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Abstract. A nine-stage multi-derivative Runge–Kutta method of order 12,
called HBT(12)9, is constructed for solving nonstiff systems of first-order dif-
ferential equations of the form y′ = f(x, y), y(x0) = y0. The method uses
y′ and higher derivatives y(2) to y(6) as in Taylor methods and is combined
with a 9-stage Runge–Kutta method. Forcing an expansion of the numerical
solution to agree with a Taylor expansion of the true solution leads to or-
der conditions which are reorganized into Vandermonde-type linear systems
whose solutions are the coefficients of the method. The stepsize is controlled
by means of the derivatives y(3) to y(6). The new method has a larger interval
of absolute stability than Dormand–Prince’s DP(8,7)13M and is superior to
DP(8,7)13M and Taylor method of order 12 in solving several problems often
used to test high-order ODE solvers on the basis of the number of steps, CPU
time, maximum global error of position and energy. Numerical results show
the benefits of adding high-order derivatives to Runge–Kutta methods.

1. Introduction

A Taylor method of order 6, denoted by T6, and a 9-stage Runge–Kutta method
of order 7 are cast into a nine-stage multi-derivative Runge–Kutta method of order
12, named HBT(12)9 because it uses Hermite–Birkhoff interpolation polynomials
and high-order derivatives, y(2) to y(6), for solving nonstiff systems of first-order
initial value problems of the form

(1) y′ = f(x, y), y(x0) = y0, where ′ = d
dx
.
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The link between the two types of methods is that values at off-step points are
obtained by means of predictors which use values of derivatives of different orders
at the current step point. By construction, HBT(12)9 uses lower order derivatives
than the traditional Taylor method of order 12, denoted by T12 [16].

Taylor methods have been an excellent choice in astronomical calculations [3]
and sensitivity analysis of ODEs/DAEs [2], and in solving general problems [7] and
validating solutions of ODEs/DAEs by means of interval analysis [14, 17]. Deprit
and Zahar [9] proved that recurrent power series in Taylor methods achieve high
accuracy, with less computing time and larger stepsize than other methods.

The high-order derivatives used by HBT(12)9 can be obtained by differentiat-
ing f(x, y(x)) in the right-hand side of equation (1). But this approach is useful
only in theoretical studies because of the computational complexity of high-order
derivatives. Following Steffensen’s pioneering work [27, 25], fast automatic dif-
ferentiation (AD) techniques are used to compute sums, differences, products and
powers of power series, to name but a few (see [3, 16], and references therein). For-
mulae for generating these high-order derivatives can be found in textbooks (see,
for instance, [12, pp. 46–49]).

Forcing an expansion of the numerical solution to agree with a Taylor expansion
of the true solution leads to order conditions which are reorganized into linear
Vandermonde-type systems leading to a convenient matrix formulation to handle
order conditions. The solutions of these systems are the coefficients of the formulae
which make HBT(12)9. These coefficients, which are available from the authors,
were obtained to 32 digits by Gaussian elimination with Matlab variable precision
arithmetic (VPA) for increased accuracy at stringent tolerance and use in extended
precision computation.

The C++ performances of HBT(12)9, Dormand–Prince DP(8,7)13M [24] and
T12, were compared on several problems frequently used to test higher order ODE
solvers. It is seen that, generally, HBT(12)9 requires fewer steps, uses less CPU
time, and has higher accuracy than DP(8,7)13M and T12.

Section 2 introduces HBT(12)9. Order conditions are listed in Section 3. In
Section 4, HBT(12)9 is represented in terms of Vandermonde-type systems. Sec-
tion 5 considers the region of absolute stability of the method. Section 6 deals with
the step control. Numerical results are presented in Section 7.

2. One-step HBT(12)9

HBT(12)9 requires eight predictors and an integration formula to perform the
integration step from xn to xn+1.

Let Fj := f(xn + cjhn+1, Yj) and set Y1 = yn. Then the predictors Pl,

(2) Yl = yn + hn+1

l−1∑
j=1
aljFj +

6∑
j=2
hjn+1γljy

(j)
n , l = 2, 3, . . . , 9,

are obtained recursively by means of Hermite–Birkhoff polynomials of degree l+ 4,
to order 6 for l = 2, order 7 for l = 3, and order 8 for l = 4, . . . , 9, respectively.
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A Hermite–Birkhoff polynomial of degree 12 is used as integration formula IF
to obtain yn+1 to order 12,

(3) yn+1 = yn + hn+1

9∑
j=1
bjFj +

6∑
j=2
hjn+1γjy

(j)
n .

One sees that the derivatives y(2)
n to y(6)

n are computed only once per step at xn.
The defining formulae of HBT(12)9 involve the usual Runge–Kutta parameters ci,
aij and bj and the Taylor expansion parameters γlj .

3. Order conditions for HBT(12)9

We impose the following simplifying assumptions on HBT(12)9 (with γi1 = 0):
9∑

i=j+1
biaij = bj(1− cj), j = 2, . . . , 8,(4)

b2 = b3 = 0, ai2 = 0, i = 4, · · · , 9,
i−1∑
j=1
aijc

k
j + k!γi,k+1 = 1

k + 1
ck+1
i ,

{
i = 2, 3, . . . , 9,
k = 0, 1, . . . , 5,

i−1∑
j=1
aijc

6
j + 6!γi7 = 1

7
c7i , i = 3, . . . , 9,

i−1∑
j=1
aijc

7
j + 7!γi8 =

1
8
c8i , i = 4, . . . , 9.

There remain seven sets of equations to be solved [5]:
9∑
i=1
bic
k
i + k!γk+1 = 1

k + 1
, k = 0, 1, . . . , 11,(5)

b8(1− c8)a87c
6
7(c7 − c4)(c7 − c5)(c7 − c6)(6)

= 9!
(

1
11!
− 11

12!

