ON THE SOLID HULL OF THE HARDY-LORENTZ SPACE

Miroljub Jevtić and Miroslav Pavlović

Communicated by Žarko Mijajlović

Abstract

The solid hulls of the Hardy-Lorentz spaces $H^{p, q}, 0<p<1$, $0<q \leqslant \infty$ and $H_{0}^{p, \infty}, 0<p<1$, as well as of the mixed norm space $H_{0}^{p, \infty, \alpha}$, $0<p \leqslant 1,0<\alpha<\infty$, are determined.

Introduction

In JP1 the solid hull of the Hardy space $H^{p}, 0<p<1$, is determined. In this article we determine the solid hulls of the Hardy-Lorentz spaces $H^{p, q}, 0<p<1$, $0<q \leqslant \infty$ and $H_{0}^{p, \infty}, 0<p<1$, as well as of the mixed norm space $H_{0}^{p, \infty, \alpha}$, $0<p \leqslant 1,0<\alpha<\infty$. Since $H^{p, p}=H^{p}$ our results generalize [JP1, Theorem 1].

Recall, the Hardy space $H^{p}, 0<p \leqslant \infty$, is the space of all functions f holomorphic in the unit disk $U,(f \in H(U))$, for which $\|f\|_{p}=\lim _{r \rightarrow 1} M_{p}(r, f)<\infty$, where, as usual,

$$
\begin{aligned}
M_{p}(r, f) & =\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t\right)^{1 / p}, \quad 0<p<\infty \\
M_{\infty}(r, f) & =\sup _{0 \leqslant t<2 \pi}\left|f\left(r e^{i t}\right)\right| .
\end{aligned}
$$

Now we introduce a generalization and refinement of the spaces H^{p}; the HardyLorentz spaces $H^{p, q}, 0<p<\infty, 0<q \leqslant \infty$.

Let σ denotes normalized Lebesgue measure on $T=\partial U$ and let $L^{0}(\sigma)$ be the space of complex-valued Lebesgue measurable functions on T. For $f \in L^{0}(\sigma)$ and $s \geqslant 0$ we write

$$
\lambda_{f}(s)=\sigma(\{\xi \in T:|f(\xi)|>s\})
$$

for the distribution function and

$$
f^{\star}(s)=\inf \left(\left\{t \geqslant 0: \lambda_{f}(t) \leqslant s\right\}\right)
$$

for the decreasing rearrangement of $|f|$ each taken with respect to σ.

[^0]The Lorentz functional $\|\cdot\|_{p, q}$ is defined at $f \in L^{0}(\sigma)$ by

$$
\begin{aligned}
\|f\|_{p, q} & =\left(\int_{0}^{1}\left(f^{\star}(s) s^{1 / p}\right)^{q} \frac{d s}{s}\right)^{1 / q} \quad \text { for } 0<q<\infty \\
\|f\|_{p, \infty} & =\sup \left\{f^{\star}(s) s^{1 / p}: s \geqslant 0\right\}
\end{aligned}
$$

The corresponding Lorentz space is $L^{p, q}(\sigma)=\left\{f \in L^{0}(\sigma):\|f\|_{p, q}<\infty\right\}$. The space $L^{p, q}(\sigma)$ is separable if and only if $q \neq \infty$. The class of functions $f \in L^{0}(\sigma)$ satisfying $\lim _{s \rightarrow 0}\left(f^{\star}(s) s^{1 / p}\right)=0$ is a separable closed subspace of $L^{p, \infty}(\sigma)$, which is denoted by $L_{0}^{p, \infty}(\sigma)$.

The Nevanlinna class N is the subclass of functions $f \in H(U)$ for which

$$
\sup _{0<r<1} \int_{T} \log ^{+}|f(r \xi)| d \sigma(\xi)<\infty
$$

Functions in N are known to have non-tangential limits σ-a.e. on T. Consequently every $f \in N$ determines a boundary value function which we also denote by f. Thus

$$
f(\xi)=\lim _{r \rightarrow 1} f(r \xi) \quad \sigma \text {-a.e. } \quad \xi \in T
$$

The Smirnov class N^{+}is the subclass of N consisting of those functions f for which

$$
\lim _{r \rightarrow 1} \int_{T} \log ^{+}|f(r \xi)| d \sigma(\xi)=\int_{T} \log ^{+}|f(\xi)| d \sigma(\xi)
$$

