PUBLICATIONS DE L'INSTITUT MATHÉMATIQUE Nouvelle série, tome 85(99) (2009), 55–61

DOI:10.2298/PIM0999055J

ON THE SOLID HULL OF THE HARDY–LORENTZ SPACE

Miroljub Jevtić and Miroslav Pavlović

Communicated by Žarko Mijajlović

ABSTRACT. The solid hulls of the Hardy–Lorentz spaces $H^{p,q}$, $0 , <math>0 < q \leq \infty$ and $H_0^{p,\infty}$, $0 , as well as of the mixed norm space <math>H_0^{p,\infty,\alpha}$, $0 , <math>0 < \alpha < \infty$, are determined.

Introduction

In [**JP1**] the solid hull of the Hardy space H^p , $0 , is determined. In this article we determine the solid hulls of the Hardy–Lorentz spaces <math>H^{p,q}$, $0 , <math>0 < q \leq \infty$ and $H_0^{p,\infty}$, $0 , as well as of the mixed norm space <math>H_0^{p,\infty,\alpha}$, $0 , <math>0 < \alpha < \infty$. Since $H^{p,p} = H^p$ our results generalize [**JP1**, Theorem 1].

Recall, the Hardy space H^p , 0 , is the space of all functions <math>f holomorphic in the unit disk U, $(f \in H(U))$, for which $||f||_p = \lim_{r \to 1} M_p(r, f) < \infty$, where, as usual,

$$M_p(r, f) = \left(\frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt\right)^{1/p}, \quad 0
$$M_{\infty}(r, f) = \sup_{0 \le t < 2\pi} |f(re^{it})|.$$$$

Now we introduce a generalization and refinement of the spaces H^p ; the Hardy–Lorentz spaces $H^{p,q}$, $0 , <math>0 < q \leq \infty$.

Let σ denotes normalized Lebesgue measure on $T = \partial U$ and let $L^0(\sigma)$ be the space of complex-valued Lebesgue measurable functions on T. For $f \in L^0(\sigma)$ and $s \ge 0$ we write

$$\Lambda_f(s) = \sigma\big(\{\xi \in T : |f(\xi)| > s\}\big)$$

for the distribution function and

$$f^{\star}(s) = \inf\left(\{t \ge 0 : \lambda_f(t) \le s\}\right)$$

for the decreasing rearrangement of |f| each taken with respect to σ .

55

²⁰⁰⁰ Mathematics Subject Classification: Primary 30D55; Secondary 42A45. Research supported by the grant ON144010 from MNS, Serbia.

JEVTIĆ AND PAVLOVIĆ

The Lorentz functional $\|\cdot\|_{p,q}$ is defined at $f \in L^0(\sigma)$ by

$$\|f\|_{p,q} = \left(\int_0^1 \left(f^*(s)s^{1/p}\right)^q \frac{ds}{s}\right)^{1/q} \quad \text{for } 0 < q < \infty,$$

$$\|f\|_{p,\infty} = \sup\{f^*(s)s^{1/p} : s \ge 0\}.$$

The corresponding Lorentz space is $L^{p,q}(\sigma) = \{f \in L^0(\sigma) : \|f\|_{p,q} < \infty\}$. The space $L^{p,q}(\sigma)$ is separable if and only if $q \neq \infty$. The class of functions $f \in L^0(\sigma)$ satisfying $\lim_{s\to 0} (f^*(s)s^{1/p}) = 0$ is a separable closed subspace of $L^{p,\infty}(\sigma)$, which is denoted by $L_0^{p,\infty}(\sigma)$.

The Nevanlinna class N is the subclass of functions $f \in H(U)$ for which

$$\sup_{0 < r < 1} \int_T \log^+ |f(r\xi)| \, d\sigma(\xi) < \infty.$$

Functions in N are known to have non-tangential limits σ -a.e. on T. Consequently every $f \in N$ determines a boundary value function which we also denote by f. Thus

$$f(\xi) = \lim_{r \to 1} f(r\xi) \quad \sigma\text{-a.e.} \quad \xi \in T.$$

The Smirnov class N^+ is the subclass of N consisting of those functions f for which

$$\lim_{r \to 1} \int_T \log^+ |f(r\xi)| \, d\sigma(\xi) = \int_T \log^+ |f(\xi)| \, d\sigma(\xi).$$

We define the Hardy–Lorentz space $H^{p,q}$, $0 , <math>0 < q \leq \infty$, to be the space of functions $f \in N^+$ with boundary value function in $L^{p,q}(\sigma)$ and we put $||f||_{H^{p,q}} = ||f||_{p,q}$. The functions in $H^{p,\infty}$ with a boundary value function in $L_0^{p,\infty}(\sigma)$ form a closed subspace of $H^{p,\infty}$, which is denoted by $H_0^{p,\infty}$. The cases of major interest are of course p = q and $q = \infty$; indeed $H^{p,p}$ is nothing but H^p , and $H^{p,\infty}$ is the weak- H^p .