)
− 8!
(

1
10!
− 10

11!

)
(c4 + c5 + c6)

+7!
(

1
9!
− 9

10!

)
(c4c5 + c4c6 + c5c6)− 6!

(
1
8!
− 8

9!

)
c4c5c6,

b7(1− c7)(c8 − c7)a76c
6
6(c6 − c4)(c6 − c5)(7)

= 8!
(
c8
10!
− (1 + c8) 10

11!
+ 10 11

12!

)

−7!
(
c8
9!
− (1 + c8) 9

10!
+ 9 10

11!

)
(c4 + c5) + 6!

(
c8
8!
− (1 + c8) 8

9!
+ 8 9

10!

)
c4c5,

b8(1− c8)a87c
6
7(c7 − c4)(c7 − c5) + b8(1− c8)a86c

6
6(c6 − c4)(c6 − c5)(8)

+b7(1− c7)a76c
6
6(c6 − c4)(c6 − c5)
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=
(

8!
10!
− 10 8!

11!

)
− (c4 + c5)

(
7!
9!
− 9 7!

10!

)
+ c4c5

(
6!
8!
− 86!

9!

)
,

7∑
i=4
bi(1− ci)(c8 − ci)ai3 = 0,(9)

8∑
i=4
bi(1 − ci)ai3 = 0,(10)

8∑
i=5
bi(1− ci)

i−1∑
j=4
aijaj3 = 0.(11)

The left-hand side of equation (6) is the result of the following expression similar
to the left-hand side of Eq. (335j) in Butcher [6, pp. 206]:

(12)
9∑
i=1

i−1∑
k=1

bi(1 − ci)aikc6k(ck − c4)(ck − c5)(ck − c6).

It is known that many terms in an expression of this form vanish (see [5]).
Expression (12) can also be written in terms of both sides of equations given

in Appendix 8:
9∑
i=1

i−1∑
k=1

bi(1− ci)aik c9k −
[ 9∑
i=1

i−1∑
k=1

bi(1 − ci)aik c8k
]
(c4 + c5 + c6)

+
[ 9∑
i=1

i−1∑
k=1

bi(1 − ci)aik c7k
]
(c4c5 + c4c6 + c5c6)

−
[ 9∑
i=1

i−1∑
k=1

bi(1 − ci)aik c6k
]
c4c5c6

= 9!
(

1
11!
− 11

12!

)
− 8!
(

1
10!
− 10

11!

)
(c4 + c5 + c6)

+ 7!
(

1
9!
− 9

10!

)
(c4c5 + c4c6 + c5c6)− 6!

(
1
8!
− 8

9!

)
c4c5c6,

= 9!(Eq.(45)− 8!(Eq.(33)− Eq.(41))(c4 + c5 + c6)
+ 7!(Eq.(27)− Eq.(31))(c4c5 + c4c6 + c5c6)
− 6!(Eq.(24)− Eq.(26))c4c5c6,

since

c6k(ck−c4)(ck−c5)(ck−c6) = c9k−c8k(c4 +c5 +c6)+c7k(c4c5 +c4c6 +c5c6)+c6kc4c5c6
and

9∑
i=1

i−1∑
k=1

bi(1− ci)aik c9k = 9!
(

1
11!
− 11

12!

)
= 9![Eq.(45)− Eq.(61)],
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9∑
i=1

i−1∑
k=1

bi(1− ci)aik c8k = 8!
(

1
10!
− 10

11!

)
= 8![Eq.(33)− Eq.(41)],

9∑
i=1

i−1∑
k=1

bi(1− ci)aik c7k = 7!
(

1
9!
− 9

10!

)
= 7![Eq.(27)− Eq.(31)],

9∑
i=1

i−1∑
k=1

bi(1− ci)aik c6k = 6!
(

1
8!
− 8

9!

)
= 6![Eq.(24)− Eq.(26)].

Similarly, equations (7) and (8) are the results of the following two equations
written in terms of equations given in Appendix 8, respectively:

9∑
i=1

i−1∑
k=1

bi(1 − ci)(c8 − ci)aikc6k(ck − c4)(ck − c5)

= c8
9∑
i=1

i−1∑
k=1

biaik c
8
k − (1 + c8)

9∑
i=1

i−1∑
k=1

biciaik c
8
k +

9∑
i=1

i−1∑
k=1

bic
2
i aik c

8
k

+
[
c8

9∑
i=1

i−1∑
k=1

biaik c
7
k − (1 + c8)

[ 9∑
i=1

i−1∑
k=1

biciaik c
7
k

]
+

9∑
i=1

i−1∑
k=1

bic
2
i aik c

7
k

]
(c4 + c5)

+
[
c8

9∑
i=1

i−1∑
k=1

biaik c
6
k − (1 + c8)

[ 9∑
i=1

i−1∑
k=1

biciaik c
6
k

]
+

9∑
i=1

i−1∑
k=1

bic
2
i aik c

6
k

]
(c4c5)

= 8!
[
c8
10!
− (1 + c8) 10

11!
+ 10 11

12!

]
− 7!
[
c8
9!
− (1 + c8) 9

10!
+ 9 10

11!

]
(c4 + c5)

+ 6!
[
c8
8!
− (1 + c8) 8

9!
+ 8 9

10!