We define the Hardy-Lorentz space $H^{p, q}, 0<p<\infty, 0<q \leqslant \infty$, to be the space of functions $f \in N^{+}$with boundary value function in $L^{p, q}(\sigma)$ and we put $\|f\|_{H^{p, q}}=\|f\|_{p, q}$. The functions in $H^{p, \infty}$ with a boundary value function in $L_{0}^{p, \infty}(\sigma)$ form a closed subspace of $H^{p, \infty}$, which is denoted by $H_{0}^{p, \infty}$. The cases of major interest are of course $p=q$ and $q=\infty$; indeed $H^{p, p}$ is nothing but H^{p}, and $H^{p, \infty}$ is the weak- H^{p}.

The mixed norm space $H^{p, q, \alpha}, 0<p \leqslant \infty, 0<q, \alpha<\infty$, consists of all $f \in H(U)$ for which

$$
\|f\|_{H^{p, q, \alpha}}=\|f\|_{p, q, \alpha}=\left(\int_{0}^{1}(1-r)^{q \alpha-1} M_{p}(r, f)^{q} d r\right)^{1 / q}<\infty
$$

$H^{p, q, \alpha}$ can also be defined when $q=\infty$, in which case it is sometimes known as the weighted Hardy space $H^{p, \infty, \alpha}$, and consists of all $f \in H(U)$ for which

$$
\|f\|_{p, \infty, \alpha}=\sup _{0<r<1}(1-r)^{\alpha} M_{p}(r, f)<\infty
$$

The functions in $H^{p, \infty, \alpha} 0<p \leqslant \infty$ for which $\lim _{r \rightarrow 1}(1-r)^{\alpha} M_{p}(r, f)=0$ form a closed subspace which is denoted by $H_{0}^{p, \infty, \alpha}$.

Throughout this paper, we identify the holomorphic function $f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k}$ with its sequence of Taylor coefficients $\{\hat{f}(k)\}_{k=0}^{\infty}$.

If $f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k}$ belongs to $H^{p, q}$, then

$$
\begin{equation*}
\hat{f}(k)=O\left((k+1)^{(1 / p)-1}\right), \quad \text { if } 0<p<1 \text { and } 0<q \leqslant \infty \tag{1}
\end{equation*}
$$

(See Al] and $\mathbf{C o}$.)

In this paper we find the strongest condition that the moduli of an $H^{p, q}, 0<$ $p<1,0<q \leqslant \infty$, satisfy. Our result shows that the estimate (1) is optimal only if $q=\infty$.

To state our results in a form of theorems we need to introduce some more notations

A sequence space X is solid if $\left\{b_{n}\right\} \in X$ whenever $\left\{a_{n}\right\} \in X$ and $\left|b_{n}\right| \leqslant\left|a_{n}\right|$. More generally, we define $S(X)$, the solid hull of X. Explicitly,

$$
S(X)=\left\{\left\{\lambda_{n}\right\}: \text { there exists }\left\{a_{n}\right\} \in X \text { such that }\left|\lambda_{n}\right| \leqslant\left|a_{n}\right|\right\}
$$

A complex sequence $\left\{a_{n}\right\}$ is of class $l(p, q), 0<p, q \leqslant \infty$, if

$$
\left\|\left\{a_{n}\right\}\right\|_{p, q}^{q}=\left\|\left\{a_{n}\right\}\right\|_{l(p, q)}^{q}=\sum_{n=0}^{\infty}\left(\sum_{k \in I_{n}}\left|a_{k}\right|^{p}\right)^{q / p}<\infty
$$

where $I_{0}=\{0\}, I_{n}=\left\{k \in N: 2^{n-1} \leqslant k<2^{n}\right\}, n=1,2, \ldots$ In the case where p or q is infinite, replace the corresponding sum by a supremum. Note that $l(p, p)=l^{p}$.

For $t \in R$ we write D^{t} for the sequence $\left\{(n+1)^{t}\right\}$, for all $n \geqslant 0$. If $\lambda=\left\{\lambda_{n}\right\}$ is a sequence and X a sequence space, we write $\lambda X=\left\{\left\{\lambda_{n} x_{n}\right\}:\left\{x_{n}\right\} \in X\right\}$; thus, for example, $\left\{a_{n}\right\} \in D^{t} l^{\infty}$ if and only if $\left|a_{n}\right|=O\left(n^{t}\right)$.