The mixed norm space $H^{p,q,\alpha}$, 0 , <math>0 < q, $\alpha < \infty$, consists of all $f \in H(U)$ for which

$$||f||_{H^{p,q,\alpha}} = ||f||_{p,q,\alpha} = \left(\int_0^1 (1-r)^{q\alpha-1} M_p(r,f)^q dr\right)^{1/q} < \infty$$

 $H^{p,q,\alpha}$ can also be defined when $q = \infty$, in which case it is sometimes known as the weighted Hardy space $H^{p,\infty,\alpha}$, and consists of all $f \in H(U)$ for which

$$||f||_{p,\infty,\alpha} = \sup_{0 < r < 1} (1 - r)^{\alpha} M_p(r, f) < \infty$$

The functions in $H^{p,\infty,\alpha}$ $0 for which <math>\lim_{r \to 1} (1-r)^{\alpha} M_p(r,f) = 0$ form a closed subspace which is denoted by $H_0^{p,\infty,\alpha}$.

Throughout this paper, we identify the holomorphic function $f(z) = \sum_{k=0}^{\infty} \hat{f}(k) z^k$ with its sequence of Taylor coefficients $\{\hat{f}(k)\}_{k=0}^{\infty}$.

If $f(z) = \sum_{k=0}^{\infty} \hat{f}(k) z^k$ belongs to $H^{p,q}$, then

(1)
$$\hat{f}(k) = O((k+1)^{(1/p)-1}), \text{ if } 0$$

(See [Al] and [Co].)

In this paper we find the strongest condition that the moduli of an $H^{p,q}$, $0 , <math>0 < q \leq \infty$, satisfy. Our result shows that the estimate (1) is optimal only if $q = \infty$.

To state our results in a form of theorems we need to introduce some more notations

A sequence space X is solid if $\{b_n\} \in X$ whenever $\{a_n\} \in X$ and $|b_n| \leq |a_n|$. More generally, we define S(X), the solid hull of X. Explicitly,

$$S(X) = \{\{\lambda_n\} : \text{there exists } \{a_n\} \in X \text{ such that } |\lambda_n| \leq |a_n|\}.$$

A complex sequence $\{a_n\}$ is of class $l(p,q), 0 < p, q \leq \infty$, if

$$\|\{a_n\}\|_{p,q}^q = \|\{a_n\}\|_{l(p,q)}^q = \sum_{n=0}^{\infty} \left(\sum_{k \in I_n} |a_k|^p\right)^{q/p} < \infty,$$

where $I_0 = \{0\}$, $I_n = \{k \in N : 2^{n-1} \leq k < 2^n\}$, n = 1, 2, ... In the case where p or q is infinite, replace the corresponding sum by a supremum. Note that $l(p,p) = l^p$.

For $t \in R$ we write D^t for the sequence $\{(n+1)^t\}$, for all $n \ge 0$. If $\lambda = \{\lambda_n\}$ is a sequence and X a sequence space, we write $\lambda X = \{\{\lambda_n x_n\} : \{x_n\} \in X\}$; thus, for example, $\{a_n\} \in D^t l^\infty$ if and only if $|a_n| = O(n^t)$.

We are now ready to state our first result.

THEOREM 1. If
$$0 and $0 < q \leq \infty$, then $S(H^{p,q}) = D^{(1/p)-1}l(\infty,q)$.$$

In particular, $S(H^p) = D^{(1/p)-1}l(\infty, p)$, 0 . This was proved in [**JP1**]. $Also, <math>S(H^{p,\infty}) = D^{(1/p)-1}l^{\infty}$ means that the estimate (1) valid for the Taylor coefficients of an $H^{p,\infty}$, 0 , function is sharp.

Our second result is as follows:

THEOREM 2. If $0 , then <math>S(H_0^{p,\infty}) = D^{(1/p)-1}c_0$, where c_0 is the space of all null sequences.