]
c4c5

= 8![c8Eq.(33)− (1 + c8)Eq.(41) + Eq.(57)]
− 7![c8Eq.(27)− (1 + c8)Eq.(31) + Eq.(39)](c4 + c5)
+ 6![c8Eq.(24)− (1 + c8)Eq.(26) + Eq.(30)](c4c5),

9∑
i=1

i−1∑
k=1

bi(1− ci)aikc6k(ck − c4)(ck − c5)

=
9∑
i=1

i−1∑
k=1

bi(1− ci)aik c8k −
[ 9∑
i=1

i−1∑
k=1

bi(1− ci)aik c7k
]
(c4 + c5)

+
[ 9∑
i=1

i−1∑
k=1

bi(1− ci)aik c6k
]
c4c5

=
(

8!
10!
− 10 8!

11!

)
−
(

7!
9!
− 9 7!

10!

)
(c4 + c5) +

(
6!
8!
− 86!

9!

)
c4c5,

= 8![Eq.(33)− Eq.(41)]− 7![Eq.(27)− Eq.(31)](c4 + c5)
+ 6![Eq.(24)− Eq.(26)]c4c5.
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The nine off-step points used in this paper are

c1 = 0,
c2 = 0.34503974134180500927399082300440,
c3 = 0.39433113296206286774170379771931,
c4 = 0.45066415195664327741909005453635,
c5 = 0.57269051227003684445548969961237,
c6 = 0.28748636281590601727973892774720,
c7 = 0.71586314033754605556936212451546,
c8 = 0.91039578463195369728566674893955,
c9 = 1,

(13)

which are chosen as follows.
Integration formula (3) contains 10 free parameters (bj, j = 1, 4, 7, 8, 9, and γj ,

j = 2, 3, . . . , 6) and three free abscissae (x + hcj, j = 4, 7, 8) for a total of 13 free
parameters, while x+hc1 = x and x+hc9 = x+h are fixed abscissae and the three
parameters c2, c3 and c6 are to be determined later. Thus the formula is of order
13 since the five off-step points, cj , j = 1, 4, 7, 8, 9 are obtained by the algebraic
approach to Gauss integration formulae found in [8, pp. 85–87] and [13].

A 3-point Gauss-type integration formula with a 6-fold preassigned abscissa
ξ1 = 0 and simple preassigned abscissa, ξ3 = 1 is of highest order 8 if the second
abscissa is ξ2 = (7/8)ξ3. Applying this formula to our case, we take c3 = (7/8)c4
and then c2 = (7/8)c3.

The procedure to find c6 of (13) is described below. The abscissa c5 is adjusted
so that c6 is a suitable value between 0 and 1. Firstly, we write the following
reduced equation

(14) b8(1 − c8)a87a76c
6
6(c6 − c4)(c6 − c5)

= 8!
(

1
11!
− 11

12!

)
− (c4 + c5)7!

(
1

10!
− 10

11!

)
+ c4c56!

(
1
9!
− 9

10!

)

which is the result of the following equation written in terms of equations given in
Appendix 8:

9∑
i=1

i−1∑
j=1

j−1∑
k=1

bi(1− ci)aijajkc6k(ck − c4)(ck − c5)

=
9∑
i=1

i−1∑
j=1

j−1∑
k=1

bi(1− ci)aijajk c8k −
[ 9∑
i=1

i−1∑
j=1

j−1∑
k=1

bi(1− ci)aijajk c7k
]
(c4 + c5)

+
[ 9∑
i=1

i−1∑
j=1

j−1∑
k=1

bi(1− ci)aijajk c6k
]
c4c5
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=
(

8!
11!
− 11 8!

12!

)
−
(

7!
10!
− 10 7!

11!

)
(c4 + c5) +

(
6!
9!
− 9 6!

10!

)
c4c5

= 8![Eq.(49)− Eq.(65)]− 7![Eq.(35)− Eq.(43)](c4 + c5)
+ 6![Eq.(28)− Eq.(32)]c4c5.

Next, we write

θ = c67(c7 − c4)(c7 − c5)(c7 − c6)b7(1− c7)(c8 − c7),

so that the product of the left-hand sides of (6) and (7) is the product of θ with
the left-hand side of (14). We therefore have

(15)
[
9!
(

1
11!
− 11

12!

)
− (c4 + c5 + c6)8!

(
1

10!
− 10

11!

)

+(c4c5 + c4c6 + c5c6)7!
(

1
9!
− 9

10!

)
− c4c5c66!

(
1
8!
− 8

9!

)]

×
[
8!
(
c8
10!
− (1 + c8) 10

11!
+ 10 11

12!

)
− (c4 + c5)7!

(
c8
9!
− (1 + c8) 9

10!
+ 9 10

11!

)

+c4c56!
(
c8
8!
− (1 + c8) 8

9!
+ 8 9

10!

)]

=
[
8!
(

1
11!
− 11

12!

)
− (c4 + c5)7!

(
1

10!
− 10

11!

)
+ c4c56!

(
1
9!
− 9

10!

)]
θ.

Setting ci equal to the values of (13) for all i except i = 6, we can calculate c6 such
that (15) and the linear system (16) below for the integration formula are satisfied.
System (16) needs to be satisfied since θ is a function of b7.

Put simply, c6 is chosen such that condition (65) in Appendix 8 is met auto-
matically when all the other order conditions are satisfied.

4. Matrix formulation of HBT(12)9

Of the many methods to construct the formulae which make HBT(12)9, we
choose to express the coefficients as unknowns of linear systems built from the order
conditions and solved, in particular, by Matlab. The Matlab colon (:) notation is
used, say, 1 : 4 for 1, 2, 3, 4.

4.1. Integration formula IF. Let the 12-vector of the reordered coefficients
of IF in (3), u1 = [b9 b8 b7 b6 b5 b4 b1 γ2 γ3 γ5 γ5 γ6]T , be the solution of the Vander-
monde-type system of order conditions:

(16)

[ [
ci−1

10−j
(i− 1)!