We are now ready to state our first result.
Theorem 1. If $0<p<1$ and $0<q \leqslant \infty$, then $S\left(H^{p, q}\right)=D^{(1 / p)-1} l(\infty, q)$.
In particular, $S\left(H^{p}\right)=D^{(1 / p)-1} l(\infty, p), 0<p<1$. This was proved in JP1. Also, $S\left(H^{p, \infty}\right)=D^{(1 / p)-1} l^{\infty}$ means that the estimate (1) valid for the Taylor coefficients of an $H^{p, \infty}, 0<p<1$, function is sharp.

Our second result is as follows:
THEOREM 2. If $0<p<1$, then $S\left(H_{0}^{p, \infty}\right)=D^{(1 / p)-1} c_{0}$, where c_{0} is the space of all null sequences.

Our method of proving Theorem 1 and Theorem 2 depend upon nested embedding [Le, Theorem 4.1] for Hardy-Lorentz spaces. Thus, the strategy is to trap $H^{p, q}$ between a pair of mixed norm spaces and then deduce the results for $H^{p, q}$ from the corresponding results for the mixed norm spaces. Our Theorem 1 will follow from the following two theorems:

THEOREM L. LE] Let $0<p_{0}<p<s \leqslant \infty, 0<q \leqslant t \leqslant \infty$ and $\beta>$ $\left(1 / p_{0}\right)-(1 / p)$. Then

$$
\begin{align*}
D^{-\beta} H^{p_{0}, q, \beta+(1 / p)-\left(1 / p_{0}\right)} & \subset H^{p, q} \subset H^{s, q,(1 / p)-(1 / s)} \tag{2}\\
D^{-\beta} H_{0}^{p_{0}, \infty, \beta+(1 / p)-\left(1 / p_{0}\right)} & \subset H_{0}^{p, \infty} \subset H_{0}^{s, \infty,(1 / p)-(1 / s)} \tag{3}
\end{align*}
$$

Theorem JP 1. JP1 If $0<p \leqslant 1,0<q \leqslant \infty$ and $0<\alpha<\infty$, then $S\left(H^{p, q, \alpha}\right)=D^{\alpha+(1 / p)-1} l(\infty, q)$.

To prove Theorem 2 we first determine the solid hull of the space $H_{0}^{p, \infty, \alpha}$, $0<p \leqslant 1,0<\alpha<\infty$. More precisely, we prove

THEOREM 3. If $0<p \leqslant 1$ and $0<\alpha<\infty$, then $S\left(H_{0}^{p, \infty, \alpha}\right)=D^{\alpha+(1 / p)-1} c_{0}$.

Given two vector spaces X, Y of sequences we denote by (X, Y) the space of multipliers from X to Y. More precisely,

$$
(X, Y)=\left\{\lambda=\left\{\lambda_{n}\right\}:\left\{\lambda_{n} a_{n}\right\} \in Y, \text { for every }\left\{a_{n}\right\} \in X\right\}
$$

As an application of our results we calculate multipliers $\left(H^{p, q}, l(u, v)\right), 0<p<1$, $0<q \leqslant \infty,\left(H_{0}^{p, \infty}, l(u, v)\right), 0<p<1$, and $\left(H^{p, \infty}, X\right), 0<p<1$, where X is a solid space. These results extend some of the results obtained by Lengfield [Le, Section 5].

1. The solid hull of the Hardy-Lorentz space $H^{p, q}, 0<p<1,0<q \leqslant \infty$

Proof of Theorem 1. Let $0<p<1$. Choose p_{0} and s so that $p_{0}<p<$ $s \leqslant 1$ and a real number β so that $\beta+(1 / p)-\left(1 / p_{0}\right)>0$. As an easy consequence of Theorem JP we have

$$
S\left(D^{-\beta} H^{p_{0}, q, \beta+(1 / p)-\left(1 / p_{0}\right)}\right)=D^{(1 / p)-1} l(\infty, q) .
$$

Also, by Theorem JP,

$$
S\left(H^{s, q,(1 / p)-(1 / s)}\right)=D^{(1 / p)-1} l(\infty, q)
$$

and consequently $S\left(H^{p, q}\right)=D^{(1 / p)-1} l(\infty, q)$, by Theorem L.

