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A NEW APPROACH TO TEMPERATE
GENERALIZED COLOMBEAU FUNCTIONS

Antoine Delcroix

Abstract. A new approach to the algebra Gτ of temperate nonlinear general-
ized functions is proposed, in which Gτ is based on the space OM endowed with
is natural topology in contrary to previous constructions. Thus, this construc-
tion fits perfectly in the general scheme of construction of Colombeau type
algebras and reveals better properties of Gτ . This is illustrated by the natural
introduction of a regularity theory in Gτ , of the Fourier transform, with the
definition of GO′

C
, the space of rapidly generalized distributions which is the

Fourier image of Gτ .

1. Introduction

The theory of generalized functions is nowadays well established. Many ap-
plications have been carried out in various fields of mathematics such as partial
differential equations, Lie analysis, local and microlocal analysis, probability the-
ory, differential geometry. (See for examples the monographies [1, 2, 7, 15, 16]
and the references therein.)

This paper develops some remarks about a new approach to temperate gener-
alized functions. In order to justify the introduction of this new construction, we
first recall the main types of special (or simplified) algebras of generalized based
on spaces of smooth functions considered in the literature.

The original simplified Colombeau algebra of generalized functions G is based
on the space E = C∞ of smooth functions and contains the space of Schwartz dis-
tributions as a subvector space [1, 7, 15, 16, 18]. The duality in the background
of this construction is, of course, (D,D′). As all spaces considered in the sequel, G
is a factor space of moderate nets modulo negligible ones, the moderateness and the
negligibility being given by the asymptotic behavior of the nets with respect to an
asymptotic scale. When an algebra containing the space of tempered distributions
is needed, the so-called algebra of temperate generalized functions Gτ [1, 7, 17, 18],
based on the space OM of slowly increasing smooth functions, is considered. The
duality is in this case (S,S ′). Note that this construction is not, at first sight,
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related to the topology of OM . Finally, an algebra based on the space S of rapidly
decreasing functions has also been considered [3, 17, 19], with applications (for
example) in the field of pseudo differential operators [5, 6] or of microlocal analysis
of generalized functions [3, 8, 9, 19]. This algebra GS of rapidly decreasing gener-
alized functions contains as a linear subspace O′

C , the space of rapidly decreasing
distributions.

The first and the last constructions are based on the natural topology of the
underlying space, which can be described by (countable) families of semi-norms.
We propose here a new version of the construction of temperate generalized func-
tions based on the usual topology of OM , which therefore fits in the general scheme
of construction of Colombeau type algebras. The price to be paid is the non count-
ability of the family of semi-norms defining the topology of OM .

The paper is organized as follows. Section 2 is devoted to a short presentation
of the construction of the spaces of Colombeau type generalized functions and of
the examples quoted above. In Section 3, we briefly recall the construction of the
classical space of temperate generalized functions Gτ , develop the new construction
and show that it leads to the same space. In Section 4, we turn to the definition
of the Fourier transform of elements of Gτ . Using the classical theorem asserting
that the Fourier image of OM is O′

C , we introduce the (new) space GO′
C

of rapidly
generalized distributions which is the Fourier image of Gτ . Of course, this Fourier
transform will share the classical expected properties. Finally, in Section 5, we
introduce the subspace G∞

τ of regular elements of Gτ and show that the result
G∞
τ ∩ S ′ = OM holds in the spirit of the more classical one G∞ ∩ D′ = C∞ [16].

(More generally, we could have introduced the notion of R-regularity [3].) We also
show, in the spirit of [14], that some subspaces of G of regular temperate elements
can be considered leading to the corresponding local analysis of elements of G.

Acknowledgment. I would like to express my gratitude to Prof. Stevan Pili-
pović for his warm support for more than ten years.

2. Simplified or special algebras of generalized functions

2.1. Colombeau type algebras based on locally convex algebras. Let
d be an integer and denote by K the field of real or complex numbers. Let E(·)
be a presheaf (resp. sheaf) of K-topological algebras of K valued functions over
R
d. (Thus, the presheaf restriction operator is the usual restriction of K valued

functions.)
Suppose that, for any open set Ω in R

d, the topology of E(Ω) can be described
by a family P(Ω) = (pi)i∈I(Ω)

of semi-norms verifying:

∀i∈I(Ω) ∃(j, k, C)∈I(Ω)×I(Ω)×R
∗
+ ∀f, g∈E(Ω) pi(fg) � Cpj(f)pk(g).