]
i=1:12,j=1:6

[
I6
06×6

] ]
u1 =

[
1
i!

]
i=1:12

.

With the choice of ci, i = 4, 5, . . . , 9, in (13), the leading error term of IF is of order
14: [

b9
c13

9
13!

+ · · ·+ b5 c
13
5

13!
+ b4
c13

4
13!
− 1

14!

]
h14
n+1y

(14)
n .
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4.2. Predictor P2. Let u2 = [a21 γ22 γ23 γ24 γ25 γ26]T be the 6-vector of
reordered coefficients of predictor P2 in (2) with l = 2. Then the ith component of
u2, u2(i), satisfies the order condition

u2(i) = c
i
2
i!
, i = 1, 2, . . . , 6.

A truncated Taylor expansion of the right-hand side of (2) with l = 2 about xn
gives

6∑
j=0

cj2
j!
hjn+1y

(j)
n

which implies that P2 is of order 6 with leading error term (c72/7!)h7
n+1y

(7)
n .

4.3. Predictor P3. The 7-vector u3 = [a32 a31 γ32 γ33 γ34 γ35 γ36]T of the
reordered coefficients of predictor P3 in (2) with l = 3 is the solution of the system
of order conditions[ [

ci−1
2

(i− 1)!

]
i=1:7

[
I6
01×6

] ]
u3 =

[
ci3
i!

]
i=1:7
.

A truncated Taylor expansion about xn of the right-hand side of (2) with l = 3
gives

7∑
j=0

cj3
j!
hjn+1y

(j)
n

which implies that P3 is of order 7 with leading error term (c83/8!)h8
n+1y

(8)
n .

4.4. Predictors P4 and P5. The vector ul = [al3 al2 al1 γl2 γl3 γl4 γl5 γl6]T
of the eight reordered coefficients of predictors P4 and P5 in (2) with l = 4 and
l = 5, respectively, are the solution of the system of order conditions

[ [
ci−1
l−j

(i− 1)!

]
i=1:8,j=1:2

[
I6
02×6

] ]
ul =

[
cil
i!

]
i=1:8
.

4.5. The coefficients aij of Pi, for i = 6, 7, 8 and j = 3, 4, 5. It is
numerically convenient first to solve for a87 and a76 from (6) and (7), and a86 from
(8). Next, we solve for the nine coefficients a63, a64, a65, a73, a74, a75, a83, a84, a85 of
predictors P6 to P8 simultaneously before solving for their other coefficients. These
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nine coefficients are solutions of the system of order conditions

(17)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c65/6! c64/6! c63/6! 0
c75/7! c74/7! c73/7! 0

0 0 0 c65/6!
0 0 0 c75/7!
0 0 0 0
0 0 0 0
0 0 b6(1− c6) 0

b6(1− c6)a53 b6(1− c6)a43 b8(1− c8)a86 + b7(1− c7)a76 b7(1− c7)a53
0 0 b6(1− c6)(c8 − c6) 0

0 0 0 0 0
0 0 0 0 0
c64/6! c63/6! 0 0 0
c74/7! c73/7! 0 0 0

0 0 c65/6! c64/6! c63/6!
0 0 c75/7! c74/7! c73/7!
0 b7(1− c7) 0 0 b8(1− c8)

b7(1− c7)a43 b8(1− c8)a87 b8(1− c8)a53 b8(1− c8)a43 0
0 b7(1− c7)(c8 − c7) 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a65
a64
a63
a75
a74
a73
a85
a84
a83

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= r,

where r = r(1 : 9) has components

r(1) = c76/7!, r(5) = c78/7!− a87c
6
7/6!− a86c

6
6/6!,

r(2) = c86/8!, r(6) = c88/8!− a87c
7
7/7!− a86c

7
6/7!,

r(3) = c77/7!− a76c
6
6/6!, r(7) = −b4(1− c4)a43 − b5(1− c5)a53,

r(4) = c87/8!− a76c
7
6/7!, r(8) = −b5(1− c5)a54a43,

and

r(9) = −b4(1 − c4)(c8 − c4)a43 − b5(1− c5)(c8 − c5)a53.

The equations for r(7), r(8) and r(9) correspond to equations (10), (11) and (9),
respectively.

4.6. Predictors Pl, l = 6, 7, 8. Since al5, al4, al3 are already obtained from
system (17), the remaining six unknown coefficients of predictor Pl in (2) with l = 6
are in the 6-vector of reordered coefficients, ul = [al1, γl2, γl3, γl4, γl5, γl6]T , whose
ith component, ul(i), satisfies the order condition

ul(i) = c
i
l

i!
− 1

(i− 1)!

l−1∑
j=3
aljc

i−1
j , i = 1, 2, . . . , 6,

where a76 is obtained from (7) and a87 and a86 are obtained from (6) and (8)
respectively.
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4.7. Predictor P9. The 12-vector of reordered coefficients of predictor P9
in (2) with l = 9, u9 = [a98 a97 a96 a95 a94 a93 a91 γ92 γ93 γ94 γ95 γ96]T , is the
solution of the system of order conditions⎡

⎢⎣
⎡
⎢⎣
[
ci−1

9−j
(i− 1)!

]
i=1:6,j=1:6
b9I6

⎤
⎥⎦ [ I606×6

] ⎤⎥⎦u9 = r9

where r9 = r9(1 : 12) has components

r9(i) = ci9/i!, i = 1, 2, . . . , 6,
r9(7) = b8(1− c8),
r9(8) = b7(1− c7)− (b8a87) ,
r9(9) = b6(1− c6)− (b8a86 + b7a76) ,
r9(10) = b5(1− c5)− (b8a85 + b7a75 + b6a65) ,
r9(11) = b4(1− c4)− (b8a84 + b7a74 + b6a64 + b5a54) ,
r9(12) = b3(1− c3)− (b8a83 + b7a73 + b6a63 + b5a53 + b4a43) .