2. The solid hull of mixed norm space $H_{0}^{p, \infty, \alpha}, 0<p \leqslant 1,0<\alpha<\infty$

If $f(z)=\sum_{k=0}^{\infty} \hat{f}(k) z^{k}$ and $g(z)=\sum_{k=0}^{\infty} \hat{g}(k) z^{k}$ are holomorphic functions in U, then the function $f \star g$ is defined by $(f \star g)(z)=\sum_{k=0}^{\infty} \hat{f}(k) \hat{g}(k) z^{k}$.

The main tool for proving Theorem 3 are polynomials $W_{n}, n \geqslant 0$, constructed in JP1 and JP3. Recall the construction and some of their properties.

Let $\omega: R \rightarrow R$ be a nonincreasing function of class C^{∞} such that $\omega(t)=1$, for $t \leqslant 1$, and $\omega(t)=0$, for $t \geqslant 2$. We define polynomials $W_{n}=W_{n}^{\omega}, n \geqslant 0$, in the following way:

$$
W_{0}(z)=\sum_{k=0}^{\infty} \omega(k) z^{k} \quad \text { and } \quad W_{n}(z)=\sum_{k=2^{n-1}}^{2^{n+1}} \varphi\left(\frac{k}{2^{n-1}}\right) z^{k}, \text { for } n \geqslant 1
$$

where $\varphi(t)=\omega(t / 2)-\omega(t), t \in R$.
The coefficients $\hat{W}_{n}(k)$ of these polynomials have the following properties:

$$
\begin{align*}
& \operatorname{supp}\left\{\hat{W}_{n}\right\} \subset\left[2^{n-1}, 2^{n+1}\right] \tag{4}\\
& 0 \leqslant \hat{W}_{n}(k) \leqslant 1, \quad \text { for all } k, \tag{5}\\
& \sum_{n=0}^{\infty} \hat{W}_{n}(k)=1, \quad \text { for all } k, \tag{6}\\
& \hat{W}_{n}(k)+\hat{W}_{n+1}(k)=1, \quad \text { for } 2^{n} \leqslant k \leqslant 2^{n+1}, n \geqslant 0 . \tag{7}
\end{align*}
$$

Property (5) implies that

$$
f(z)=\sum_{n=0}^{\infty}\left(W_{n} \star f\right)(z), \quad f \in H(U)
$$

the series being uniformly convergent on compact subsets of U.
If $0<p<1$, then there exists a constant $C>0$ depending only on p such that

$$
\begin{equation*}
\left\|W_{n}\right\|_{p}^{p} \leqslant C_{p} 2^{-n(1-p)}, \quad n \geqslant 0 \tag{8}
\end{equation*}
$$

Proof of Theorem 3. Let $f \in H_{0}^{p, \infty, \alpha}, 0<p<1,0<\alpha<\infty$. By using the familiar inequality

$$
M_{p}(r, f) \geqslant C(1-r)^{(1 / p)-1} M_{1}\left(r^{2}, f\right), \quad 0<p \leqslant 1
$$

(see [Du, Theorem 5.9]), we obtain

$$
\sup _{k \in I_{n}}|\hat{f}(k)| r^{2 k} \leqslant M_{1}\left(r^{2}, f\right) \leqslant C M_{p}(r, f)(1-r)^{1-(1 / p)}, \quad 0<r<1
$$

Now we take $r_{n}=1-2^{-n}$ and let $n \rightarrow \infty$, to get $\{\hat{f}(k)\} \in D^{\alpha+(1 / p)-1} c_{0}$. Thus $H_{0}^{p, \infty, \alpha} \subset D^{\alpha+(1 / p)-1} c_{0}$.

To show that $D^{\alpha+(1 / p)-1} c_{0}$ is the solid hull of $H_{0}^{p, \infty, \alpha}$, it is enough to prove that if $\left\{a_{n}\right\} \in D^{\alpha+(1 / p)-1} c_{0}$, then there exists $\left\{b_{n}\right\} \in H_{0}^{p, \infty, \alpha}$ such that $\left|b_{n}\right| \geqslant\left|a_{n}\right|$, for all n.