Set

M(E,P)(Ω) =
{
(fε)ε ∈ E(Ω)(0,1] | ∀i∈I ∃m∈N pi(fε) = o(ε−m) as ε→ 0

}
,

N(E,P)(Ω) =
{
(fε)ε ∈ E(Ω)(0,1] | ∀i∈I ∀m∈N pi(fε) = o(εm) as ε→ 0

}
.
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(The letter M (resp. N ) stands for moderate (resp. negligible). In the sequel, we
shall omit the precision “as ε→ 0.”)

From [12], it follows that:

Proposition 2.1. (a) Suppose that the following assertion holds:
(1) For any Ω1 and Ω2, open subsets of R

d with Ω1 ⊂ Ω2, we have I(Ω1) ⊂ I(Ω2).
Moreover, if ρ2

1 is the restriction operator E(Ω2) → E(Ω1), then, for each pi ∈
P(Ω1), the semi-norm p̃i = pi ◦ ρ2

1 extends pi to P(Ω2).
Then M(E,P)(·) is a presheaf of K-algebras and N(E,P)(·) a presheaf of ideals

of M(E,P)(·).
(b) Suppose that E(·) is a sheaf of K-topological algebras and that assumption

(1) and the following hold:
(2) For any family (Ωh)h∈H of open sets in R

d with Ω =
⋃
h∈H Ωh and for any

p ∈ P(Ω), there exist a finite subfamily (Ωj)1�j�n and corresponding semi-norms
pj ∈ P(Ωj) such that, for any u ∈ E(Ω),

p(u) � C max
1�j�n

pj(u|Ωj
), C > 0.

Then M(E,P)(·) is a sheaf of K-algebras and N(E,P)(·) a presheaf of ideals of
M(E,P)(·).

Definition 2.1. For any Ω open subset of Rd, the Colombeau type algebra
associated to E(Ω) is the factor algebra G(Ω) = M(E,P)(Ω)/N(E,P)(Ω).

Proposition 2.2. [1, 12] (a) Under assumption (1), G(·) is a presheaf of
algebras.

(b) In addition, suppose that assumption (2) is fulfilled. Then, the localization
principle (F1) holds for G(·):
(F1) Let (Ωh)h∈H be a family of open sets in R

d with Ω =
⋃
h∈H Ωh. Consider

u, v ∈ G(Ω) such that all restrictions u|Ωh
and v|Ωh

(h ∈ H) coincide. Then u = v.

(c) Moreover, if E(·) is a fine sheaf of algebras, G(·) is also a fine sheaf of
algebras.

There is a natural presheaf (resp. sheaf) embedding of E(·) into G(·) defined
by

(2.1) σE,G(Ω) : E(Ω) → G(Ω), f �→ (f)
ε
+ N(E,P)(Ω).

The presheaf (rest. sheaf) G(·) turns out to be a presheaf (rest. sheaf) of modules
on the factor ring C̃ = M(C)/N (C) with

M(K) =
{
(rε)ε ∈ K

(0,1] | ∃m ∈ N |rε| = o(ε−m)
}
,

N (K) =
{
(rε)ε ∈ K

(0,1] | ∀m ∈ N |rε| = o(εm)
}
,

with K = C or K = R, R+. Moreover, for the cases under consideration in this
paper, E(·) is a subpresheaf (rest. subsheaf) of the sheaf C∞(·) of smooth functions.
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Then, one easily checks that, for α ∈ Nd, a presheaf family of differential operators
∂αf is defined component-wise on G(Ω) by

∂αf = (∂αfε)ε + N(E,P)(Ω) with (fε)ε ∈ f.

The family of differential operators (∂α)
α∈Nd satisfies the usual rules (such as the

Leibniz rule) and G(·) turns out to be a presheaf (rest. sheaf) of differential alge-
bras. The embedding defined by (2.1) turns out to be an embedding of differential
algebras.

