.
(iv) \Rightarrow (i) If $x \in \mathcal{U}$ then

$$
0=\left\langle x, d(x)+\left(d^{*} \circ k_{\mathcal{U}}\right)(x)\right\rangle=2\langle x, d(x)\rangle
$$

Proposition 2.2. Let \mathcal{U} be a Banach algebra and let $d \in \mathfrak{D}(\mathcal{U})$. There is a unique $d^{\sharp} \in \mathfrak{D}\left(\mathcal{U}^{\sharp}\right)$ so that the following diagram commutes

Proof. Consider $d^{\sharp} \triangleq p^{*} \circ d \circ p$. Thus, $d^{\sharp} \in \mathcal{B}\left(\mathcal{U}^{\sharp},\left(\mathcal{U}^{\sharp}\right)^{*}\right)$ and $d^{\sharp} \circ j=p^{*} \circ d$. If $\eta, \mu \in \mathcal{U}^{\sharp}$ we get

$$
\begin{equation*}
\left\langle\eta, d^{\sharp}(\eta)\right\rangle=\langle p(\eta), d(p(\eta))\rangle=0 \tag{2.6}
\end{equation*}
$$

and if $\eta=a e+j(x), \mu=b e+j(y)$ for uniquely determined $a, b \in \mathbb{C}$ and $x, y \in \mathcal{U}$ then

$$
\begin{align*}
d^{\sharp}(\eta) \mu+\eta d^{\sharp}(\mu) & =p^{*}(d(x))(b e+j(y))+(a e+j(x)) p^{*}(d(y)) \tag{2.7}\\
& =(\langle y, d(x)\rangle+\langle x, d(y)\rangle) e^{*}+p^{*}(a d(y)+b d(x)+d(x y) \\
& =a d^{\sharp}(y)+b d^{\sharp}(x)+p^{*}(d(x y)) \\
& =p^{*}(d(a y+b x+x y)) \\
& =d^{\sharp}(\eta \mu) .
\end{align*}
$$

Thus, by 2.6 and 2.7 we conclude that $d^{\sharp} \in \mathfrak{D}\left(\mathcal{U}^{\sharp}\right)$. As we already observed, $j \circ p$ projects \mathcal{U}^{\sharp} onto $j(\mathcal{U})$. Since $j(\mathcal{U})$ is complemented in \mathcal{U}^{\sharp} by $\mathbb{C} \cdot e$ then d^{\sharp} is uniquely determined.

Corollary 2.1. A \mathfrak{D}-derivation on \mathcal{U} is inner if and only if its associated derivation $d^{\sharp}: \mathcal{U}^{\sharp} \rightarrow\left(\mathcal{U}^{\sharp}\right)^{*}$ by Proposition 2.2 is inner.

Proof. Let $x^{*} \in \mathcal{U}^{*}, a \in \mathbb{C}$. Hence, it is easy to see that $\left(\operatorname{ad}_{x^{*}}\right)^{\sharp}=\operatorname{ad}_{p^{*}\left(x^{*}\right)}$ and if $d^{\sharp}=\operatorname{ad}_{a e^{*}+p^{*}\left(x^{*}\right)}$, then $d=\operatorname{ad}_{x^{*}}$.

Remark 2.2. Let us consider a dual Banach algebra \mathcal{U}, i.e., $\mathcal{U} \approx\left(\mathcal{U}_{*}\right)^{*}$, where \mathcal{U}_{*} is a closed submodule of \mathcal{U}^{*}. Although \mathcal{U}_{*} need not be unique, we will assume that \mathcal{U} is realized as the dual space of a fixed closed submodule \mathcal{U}_{*} of \mathcal{U}^{*}. It is known that a dual Banach algebra has a unit if and only if it has a bounded approximate identity (see [7 Prop. 1.2]).

Proposition 2.3. Let \mathcal{U} be a dual Banach algebra with unit and let $d \in$ $\mathcal{Z}^{1}\left(\mathcal{U}, \mathcal{U}^{*}\right)$ so that $d(\mathcal{U}) \subseteq k_{\mathcal{U}_{*}}\left(\mathcal{U}_{*}\right)$. Then $d \in \mathfrak{D}(\mathcal{U})$ if and only if $d^{*}+d \circ k_{\mathcal{U}_{*}}^{*}=0$.