Our method of proving Theorem 1 and Theorem 2 depend upon nested embedding [Le, Theorem 4.1] for Hardy–Lorentz spaces. Thus, the strategy is to trap $H^{p,q}$ between a pair of mixed norm spaces and then deduce the results for $H^{p,q}$ from the corresponding results for the mixed norm spaces. Our Theorem 1 will follow from the following two theorems:

THEOREM L. [Le] Let $0 < p_0 < p < s \leq \infty$, $0 < q \leq t \leq \infty$ and $\beta > (1/p_0) - (1/p)$. Then

(2)
$$D^{-\beta}H^{p_0,q,\beta+(1/p)-(1/p_0)} \subset H^{p,q} \subset H^{s,q,(1/p)-(1/s)},$$

(3)
$$D^{-\beta}H_0^{p_0,\infty,\beta+(1/p)-(1/p_0)} \subset H_0^{p,\infty} \subset H_0^{s,\infty,(1/p)-(1/s)}$$

THEOREM JP 1. [JP1] If $0 , <math>0 < q \leq \infty$ and $0 < \alpha < \infty$, then $S(H^{p,q,\alpha}) = D^{\alpha+(1/p)-1}l(\infty,q).$

To prove Theorem 2 we first determine the solid hull of the space $H_0^{p,\infty,\alpha}$, 0 . More precisely, we prove

THEOREM 3. If $0 and <math>0 < \alpha < \infty$, then $S(H_0^{p,\infty,\alpha}) = D^{\alpha + (1/p) - 1}c_0$.

Given two vector spaces X, Y of sequences we denote by (X, Y) the space of multipliers from X to Y. More precisely,

$$(X,Y) = \{\lambda = \{\lambda_n\} : \{\lambda_n a_n\} \in Y, \text{ for every } \{a_n\} \in X\}.$$

As an application of our results we calculate multipliers $(H^{p,q}, l(u, v)), 0$

1. The solid hull of the Hardy–Lorentz space $H^{p,q}, \; 0$

PROOF OF THEOREM 1. Let $0 . Choose <math>p_0$ and s so that $p_0 and a real number <math>\beta$ so that $\beta + (1/p) - (1/p_0) > 0$. As an easy consequence of Theorem JP we have

$$S(D^{-\beta}H^{p_0,q,\beta+(1/p)-(1/p_0)}) = D^{(1/p)-1}l(\infty,q).$$

Also, by Theorem JP,

$$S(H^{s,q,(1/p)-(1/s)}) = D^{(1/p)-1}l(\infty,q),$$

and consequently $S(H^{p,q}) = D^{(1/p)-1}l(\infty,q)$, by Theorem L.

2. The solid hull of mixed norm space $H_0^{p,\infty,\alpha}, \ 0$

If $f(z) = \sum_{k=0}^{\infty} \hat{f}(k) z^k$ and $g(z) = \sum_{k=0}^{\infty} \hat{g}(k) z^k$ are holomorphic functions in U, then the function $f \star g$ is defined by $(f \star g)(z) = \sum_{k=0}^{\infty} \hat{f}(k) \hat{g}(k) z^k$.

The main tool for proving Theorem 3 are polynomials W_n , $n \ge 0$, constructed in [**JP1**] and [**JP3**]. Recall the construction and some of their properties.

Let $\omega : R \to R$ be a nonincreasing function of class C^{∞} such that $\omega(t) = 1$, for $t \leq 1$, and $\omega(t) = 0$, for $t \geq 2$. We define polynomials $W_n = W_n^{\omega}$, $n \geq 0$, in the following way:

$$W_0(z) = \sum_{k=0}^{\infty} \omega(k) z^k$$
 and $W_n(z) = \sum_{k=2^{n-1}}^{2^{n+1}} \varphi\left(\frac{k}{2^{n-1}}\right) z^k$, for $n \ge 1$,

where $\varphi(t) = \omega(t/2) - \omega(t), t \in \mathbb{R}$.

The coefficients $\hat{W}_n(k)$ of these polynomials have the following properties:

(4)
$$\sup\{\hat{W}_n\} \subset [2^{n-1}, 2^{n+1}];$$

(5)
$$0 \leqslant \hat{W}_n(k) \leqslant 1$$
, for all k ,

(6)
$$\sum_{n=0}^{\infty} \hat{W}_n(k) = 1, \quad \text{for all } k$$

(7) $\hat{W}_n(k) + \hat{W}_{n+1}(k) = 1, \text{ for } 2^n \leq k \leq 2^{n+1}, \ n \ge 0.$

Property (5) implies that

$$f(z) = \sum_{n=0}^{\infty} (W_n \star f)(z), \quad f \in H(U),$$

the series being uniformly convergent on compact subsets of U.