2.2. Examples. Example 2.1. Take E(·) = C∞(·). For any Ω open subset
of Rd, C∞(Ω) is endowed with the family of semi-norms P(Ω) = (p

K,l
)
K�Ω,l∈N

defined by
p
K,l

(f) = sup
|α|�l, x∈K

|∂αf(x)|,
where the notation K � Ω means that the set K is a compact set included in Ω.
We set

MC∞(·) = M(C∞,P)(·), NC∞(·) = N(C∞,P)(·).
The sheaf G(·) = MC∞(·)/NC∞(·) is the sheaf of special or simplified Colombeau
algebras of generalized functions [1, 7, 16, 18].

Example 2.2. Take for E(·) the presheaf H∞(·) = DL2(·), with

H∞(Ω) =
⋂
m∈N

Hm(Ω), Hm(Ω) = Wm,2(Ω).

From Sobolev inequalities, it follows that H∞(Ω) is continuously embedded into
C∞(Ω). We may suppose a priori that elements of H∞(Ω) are C∞. H∞(Ω) is
endowed with the family of norms PL2(Ω) =

(‖ · ‖m,Ω)
m∈N

defined by

‖f‖m,Ω = sup
|α|�m

‖∂αf‖L2(Ω) .

We set
MH(·) = M(H∞,PL2 )(·), NH(·) = N(H∞,PL2 )(·).

The presheaf GH(·) = MH(·)/NH(·) is a presheaf of Sobolev generalized functions.

For the following example, we set for f ∈ C∞(Ω), r ∈ Z and l ∈ N,

pr,l(f) = sup
x∈Ω, |α|�l

〈x〉r|∂αf(x)| with 〈x〉 = (1 + |x|2)1/2.

Example 2.3. Take E(·) = S(·), the presheaf of rapidly decreasing smooth
functions. For any Ω open subset of R

d, the topology of S(Ω) is described by the
family of semi-norms PS(Ω) = (pq,l)(q,l)∈N2 . We set

MS(·) = M(S,PS)(·), NS(·) = N(S,PS)(·).
The presheaf GS(·) = MS(·)/NS(·) is the presheaf of algebras of rapidly decreasing
generalized functions [3, 5, 6, 17, 19].

Remark 2.1. More general constructions can be given, for example if E(Ω) is
a projective or inductive limit of topological algebras. We refer the reader to [4]
for these cases.
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2.3. Topology on G(·) . We follow [4] and use the notations of Subsection 2.1.
Set, for (fε)ε, (gε)ε ∈ E(Ω)(0,1] and i ∈ I(Ω),

‖fε‖i = lim sup
ε→0

pi(fε)| ln ε|
−1

and di(fε, gε) = ‖fε − gε‖i. We get [4, Proposition-definition 2]

M(E,P)(Ω) =
{
(fε)ε ∈ E(Ω)(0,1] | ∀i∈I ‖fε‖i < +∞}

,

N(E,P)(Ω) =
{
(fε)ε ∈ E(Ω)(0,1] | ∀i∈I ‖fε‖i = 0

}
.

The family (di)i∈I(Ω)
defines a family of ultrapseudometrics on M(E,P)(Ω), induc-

ing on M(E,P)(Ω) the structure of a topological ring such that the intersection of
neighborhoods of 0 is equal to N(E,P)(Ω). Thus, this topology transfers to the factor
space G(Ω) which turns out to be a topological ring, and a topological algebra over
the factor ring C̃ = M(C)/N (C). (By setting ‖rε‖′ = lim supε→0 |rε|| ln ε|

−1
, one

easily get that M(C) (resp. N (C)) =
{
(rε)ε ∈ K(0,1] | ‖rε‖′ < +∞ (resp. = 0)

}
.

This topological structure turns C̃ into a topological ring. This topology coincides
with the sharp topology, usually defined in terms of valuations [17, 18].

3. Temperate generalized functions

3.1. Classical construction [7, 15, 17]. We recall that

OM (Ω) =
{
f ∈ C∞(Ω) | ∀l∈N ∃q∈N p−q,l(f) < +∞}

.

Define

Mτ (Ω) =
{
(fε)ε ∈ OM (Ω)(0,1] | ∀l∈N ∃q∈N ∃m∈N p−q,l(fε) = o(ε−m)

}
,

Nτ (Ω) =
{
(fε)ε ∈ OM (Ω)(0,1] | ∀l∈N ∃q∈N ∀m∈N p−q,l(fε) = o(εm)

}
.