The equations for r9(i), i = 7, 8, . . . , 12, correspond to (4).

5. Region of absolute stability

To obtain the region of absolute stability, R, of HBT(12)9, we apply the pre-
dictors P2,P3, . . . ,P9 and the integration formula IF with constant step h to the
linear test equation

y′ = λy, y0 = 1.
Thus we obtain

(18) Yl = yn + λhn+1

l−1∑
j=1
aljYj +

6∑
j=2

(λhn+1)jγljyn, l = 2, 3, . . . , 9,

and

(19) yn+1 = yn + λhn+1

9∑
j=1
bjYj +

6∑
j=2

(λhn+1)jγjyn.

If we replace Yl, for l = 2, 3, . . . , 9, in (18) and (19) with the corresponding right-
hand sides of (18), then (19) reduces to the following first-order difference equation
and corresponding linear characteristic equation:

−rsyn + yn+1 = 0, −rs + r = 0,

respectively. The root, rs, of the characteristic equation is

rs = 1 +
14∑
j=1
sjλ
jhj ,
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Figure 1. Top half of the region of absolute stability of HBT(12)9
(left). Value of k vs. order p for listed tolerance (right).

with coefficients
s1 = 1.0, s2 = 5.00000000000000 e-01,
s3 = 1.66666666666666 e-01, s4 = 4.16666666666666 e-02,
s5 = 8.33333333333332 e-03, s6 = 1.38888888888888 e-03,
s7 = 1.98412698412697 e-04, s8 = 2.48015873015878 e-05,
s9 = 2.75573192239835 e-06, s10 = 2.75573192239858 e-07,
s11 = 2.50521083854427 e-08, s12 = 2.08767569879261 e-09,
s13 = 5.02071324573546 e-12, s14 = 2.99693530083494 e-11.

A complex number λh is in R if rs satisfies the root condition: |rs| � 1 (see [12,
pp. 378–380]).

The root condition is used to find the region of absolute stability of HBT(12)9
whose top half is shown in grey in Fig. 5, with interval of absolute stability (α, 0) =
(−5.40, 0). We note that HBT(12)9 has a larger interval of absolute stability than
DP(8,7)13M, namely, 5.40 > 5.12.

6. Controlling stepsize

6.1. The principal error terms of HBT(12)9 and T12 and the step-
sizes. It is known that the step control predictor of Runge–Kutta pairs of orders
p and p − 1 or p − 2 is of order p − 1 [24], or p − 2 [10]. The error of the step
control predictor is kept within tolerance TOL while integration is done by the
Runge–Kutta formula of higher order. Similarly, in our case, T12 and T11 act as
step control predictors. The errors of orders 12 and 11 control the stepsizes.

If the principal error term of HBT(12)9 is CPET h
13
HBT, then to obtain the same

error at each integration step we set

CPET h
13
HBT = y

(13)

13!
h13

T ,
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where hHBT and hT are the stepsizes of HBT(12)9 and T12, respectively. Then we
have

(20) hHBT =
[
y(13)

CPET13!

]1/13

hT =: η hT.

If CPET < y
(13)/13! then η > 1. This result will be used to justify the value of the

factor η in the stepsize formula (22) in the next subsection.

6.2. Step size control. The stepsize, hn+1, of the Taylor method of order p
can be chosen within tolerance TOL by the formula (see [16, 3])

(21) hn+1 = min

{
k(TOL, p− 1)

∥∥∥∥ y(p−1)

(p− 1)!

∥∥∥∥
−1/(p−1)

∞
, k(TOL, p)

∥∥∥∥y(p)

p!

∥∥∥∥
−1/p

∞

}
,

where k(TOL, p) is the solution of the equation kp+1/(1 − k) = TOL (see Fig. 5
(right)).

Since HBT(12)9 does not use derivatives of order higher than six, to determine
the stepsize we shall use the following formula
(22)

hn+1 = ηmin

⎧⎨
⎩k(TOL, 11)

[
‖y(3)‖∞/3![‖y(5)‖∞/5!

]2
]1/7

, k(TOL, 12)

[
‖y(4)‖∞/4![‖y(6)‖∞/6!

]2
]1/8
⎫⎬
⎭

similar to error estimators found in [3]. The exponents, in the above formula, come
from 1/7 = (11/7)(1/11) and 1/8 = (12/8)(1/12).

It was observed that HBT(12)9 solves the ODEs considered in this paper more
efficiently with stepsize hn+1 obtained by (22) without rejected steps than by means
of a step control predictor. In (22), η acts as control factor in the variable step
algorithm. If η is set to 1.0 as the assumption CPET = y(13)/13!, the stepsize of
HBT(12)9 is very conservative. In our tests, we have fixed η = 1.4.

7. Numerical results

The derivatives, y(2) to y(6), are calculated at each integration step by known
recurrence formulae (see, for example, [12, pp. 46–49], [16]).

Computations were performed in C++ on a Mac with a dual 2.5 GHz PowerPC
G5 and 4 GB DDR SSRAM running under Mac OS X Version 10.4.8.

7.1. Numerical results related to the step control. Table 1 lists the
number of steps (NS) and the maximum global error (GE) of HBT(12)9 and
T12 related to the step control for the DETEST problems [11] of class A, B, and
E over the time interval [0, 20] with set tolerance (TOL). Thus we can compare
the step controls of HBT(12)9 and T12.