If 0 , then there exists a constant <math>C > 0 depending only on p such that

(8)
$$||W_n||_p^p \leq C_p 2^{-n(1-p)}, \quad n \geq 0.$$

PROOF OF THEOREM 3. Let $f \in H_0^{p,\infty,\alpha}$, $0 , <math>0 < \alpha < \infty$. By using the familiar inequality

$$M_p(r, f) \ge C(1-r)^{(1/p)-1} M_1(r^2, f), \quad 0$$

(see $[\mathbf{Du}, \text{Theorem 5.9}]$), we obtain

$$\sup_{k \in I_n} |\hat{f}(k)| r^{2k} \leqslant M_1(r^2, f) \leqslant C M_p(r, f) (1 - r)^{1 - (1/p)}, \quad 0 < r < 1.$$

Now we take $r_n = 1 - 2^{-n}$ and let $n \to \infty$, to get $\{\hat{f}(k)\} \in D^{\alpha + (1/p) - 1}c_0$. Thus $H_0^{p,\infty,\alpha} \subset D^{\alpha + (1/p) - 1}c_0$.

To show that $D^{\alpha+(1/p)-1}c_0$ is the solid hull of $H_0^{p,\infty,\alpha}$, it is enough to prove that if $\{a_n\} \in D^{\alpha+(1/p)-1}c_0$, then there exists $\{b_n\} \in H_0^{p,\infty,\alpha}$ such that $|b_n| \ge |a_n|$, for all n.

Let $\{a_n\} \in D^{\alpha+(1/p)-1}c_0$. Define

$$g(z) = \sum_{j=0}^{\infty} B_j (W_j(z) + W_{j+1}(z)) = \sum_{k=0}^{\infty} c_k z^k$$

where $B_j = \sup_{2^j \leq k < 2^{j+1}} |a_k|$. Using (4) and (8) we find that

$$M_p^p(r,g) \leqslant \sum_{j=0}^{\infty} B_j^p \left(M_p^p(r,W_j) + M_p^p(r,W_{j+1}) \right) \leqslant C \left(B_0^p + \sum_{j=1}^{\infty} B_j^p r^{p2^{j-1}} 2^{-j(1-p)} \right)$$

Set $B_j^p 2^{-j(\alpha p+1-p)} = \lambda_j$. Then

$$M_p^p(r,g) \leqslant C\bigg(\lambda_0 + \sum_{j=1}^{\infty} \lambda_j r^{p2^{j-1}} 2^{j\alpha p}\bigg),$$

where $\lambda_j \to 0$, as $j \to \infty$. From this it easily follows that $(1-r)^{\alpha p} M_p^p(r,g) \to 0$, as $r \to 1$. Thus $g \in H_0^{p,\infty,\alpha}$.

To prove that $|c_k| \ge |a_k|$, k = 1, 2, ..., choose n so that $2^n \le k < 2^{n+1}$. It follows from (7)

$$c_k = \sum_{j=0}^{\infty} B_j \left(\hat{W}_j(k) + \hat{W}_{j+1}(k) \right) \ge B_n \left(\hat{W}_n(k) + \hat{W}_{n+1}(k) \right)$$

= $B_n = \sup_{2^n \le j < 2^{n+1}} |a_j| \ge |a_k|.$

Now the function $h(z) = \sum_{n=0}^{\infty} b_n z^n$, where $b_0 = a_0$ and $b_n = c_n$, for $n \ge 1$, belongs to $H_0^{p,\infty,\alpha}$ and $|b_n| \ge |a_n|$ for all $n \ge 0$. This finishes the proof of Theorem 3. \Box

3. The solid hull of the space $H_0^{p,\infty}, \ 0$

PROOF OF THEOREM 2. Let $0 . Choose <math>p_0$ and s so that $p_0 and <math>\beta \in R$ so that $\beta + (1/p) - (1/p_0) > 0$. Then

$$S(D^{-\beta}H_0^{p_0,\infty,\beta+(1/p)-(1/p_0)}) = D^{(1/p)-1}c_0,$$

$$S(H_0^{s,\infty,(1/p)-(1/s)}) = D^{(1/p)-1}c_0,$$

by Theorem 3. By Theorem L we have $S(H_0^{p,\infty}) = D^{(1/p)-1}c_0$.