One can show that Mτ (Ω) is a subalgebra of OM (Ω)(0,1] and Nτ (Ω) an ideal of
Mτ (Ω). The algebra Gτ (Ω) = Mτ (Ω)/Nτ (Ω) is called the algebra of tempered
generalized functions.

3.2. New construction. The topology of OM (Ω) may be described by the
non-countable family of semi-norms POM

(Ω) = (νϕ,l)(ϕ,l)∈S(Ω)×N
defined by

νϕ,l(f) = sup
x∈Ω,|α|�l

|ϕ(x)∂αf(x)|.

Proposition 3.1. OM (Ω) endowed with the family POM
(Ω) is a topological

algebra.

This result is classical. For the continuity of the product, one establishes the
property

∀(ϕ, l)∈S(Ω)×N ∃ψ∈S(Ω) ∃C>0 ∀(f, g)∈OM (Ω)2 νϕ,l(fg) � Cνψ,l(f)νψ,l(g),

which is a consequence of the following:

Lemma 3.1. For any ψ ∈ C0(Ω) with positive values such that, for any q > 0,
pq,0(ψ) < +∞ there exists ϕ ∈ S(Ω) such that ψ � ϕ.



114 DELCROIX

With the previous notations, we set

MOM
(Ω) = M(OM ,POM

)(Ω)

=
{
(fε)ε ∈ OM (Ω)(0,1] | ∀ϕ∈S(Ω) ∀l∈N ∃m∈N νϕ,l(fε) = o(ε−m)

}
,

NOM
(Ω) = N(OM ,POM

)(Ω)

=
{
(fε)ε ∈ OM (Ω)(0,1] | ∀ϕ∈S(Ω) ∀l∈N ∀m∈N νϕ,l(fε) = o(εm)

}
.

Proposition 3.2. We have MOM
(Rd) = Mτ (Rd) and NOM

(Rd) = Nτ (Rd).

Proof. From the definitions, we immediately get that Mτ (Rd) ⊂ MOM
(Rd)

(resp. Nτ (Rd) ⊂ NOM
(Rd).) For the inverse inclusions, we begin by proving that,

for (fε)ε ∈ MOM
(Rd), (fε)ε ∈ Mτ (Rd) if, and only if, (fε)ε satisfies the following

characteristic property

(3.1) ∀α∈N
d ∃q∈N ∃m∈N ∃ε0∈(0, 1] ∃r>0 ∀ε∈(0, ε0] ∀x /∈B(0, r)

〈x〉−q|∂αfε(x)| � ε−m.

Indeed, we can easily see that if (fε)ε ∈ Mτ (Rd), the property (3.1) holds even
if (fε)ε /∈ MOM

(Rd). Conversely suppose that (fε)ε ∈ MOM
(Rd) and that (3.1)

holds. Fix α ∈ N
d. There exist q ∈ N, m ∈ N, ε0 ∈ (0, 1], r > 0 such that (3.1)

holds. Let us show that 〈x〉−q |∂αfε(x)| � ε−m
′

for some m′ ∈ N, ε small enough
and all x ∈ B(0, r). Consider ϕ ∈ D(Rd) with 0 � ϕ � 1 and ϕ ≡ 1 on B(0, r).
According to the definition of MOM

(Rd), used with l = |α|, there exists ε′0 ∈ (0, 1]
such that

∀ε∈(0, ε′0] ∀x∈B(0, r) 〈x〉−q |∂αfε(x)| � |∂αfε(x)| � νϕ,l(fε) � ε−m
′
.

Taking ε1 = min(ε0, ε′0), m1 = max(m,m′), we obtain that

∀ε∈(0, ε1] ∀x∈R
d, 〈x〉−q |∂αfε(x)| � ε−m1 .

From this last property, a classical argument shows that

p−q,l(fε) = sup
x∈Rd, |α|�l

〈x〉−q |∂αfε(x)| = o
(
ε−M

)
provided M is chosen big enough. Thus (fε)ε ∈ Mτ (Rd).