In Table 2, we compare HBT(12)9 with results for Taylor’s method of order 12
obtained by Lara’s program [16], denoted by T12L. The considered problems are
Kepler’s, Hénon–Heiles’ and the equatorial main problems over the time interval
[0, tf ]
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Table 1. For some test problems of [11], time interval [0, 20] and
LT = log10(TOL), the table lists the number of steps (NS) and the
maximum global error (GE) for HBT(12)9 (left column) and T12
(right column).

HBT(12)9 and T12
Problem LT NS GE

A1 -04 8 6 6.03e-03 1.86e-05
-07 10 9 3.56e-05 2.45e-08
-10 14 15 2.06e-08 3.11e-11

A3 -04 19 22 2.44e-03 7.54e-05
-07 31 36 6.22e-08 3.68e-07
-10 53 63 6.65e-09 3.89e-10

A4 -04 5 5 1.99e-07 2.39e-05
-07 8 7 1.24e-09 6.91e-08
-10 13 13 2.75e-12 5.56e-11

B1 -04 30 40 3.71e-03 9.61e-03
-07 53 68 7.10e-07 1.48e-05
-10 91 120 1.52e-09 7.48e-09

B3 -04 9 9 8.84e-03 2.86e-05
-07 11 13 7.23e-06 6.63e-08
-10 17 21 7.82e-09 9.47e-11

B4 -04 21 18 2.64e-06 1.23e-04
-07 35 31 3.96e-09 1.15e-07
-10 60 53 2.17e-12 2.90e-10

B5 -04 19 23 3.00e-06 6.81e-04
-07 32 39 2.09e-09 1.96e-07
-10 55 68 2.78e-12 3.06e-10

E1 -04 11 11 1.45e-05 3.28e-05
-07 18 17 1.86e-08 4.47e-08
-10 30 29 2.13e-11 5.48e-11

E2 -04 38 50 7.51e-05 1.30e-04
-07 68 84 5.87e-08 4.25e-07
-10 117 147 1.61e-11 8.51e-10

E3 -04 29 33 2.43e-07 6.35e-04
-07 49 57 2.87e-10 5.68e-06
-10 85 98 7.21e-13 3.45e-08

E4 -04 4 2 1.27e-05 3.09e-05
-07 5 4 5.38e-08 5.24e-08
-10 8 7 1.86e-11 4.01e-11

E5 -04 4 3 1.17e-05 2.70e-04
-07 6 6 1.89e-09 5.92e-07
-10 10 10 7.25e-13 8.30e-10
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Table 2. For given LT = log10(TOL), the table lists the number of
steps (NS) and the maximum global energy error (MGEE) for
HBT(12)9 (left column) and T12L (right column) on the problems
on hand over the time interval [0, tf ].

HBT(12)9 and T12L
Problem LT NS MGEE

D1 -04 35 44 2.21e-04 5.56e-04
tf = 16π -07 60 73 3.11e-07 1.02e-06

-10 103 122 2.39e-10 1.12e-09
D3 -04 60 83 2.93e-03 8.32e-04

tf = 16π -07 106 139 7.77e-08 1.24e-06
-10 186 235 4.05e-11 1.43e-09

D5 -04 111 167 8.95e-03 2.47e-03
tf = 16π -07 205 273 2.20e-07 3.31e-09

-10 362 461 2.97e-11 3.62e-10
Hénon–Heiles -04 51 66 1.82e-05 2.42e-04
tf = 70 -07 86 108 1.92e-07 3.81e-07

-10 148 185 2.13e-10 1.70e-10
Equatorial -04 102 172 1.78e-02 7.24e-04
main prob. -07 179 289 1.12e-06 1.08e-06
tf = 70 -10 319 489 1.24e-09 1.77e-09

The maximum global energy error (MGEE) was obtained from the maxi-
mum of the absolute value of the relative error H/H0− 1 at every integration step
where H and H0 are the values of the Hamiltonian at tn+1 and t0, respectively.

The Hamiltonians of Kepler’s, Hénon–Heiles’ and the equatorial main problems
are

HKepler = 1
2
(
y2

3 + y2
4
)− (y2

1 + y2
2
)−1/2

,

HHénon–Heiles = 1
2
(
X2 + Y 2)+ 1

2
(
x2 + y2)+ εy

(
x2 − 1

3
y2
)
,

Heq. main prob. =
1
2

(
P 2 +

Λ2

ρ2
+ Z2
)

+
μ

r
+
α2J2μP2(u)
r3

,

respectively, where, in Heq. main prob., u = z/r, r =
√
ρ2 + z2 and P2(x) = (3x2 −

1)/2 is the Legendre polynomial of degree 2.
Tables 1 and 2 show that our stepsize control is reliable for the problems on

hand and usually compares favorably with the step control of T12 and T12L.

7.2. Comparison based on CPU time. We compare the CPU time in
seconds used by HBT(12)9, T12, and DP(8,7) in solving several problems. The
maximum global error (MGE) is taken to be maxn{‖yn+1 − y(tn+1)‖∞} of the
difference between the numerical and the analytic solutions at every integration
step for Kepler’s problem. For the other problems, y(tn+1) is replaced by reference
solutions obtained by DP(8,7)13M at stringent tolerance 5 × 10−14. In Fig. 7.2,
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Figure 2. CPU time in seconds (horizontal axis) versus
log10(MGE) (vertical axis) for the listed problems.

CPU time in seconds (horizontal axis) is plotted versus log10(MGE) (vertical axis)
for the above problems.