Let $\left\{a_{n}\right\} \in D^{\alpha+(1 / p)-1} c_{0}$. Define

$$
g(z)=\sum_{j=0}^{\infty} B_{j}\left(W_{j}(z)+W_{j+1}(z)\right)=\sum_{k=0}^{\infty} c_{k} z^{k}
$$

where $B_{j}=\sup _{2^{j} \leqslant k<2^{j+1}}\left|a_{k}\right|$. Using (4) and (8) we find that

$$
M_{p}^{p}(r, g) \leqslant \sum_{j=0}^{\infty} B_{j}^{p}\left(M_{p}^{p}\left(r, W_{j}\right)+M_{p}^{p}\left(r, W_{j+1}\right)\right) \leqslant C\left(B_{0}^{p}+\sum_{j=1}^{\infty} B_{j}^{p} r^{p^{j-1}} 2^{-j(1-p)}\right)
$$

Set $B_{j}^{p} 2^{-j(\alpha p+1-p)}=\lambda_{j}$. Then

$$
M_{p}^{p}(r, g) \leqslant C\left(\lambda_{0}+\sum_{j=1}^{\infty} \lambda_{j} r^{p 2^{j-1}} 2^{j \alpha p}\right)
$$

where $\lambda_{j} \rightarrow 0$, as $j \rightarrow \infty$. From this it easily follows that $(1-r)^{\alpha p} M_{p}^{p}(r, g) \rightarrow 0$, as $r \rightarrow 1$. Thus $g \in H_{0}^{p, \infty, \alpha}$.

To prove that $\left|c_{k}\right| \geqslant\left|a_{k}\right|, k=1,2, \ldots$, choose n so that $2^{n} \leqslant k<2^{n+1}$. It follows from (7)

$$
\begin{aligned}
c_{k} & =\sum_{j=0}^{\infty} B_{j}\left(\hat{W}_{j}(k)+\hat{W}_{j+1}(k)\right) \geqslant B_{n}\left(\hat{W}_{n}(k)+\hat{W}_{n+1}(k)\right) \\
& =B_{n}=\sup _{2^{n} \leqslant j<2^{n+1}}\left|a_{j}\right| \geqslant\left|a_{k}\right| .
\end{aligned}
$$

Now the function $h(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$, where $b_{0}=a_{0}$ and $b_{n}=c_{n}$, for $n \geqslant 1$, belongs to $H_{0}^{p, \infty, \alpha}$ and $\left|b_{n}\right| \geqslant\left|a_{n}\right|$ for all $n \geqslant 0$. This finishes the proof of Theorem 3.

3. The solid hull of the space
 $$
H_{0}^{p, \infty}, 0<p<1
$$

Proof of Theorem 2. Let $0<p<1$. Choose p_{0} and s so that $p_{0}<p<$ $s \leqslant 1$ and $\beta \in R$ so that $\beta+(1 / p)-\left(1 / p_{0}\right)>0$. Then

$$
\begin{aligned}
S\left(D^{-\beta} H_{0}^{p_{0}, \infty, \beta+(1 / p)-\left(1 / p_{0}\right)}\right) & =D^{(1 / p)-1} c_{0} \\
S\left(H_{0}^{s, \infty,(1 / p)-(1 / s)}\right) & =D^{(1 / p)-1} c_{0}
\end{aligned}
$$

by Theorem 3. By Theorem L we have $S\left(H_{0}^{p, \infty}\right)=D^{(1 / p)-1} c_{0}$.

4. Applications to multipliers

As it was noticed in the introduction, another objective of this paper is to extend some of the results given in [Le, Section 5].

The next lemma due to Kellog (see $\mathbf{K}]$) (who states it for exponents no smaller than 1 , but it then follows for all exponents, since $\left.\left\{\lambda_{n}\right\} \in(l(a, b), l(c, d))\right)$ if and only if $\left.\left\{\lambda_{n}^{(1 / t)}\right)\right\} \in(l(a t, b t), l(c t, d t))$.