Let us return to the proof of the inclusion MOM
(Rd) ⊂ Mτ (Rd). Take (fε)ε ∈

MOM
(Ω) and suppose that (3.1) does not hold. There exist α ∈ N

d for which we
can built by induction a sequence (εq)q�0

with εq
q→+∞−→ 0 and a sequence (xq)q�0

with |xq+1| � |xq| + 2 such that

〈xq〉−q
∣∣∂αfεq

(xq)
∣∣ > ε−qq .

Consider θ ∈ D (
R
d
)

with supp θ ⊂ B(0, 1), 0 � θ � 1 and, say, θ(0) = 1. Set

ϕ(x) =
+∞∑
q=0

〈xq〉−qθ(x− xq).
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Following [11], it can be verified that ϕ belongs to S(Rd). (Note that

supp(x �→ θ(x− xq)) ∩ supp(x �→ θ(x− xq′)) = ∅ for q �= q′,

justifying the choice of (xq)q�0
.) We have

ϕ(xq)
∣∣∂αfεq

(xq)
∣∣ > ε−qq θ(0) = ε−qq .

Thus, for all q ∈ N, νϕ,|α|(fεq
) > ε−qq , with εq

q→+∞−→ 0 in contradiction with
the definition of MOM

(Ω). Finally (fε)ε ∈ Mτ (Rd). The proof of the inclusion
NOM

(Rd) ⊂ Nτ (Rd) is quite similar. �

Corollary 3.1. We have Gτ (Rd) = MOM
(Rd)/NOM

(Rd).

Remark 3.1. (i) Following subsection 2.3, Gτ (Rd) is naturally equipped with
a topological structure, given by the non countable family of ultrapseudometrics
(dϕ,l)(ϕ,l)∈S(Ω)×N

defined by

dϕ,l(f, g) = lim sup
ε→0

νϕ,l(fε − gε)| ln ε|
−1
, where (fε)ε ∈ f, (gε)ε ∈ g.

(ii) According to Proposition 2.1, Gτ (·) is a presheaf of algebras. However,
the localization principle (F1) does not hold for Gτ (·) as shown by the following
example.

Example 3.1. We adapt a classical example, which was first used to show that
Gτ (·) is not a subpresheaf of G(·) [17]. Consider Ψ ∈ D(R) such that 0 � Ψ � 1
and, say, Ψ(0) = 1. Set fε(·) = Ψ(· − | ln ε|1/2). Obviously (fε)ε ∈ MOM

(R),

defining f ∈ Gτ (R). Consider Ωh = ]−h, h[ for h ∈ N∗. As | ln ε|1/2 ε→0−→ +∞, we
have f |Ωh

= 0. However, fε(| ln ε|1/2) = Ψ(0) = 1. Take ϕ ∈ S(R) defined by
ϕ(x) = exp(−x2). We have ϕ(| ln ε|1/2)fε(| ln ε|1/2) = ε. Thus νϕ,0(fε) � ε and
(fε)ε /∈ NOM

(R). Therefore f is non equal to 0 on R =
⋃
h∈N

Ωh.

We set

NOM ,0 =
{
(fε)ε∈MOM

(Ω) | ∀ϕ∈S(Ω) ∀m∈N : νϕ,0(fε) = o(εm)
}
.

We have the same result as theorem 1.2.27 in [7] concerning Nτ (·) (the proof is
similar):

Proposition 3.3. If the open set Ω is a product of d intervals, then NOM
(Ω)

is equal to NOM ,0(Ω) ∩MOM
(Ω).

This result renders easier the proof of:

Proposition 3.4. [7, 18] Consider ρ ∈ S(Rd) such that

(3.2)
∫
ρ(x) dx = 1, ∀α∈N

d
� {0},

∫
xαρ(x) dx = 0.

Set

(3.3) ρε(x) = ε−dρ (x/ε) .
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(i) The map

στ : OM (Rd) → Gτ (Rd), u �→ (u)
ε
+ NOM

(Rd)

is an embedding of differential algebras.
(ii) The map

ιτ : S ′(Rd) → Gτ (Rd), T �→ (T ∗ ρε)ε + NOM
(Rd)

is an embedding of differential vector spaces.
(iii) Moreover, ιτ |OM (Rd) = στ , which means that the following diagram is

commutative:

(3.4)
OM (Rd)

στ−−−→ Gτ (Rd).
↘ ιτ↗
S ′(Rd)

(The arrow without label is the classical embedding of OM (Rd) into S ′(Rd).)