The CPU percentage efficiency gain (CPU PEG) is defined by formula (cf.
Sharp [26]),

(CPU PEG) = 100

[∑
j CPU2,j∑
j CPU1,j

− 1

]
,

where CPU1,j and CPU2,j are the CPU time of methods 1 and 2, respectively,
and j = − log10(MGE). The CPU time was obtained from the curves which fit,
in a least-squares sense, the data (log10(MGE), log10(CPU)) by means of Matlab’s
polyfit. The CPU PEG of HBT(12)9 over DP(8,7)13M and T12 for the above
problems are listed in the middle part of Table 3.

It is seen from Fig. 7.2 and Table 3 that, at stringent tolerance, HBT(12)9
compares favorably with both DP(8,7)13M and T12 on the basis of CPU time
versus MGE and versus CPU PEG.

7.3. Comparison based on the number of steps. The number of step
percentage efficiency gain (NS PEG)i is defined by the formula

(NS PEG) = 100

[ ∑
j NST,j∑
j NSHBT,j

− 1

]
,

where NST,j and NSHBT,j are the number of steps used by methods T12 and
HBT(12)9, respectively, to integrate from t0 to tf , and j = − log10(MGEE). The
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Table 3. CPU time and NS PEG of HBT(12)9 over DP(8,7)13M
and T12 for the listed problems.

CPU PEG of HBT(12)9 over: NS PEG of HBT(12)9 over:
Problem DP(8,7)13M T12 DP(8,7)13M T12
Kepler (e=0.1) 143% 78% 159% 52%
Kepler (e=0.3) 101% 89% 143% 72%
Kepler (e=0.5) 110% 133% 136% 88%
Kepler (e=0.7) 137% 112% 158% 89%
Kepler (e=0.9) 146% 84% 183% 71%
Kepler (e=0.99) 258% 114% 161% 86%
Hénon–Heiles 35% 57% 123% 27%
Eq. main prob. 5% 111% 33% 41%
B1 77% 57%
B5 67% 147%
E2 32% 120%
Arenstorf 130% 223%
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Figure 3. Number of steps (horizontal axis) versus log10(MGEE)
(vertical axis) for the problems on hand.

number of steps (NS) was obtained from the curves which fit, in the least squares
sense, the data (log10(MGEE), log10(NS)).

In Fig. 7.3, the number of step (horizontal axis) is plotted versus log10(MGEE)
(vertical axis) for the methods and problems on hand. It is observed that HBT(12)9
performs better than T12 on the basis of the number of steps versus MGEE shown
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in Fig. 7.3 and the number of step percentage efficiency gain listed in the rightmost
part of Table 3.

The numerical results show that a combination of high-order derivatives with
a Runge–Kutta method achieves a high degree of accuracy. It is to be noted that
HBT(12)9 uses six derivatives of y compared to twelve for T12.

8. Conclusion

A one-step 9-stage Hermite–Birkhoff–Taylor method of order 12, HBT(12)9,
was constructed by solving Vandermonde-type systems satisfying Runge–Kutta-
type order conditions. By construction, HBT(12)9 uses lower order derivatives
than the traditional Taylor method of order 12. The stability region of HBT(12)9
has a remarkably good shape. The stepsize is controlled by a formula which uses
y

(4)
n and y(6)

n . On the basis of CPU time versus the maximum global error, and
the number of steps versus the maximum global energy error, HBT(12)9 wins over
DP(8,7)13M and T12 in solving several well-known test problems. HBT methods
with six high derivatives y(1) to y(6) appear to be promising for ODEs in the light of
the numerical results since methods of high order can be derived and implemented
efficiently. Furthermore, since these methods use a small number of high order
derivatives, they may be useful for high dimensional problems.
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Appendix. The order conditions
used in equations (6), (7), (8), and (14)

Some of the order conditions listed here are used in equations (6), (7), (8) and
(14).

Order 1 to 7: ∑
bi = 1,

∑
bici + γ2 = 1

2
∑
bic

2
i + 2!γ3 = 1

3∑
bic

3
i + 3!γ4 = 1

4

∑
bic

4
i + 4!γ5 = 1

5
,
∑
bic

5
i + 5!γ6 = 1

6∑
bic

6
i + 6!γ7 = 1

7
,

Order 8: ∑
bic

7
i = 1

8(23) ∑
bi

[∑
aij
c6j
6!

]
= 1

8!(24)
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Order 9: ∑
bic

8
i = 1

9
(25) ∑

bi
ci
8

[∑
aij
c6j
6!

]
= 1

9!
(26)

∑
bi

[∑
aij
c7j
7!

]
= 1

9!(27)

∑
bi

[∑
aij

(∑
ajk
c6k
6!

)]
= 1

9!
(28)

Order 10: ∑
bic

9
i = 1

10
(29) ∑

bi
c2i

8× 9

[∑
aij
c6j
6!

]
= 1

10!
(30)

∑
bi
ci
9

[∑
aij
c7j
7!

]
= 1

10!(31)

∑
bi
ci
9

[∑
aij

(∑
ajk
c6k
6!

)]
= 1

10!
(32)

∑
bi

[∑
aij
c8j
8!

]
= 1

10!
(33)

∑
bi

[∑
aij
cj
8

(∑
ajk
c6k
6!

)]
= 1

10!(34)

∑
bi

[∑
aij

(∑
ajk
c7k
7!

)]
= 1

10!
(35)

∑
bi

[∑
aij

(∑
ajk

(∑
akl
c6l
6!

))]
= 1

10!(36)

Order 11: ∑
bic

10
i = 1

11
(37) ∑

bi
c3i

8× 9× 10

[∑
aij
c6j
6!

]
= 1

11!(38)

∑
bi
c2i

9× 10

[∑
aij
c7j
7!

]
= 1

11!
(39)

∑
bi
c2i

9× 10

[∑
aij

(∑
ajk
c6k
6!