Lemma 1. If $0<a, b, c, d \leqslant \infty$, then $(l(a, b), l(c, d))=l(a \ominus c, b \oplus d)$, where $a \ominus c=\infty$ if $a \leqslant c, b \ominus d=\infty$, if $b \leqslant d$, and

$$
\begin{array}{ll}
\frac{1}{a \Theta c}=\frac{1}{c}-\frac{1}{a}, & \text { for } 0<c<a \\
\frac{1}{b \Theta d}=\frac{1}{d}-\frac{1}{b}, & \text { for } 0<d<b
\end{array}
$$

In particular, $\left(l^{\infty}, l(u, v)\right)=l(u, v)$. Also, it is known that $\left(c_{0}, l(u, v)\right)=l(u, v)$.
In AS it is proved that if X is any solid space and A any vector space of sequences, then $(A, X)=(S(A), X)$.

Since $l(u, v)$ are solid spaces, we have $\left(H^{p, q}, l(u, v)\right)=\left(S\left(H^{p, q}\right), l(u, v)\right)$ and $\left(H_{0}^{p, \infty}, l(u, v)\right)=\left(S\left(H_{0}^{p, \infty}\right), l(u, v)\right)$. Using this, Lemma 1, Theorem 1 and Theorem 2 we get

Theorem 4. Let $0<p<1$ and $0<q \leqslant \infty$. Then

$$
\left(H^{p, q}, l(u, v)\right)=D^{1-(1 / p)} l(u, q \ominus v) .
$$

Theorem 5. Let $0<p<1$. Then

$$
\left(H_{0}^{p, \infty}, l(u, v)\right)=D^{1-(1 / p)} l(u, v) .
$$

In particular, $\left(H^{p, \infty}, l(u, v)\right)=D^{1-(1 / p)} l(u, v)$. In fact more is true.
Theorem 6. Let $0<p<1$ and let X be a solid space. Then

$$
\left(H^{p, \infty}, X\right)=D^{1-(1 / p)} X
$$

Proof. Since X is a solid space, we have $\left(l^{\infty}, X\right)=X$. Hence, using Theorem 1 we get

$$
\begin{aligned}
\left(H^{p, \infty}, X\right) & =\left(S\left(H^{p, \infty}\right), X\right)=\left(D^{(1 / p)-1} l^{\infty}, X\right) \\
& =D^{1-(1 / p)}\left(l^{\infty}, X\right)=D^{1-(1 / p)} X
\end{aligned}
$$

References

[Al] A.B. Aleksandrov, Essays on non-locally convex Hardy classes in Complex Analysis and Spectral Theory, ed. V. P. Havin and N. K. Nikolski, Lect. Notes Math. 864, Springer, Berlin-Heidelberg-NewYork, 1981, 1-89.
[AS] J. M. Anderson and A. Shields, Coefficient multipliers of Bloch functions, Trans. Am. Math. Soc. 224 (1976), 255-265.
[Co] L. Colzani, Taylor coefficients of functions in certain weak Hardy spaces, Boll. U. M. I. 6 (1985), 57-66.
[Du] P. L. Duren, Theory of H^{p} Spaces, Academic Press, New York 1970; reprinted by Dover, Mineola, NY, 2000.
[Le] M. Lengfield, A nested embedding theorem for Hardy-Lorentz spaces with applications to coefficient multiplier problem, Rocky Mount. J. Math. 38(4) (2008), 1215-1251.
[JP1] M. Jevtić and M. Pavlović, On the sollid hull of the Hardy space $H^{p}, 0<p<1$, Michigan Math. J. 54 (2006), 439-446.
[JP2] M. Jevtić and M. Pavlović, Coefficient multipliers on spaces of analytic functions, Acta Sci. Math. (Szeged) 64 (1998), 531-545.
[JP3] M. Jevtić and M. Pavlović, On multipliers from H^{p} to $l^{q}, 0<q<p<1$, Arch. Math. 56 (1991), 174-180.
[K] C. N. Kellog, An extension of the Hausdorff-Young theorem, Michigan. Math. J. 18 (1971), 121-127.
[P] M. Pavlović, Introduction to Function Spaces on the Disk, Matematički Institut, Beograd, 2004.

Matematički fakultet
(Received 1205 2008)
Studentski trg 16
11000 Beograd, p.p. 550
Serbia
jevtic@matf.bg.ac.yu
pavlovic@matf.bg.ac.yu

[^0]: 2000 Mathematics Subject Classification: Primary 30D55; Secondary 42A45.
 Research supported by the grant ON144010 from MNS, Serbia.