Proof. (\Rightarrow) Given $x \in \mathcal{U}$ let $x_{*} \in \mathcal{U}_{*}$ be the unique element so that $d(x)=$ $k_{\mathcal{U}_{*}}\left(x_{*}\right)$. If $x^{* *} \in \mathcal{U}^{* *}$ by Theorem 2.1 (iv) we have

$$
\begin{aligned}
\left\langle x,\left(d \circ k_{\mathcal{U}_{*}}^{*}\right)\left(x^{* *}\right)\right\rangle & =\left\langle d\left(k_{\mathcal{U}_{*}}^{*}\left(x^{* *}\right)\right), k_{\mathcal{U}}(x)\right\rangle \\
& =\left\langle k_{\mathcal{U}_{*}}^{*}\left(x^{* *}\right),\left(d^{*} \circ k_{\mathcal{U}}\right)(x)\right\rangle \\
& =-\left\langle k_{\mathcal{U}_{*}}^{*}\left(x^{* *}\right), d(x)\right\rangle \\
& =-\left\langle x_{*}, k_{\mathcal{U}_{*}}^{*}\left(x^{* *}\right)\right\rangle \\
& =-\left\langle k_{\mathcal{U}_{*}}\left(x_{*}\right), x^{* *}\right\rangle \\
& =-\left\langle d(x), x^{* *}\right\rangle \\
& =-\left\langle x, d^{*}\left(x^{* *}\right)\right\rangle .
\end{aligned}
$$

(\Leftarrow) If $x, y \in \mathcal{U}$ we obtain

$$
\left\langle y,\left(d^{*} \circ k_{\mathcal{U}}\right)(x)\right\rangle=-\left\langle y,\left(d \circ k_{\mathcal{U}_{*}}^{*} \circ k_{\mathcal{U}}\right)(x)\right\rangle=-\langle y, d(x)\rangle,
$$

i.e., $d+d^{*} \circ k_{\mathcal{U}}=0$ and our claim follows.

Acknowledgement. The authors express their recognition to the reviewer for his care reading of this manuscript and his insight to improve their results.

References

[1] A.L. Barrenechea, C.C. Peña, On the structure of derivations on certain non-amenable nuclear Banach algebras, New York J. Math. 15 (2009), 199-209; Zbl pre05561324.
[2] W. Bade, P. C. Curtis, H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. (3) 55 (1987), 359-377; Zbl 0634.46042.
[3] H. G. Dales, F. Ghahramani, N. Grønbæk, Derivations into iterated duals of Banach algebras, Stud. Math. 128, 1 (1998), 19-54; Zlb 0903.46045.
[4] A. Guichardet, Sur l'homologie et la cohomologie des algèbres de Banach, C. R. Acad. Sci. Paris, Ser. A 262 (1966), 38-42; Zlb 0131.13101.
[5] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127, 1972; MR 51\#11130.
[6] H. Kamowitz, Cohomology groups of commutative Banach algebras, Trans. Amer. Math. Soc. 102, 1962, 352-372; MR 30\#458.
[7] V. Runde, Amenability for dual Banach algebras, Stud. Math. 148 (2001), 47-66.
[8] V. Runde, Lectures on amenability, Lect. Notes Math. 1774 (2002), Springer-Verlag, Berlin, xiv+296 pp. ISBN 3-540-42852-6, MR 1874893 (2003h:46001), Zlb 0999.46022.
[9] R. Schatten, A theory of cross spaces, Ann. Math. Stud. 26, Princeton University Press, 1950, vii+153 pp; MR 0036935 (12,186e), Zlb 0041.43502.
[10] I. Singer, Bases in Banach spaces. I, Grundlehren Math. Wiss. 154, Springer-Verlag, New York and Berlin, 1970, viii+668 pp; MR 0298399 (45\#7451), Zlb 0198.16601.

NUCOMPA - Departamento de Matemáticas
(Received 1009 2008)
Universidad Nacional del Centro
(Revides 2007 2009)
Tandil
Argentina
analucia@exa.unicen.edu.ar ccpenia@exa.unicen.edu.ar

[^0]: 2000 Mathematics Subject Classification: 46H35, 47D30.
 Key words and phrases: Dual Banach algebras, approximation property, dual Banach pairs, nuclear operators, shrinking basis and associated sequence of coefficient functionals.