4. Applications to multipliers

As it was noticed in the introduction, another objective of this paper is to extend some of the results given in [Le, Section 5].

The next lemma due to Kellog (see [**K**]) (who states it for exponents no smaller than 1, but it then follows for all exponents, since $\{\lambda_n\} \in (l(a, b), l(c, d))$) if and only if $\{\lambda_n^{(1/t)})\} \in (l(at, bt), l(ct, dt))$.

LEMMA 1. If $0 < a, b, c, d \leq \infty$, then $(l(a, b), l(c, d)) = l(a \odot c, b \odot d)$, where $a \odot c = \infty$ if $a \leq c, b \odot d = \infty$, if $b \leq d$, and

$$\frac{1}{a \odot c} = \frac{1}{c} - \frac{1}{a}, \quad \text{for } 0 < c < a,$$
$$\frac{1}{b \odot d} = \frac{1}{d} - \frac{1}{b}, \quad \text{for } 0 < d < b.$$

In particular, $(l^{\infty}, l(u, v)) = l(u, v)$. Also, it is known that $(c_0, l(u, v)) = l(u, v)$. In **[AS]** it is proved that if X is any solid space and A any vector space of sequences, then (A, X) = (S(A), X).

Since l(u, v) are solid spaces, we have $(H^{p,q}, l(u, v)) = (S(H^{p,q}), l(u, v))$ and $(H_0^{p,\infty}, l(u, v)) = (S(H_0^{p,\infty}), l(u, v))$. Using this, Lemma 1, Theorem 1 and Theorem 2 we get

THEOREM 4. Let $0 and <math>0 < q \leq \infty$. Then

$$(H^{p,q}, l(u,v)) = D^{1-(1/p)}l(u,q \ominus v).$$

THEOREM 5. Let 0 . Then

$$(H_0^{p,\infty}, l(u,v)) = D^{1-(1/p)}l(u,v).$$

In particular, $(H^{p,\infty}, l(u, v)) = D^{1-(1/p)}l(u, v)$. In fact more is true.

THEOREM 6. Let 0 and let X be a solid space. Then

$$(H^{p,\infty}, X) = D^{1-(1/p)}X.$$

PROOF. Since X is a solid space, we have $(l^{\infty}, X) = X$. Hence, using Theorem 1 we get

$$(H^{p,\infty}, X) = (S(H^{p,\infty}), X) = (D^{(1/p)-1}l^{\infty}, X)$$
$$= D^{1-(1/p)}(l^{\infty}, X) = D^{1-(1/p)}X.$$

60

References

- [Al] A.B. Aleksandrov, Essays on non-locally convex Hardy classes in Complex Analysis and Spectral Theory, ed. V.P. Havin and N.K. Nikolski, Lect. Notes Math. 864, Springer, Berlin-Heidelberg-NewYork, 1981, 1–89.
- [AS] J. M. Anderson and A. Shields, Coefficient multipliers of Bloch functions, Trans. Am. Math. Soc. 224 (1976), 255–265.
- [Co] L. Colzani, Taylor coefficients of functions in certain weak Hardy spaces, Boll. U. M. I. 6 (1985), 57–66.
- [Du] P. L. Duren, Theory of H^p Spaces, Academic Press, New York 1970; reprinted by Dover, Mineola, NY, 2000.
- [Le] M. Lengfield, A nested embedding theorem for Hardy-Lorentz spaces with applications to coefficient multiplier problem, Rocky Mount. J. Math. 38(4) (2008), 1215–1251.
- [JP1] M. Jevtić and M. Pavlović, On the sollid hull of the Hardy space H^p , 0 , Michigan Math. J.**54**(2006), 439–446.
- [JP2] M. Jevtić and M. Pavlović, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531–545.
- [JP3] M. Jevtić and M. Pavlović, On multipliers from H^p to l^q , 0 < q < p < 1, Arch. Math. 56 (1991), 174–180.
- [K] C. N. Kellog, An extension of the Hausdorff-Young theorem, Michigan. Math. J. 18 (1971), 121–127.
- [P] M. Pavlović, Introduction to Function Spaces on the Disk, Matematički Institut, Beograd, 2004.

(Received 12 05 2008)

Matematički fakultet Studentski trg 16 11000 Beograd, p.p. 550 Serbia jevtic@matf.bg.ac.yu pavlovic@matf.bg.ac.yu