)]
= 1

11!
(40)

∑
bi
ci
10

[∑
aij
c8j
8!

]
= 1

11!(41)

∑
bi
ci
10

[∑
aij
cj
8

(∑
ajk
c6k
6!

)]
= 1

11!
(42)
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∑
bi
ci
10

[∑
aij

(∑
ajk
c7k
7!

)]
= 1

11!
(43)

∑
bi
ci
10

[∑
aij

(∑
ajk

(∑
akl
c6l
6!

))]
= 1

11!
(44)

∑
bi

[∑
aij
c9j
9!

]
= 1

11!
(45)

∑
bi

[∑
aij
c2j

8× 9

(∑
ajk
c6k
6!

)]
= 1

11!
(46)

∑
bi

[∑
aij
cj
9

(∑
ajk
c7k
7!

)]
= 1

11!(47)

∑
bi

[∑
aij
ci
9

(∑
ajk

(∑
akl
c6l
6!

))]
= 1

11!
(48)

∑
bi

[∑
aij

(∑
ajk
c8k
8!

)]
= 1

11!
(49)

∑
bi

[∑
aij

(∑
ajk
ck
8

(∑
akl
c6l
6!

))]
= 1

11!
(50)

∑
bi

[∑
aij

(∑
ajk

(∑
akl
c7l
7!

))]
= 1

11!
(51)

∑
bi

[∑
aij

(∑
ajk

(∑
akl

(∑
al,m
c6m
6!

))) ]
= 1

11! .(52)

Order 12: ∑
i

bic
11
i = 1

12
(53)

∑
bi

c4i
8× 9× 10× 11

[∑
aij
c6j
6!

]
= 1

12!
(54)

∑
bi

c3i
9× 10× 11

[∑
aij
c7j
7!

]
= 1

12!(55)

∑
bi

c3i
9× 10× 11

[∑
aij

(∑
ajk
c6k
6!

)]
= 1

12!
(56)

∑
bi
c2i

10× 11

[∑
aij
c8j
8!

]
= 1

12!(57)

∑
bi
c2i

10× 11

[∑
aij
cj
8

(∑
ajk
c6k
6!

)]
= 1

12!
(58)

∑
bi
c2i

10× 11

[∑
aij

(∑
ajk
c7k
7!

)]
= 1

12!
(59)

∑
bi
c2i

10× 11

[∑
aij

(∑
ajk

(∑
akl
c6l
6!

))]
= 1

12!(60)

∑
bi
ci
11

[∑
aij
c9j
9!

]
= 1

12!
(61)
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∑
bi
ci
11

[∑
aij
cj

8× 9

(∑
ajk
c6k
6!

)]
= 1

12!
(62)

∑
bi
ci
11

[∑
aij
cj
9

(∑
ajk
c7k
7!

)]
= 1

12!
(63)

∑
bi
ci
11

[∑
aij
cj
9

(∑
ajk

(∑
akl
c6l
6!

))]
= 1

12!(64)

∑
bi
ci
11

[∑
aij

(∑
ajk
c8k
8!

)]
= 1

12!
(65)

∑
bi
ci
11

[∑
aij

(∑
ajk
ck
8

(∑
akl
c6l
6!

))]
= 1

12!(66)

∑
bi
ci
11

[∑
aij

(∑
ajk

(∑
akl
c7l
7!

))]
= 1

12!
(67)

∑
bi
ci
11

[∑
aij

(∑
ajk

(∑
akl

(∑
alm
c6m
6!

)))]
= 1

12!
(68)

∑
bi

[∑
aij
c10
j

10!

]
= 1

12!(69)

∑
bi

[∑
aij

c3j
8× 9× 10

(∑
ajk
c6k
6!

)]
= 1

12!
(70)

∑
bi

[∑
aij

c2j
9× 10

(∑
ajk
c7k
7!

)]
= 1

12!(71)

∑
bi

[∑
aij

c2i
9× 10

(∑
ajk

(∑
akl
c6l
6!

))]
= 1

12!
(72)

∑
bi

[∑
aij
cj
10

(∑
ajk
c8k
8!

)]
= 1

12!
(73)

∑
bi

[∑
aij
cj
10

(∑
ajk
ck
8

(∑
akl
c6l
6!

))]
= 1

12!
(74)

∑
bi

[∑
aij
cj
10

(∑
ajk

(∑
akl
c7l
7!

))]
= 1

12!
(75)

∑
bi

[∑
aij
ci
10

(∑
ajk

(∑
akl

(∑
alm
c6m
6!

)))]
= 1

12!(76)

∑
bi

[∑
aij

(∑
ajk
c9k
9!

)]
= 1

12!
(77)

∑
bi

[∑
aij

(∑
ajk
c2k

8× 9

(∑
akl
c6l
6!

))]
= 1

12!
(78)

∑
bi

[∑
aij

(∑
ajk
ck
9

(∑
akl
c7l
7!

))]
= 1

12!(79)

∑
bi
ci
11

[∑
aij

(∑
ajk

(∑
akl

(∑
al,m
c6m
6!

)))]
= 1

12!
(80)
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∑
bi

[∑
aij

(∑
ajk

(∑
akl
c8l
8!

))]
= 1

12!
(81)

∑
bi

[∑
aij

(∑
ajk

(∑
akl
cl
8

(∑
al,m
c6m
6!

)))]
= 1

12!
(82)

∑
bi

[∑
aij

(∑
ajk

(∑
akl

(∑
al,m
c7m
7!

)))]
= 1

12!(83)

∑
bi

[∑
aij

(∑
ajk

(∑
akl

(∑
al,m

(∑
am,n

c6n
6!

))))]
= 1

12!
.(84)
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