The assertion (iii) is an improvement of the classical one which only gives
ιτ |OM (Rd) = στ |OC(Rd).

Proof. The assertion (i) is an application of the general principle recalled in
subsection 2.1 to the case of OM (·). We refer the reader to [7, 18] for the proof of
the assertion (ii) which uses mainly the structure of elements of S ′(Rd). We shall
prove the assertion (iii) in the case d = 1; the general case only differs by more
complicate algebraic expressions. Let f be in OM (R) and set ∆ = ιτ (f) − στ (f).
One representative of ∆ is given by (∆ε : R → MOM

(R))
ε

with

∆ε(y) = (f ∗ θε)(y) − f(y) =
∫
f(y − x)ρε(x) dx− f(y)

=
∫

(f(y − x) − f(y)) ρε(x) dx =
∫

(f(y − εu) − f(y)) ρ(u) du

since
∫
ρε(x) dx = 1. Let k be a positive integer. Taylor’s formula gives

f(y − εu) − f(y) =
k∑
i=1

(−εu)i
i!

f (i)(y) +
(−εu)k
k!

∫ 1

0

f (k+1)(y − εuv)(1 − v)kdv.

Using
∫
xiρε(x) dx = 0, for i ∈ {1, . . . , k}, we get

∆ε(y) =
∫

(−εu)k
k!

∫ 1

0

f (k+1)(y − εuv)(1 − v)kdv ρ(u) du.

As f ∈ OM (R), there exists p ∈ N and C3 > 0 such that |f (k+1)(ξ)| � C3(1 + |ξ|)p.
Thus

∀(u, y)∈R
2 ∀v∈ [0, 1] ∀ε∈(0, 1]

∣∣f (k+1)(y − εuv)
∣∣ � C3(1 + |y|)p (1 + |u|)p.

As ρ is rapidly decreasing, the integral
∫ |u|k(1 + |u|)pρ(u) du converges and

|∆ε(y)| � εk

k!
C3(1 + |y|)p

∫
|u|k(1 + |u|)pρ(u) du � εkC4(1 + |y|)p.
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Consider ϕ ∈ S(R). The function (1 + | · |)p |ϕ(·)| is bounded. Thus

sup
y∈R

|ϕ(y)∆ε(y)| = o(εk) as ε→ 0.

As (∆ε)ε ∈ MOM
(R) and supy∈R |ϕ(y)∆ε(y)| = o(εk), we can conclude without

estimating the derivatives that (∆ε)ε ∈ NOM
(R) by using Proposition 3.3. �

4. Fourier transform and space of
rapidly decreasing generalized distributions

There is no need to recall the importance of spectral analysis, based on the
Fourier transform in the theories of distributions [10] and Colombeau generalized
functions (See, for example, [3, 8, 9, 19]). In this section, we first define in a new
way the Fourier transform of elements of Gτ (Rd) in relationship with a (new) space
of generalized distributions.

The Fourier transform of elements of Gτ (Ω) has already been defined with the
help of ad hoc cutoff functions [17, 18]. More precisely, one sets

∀u∈Gτ (Ω), F(u) =
∫
e−ıxyuε(y)ρ̂(εy) dy + Nτ (Rd) with (uε)ε ∈ u,

where ρ ∈ S(Rd) satisfies (3.2) so that ρ̂(εy) ε→0−→ 1. One shows that this definition
makes sense for F(u) does not depend on the chosen representative (uε)ε ∈ u.
Analogously, one defines F−1. However, this Fourier transform lacks some expected
properties such as F−1 ◦ F = id. (The reader will find a complete discussion on
this subject in [18].)

Recalling that OM (Rd) is the Fourier image of O′
C(Rd) (and reciprocally), we

prefer here to construct the Fourier transform starting from this fact since Gτ (Rd)
is directly built on OM (Rd). In other words, we consider Gτ (Rd) as a space of
multiplicators and we introduce a space of convolutors, both of them being linked
as usual by the Fourier Transform and its inverse.

Set

MO′
C
(Rd) =

{
(Tε)ε ∈ O′

C(Rd)(0,1] | (F−1(Tε))ε ∈ MOM
(Rd)

}
,

NO′
C
(Rd) =

{
(Tε)ε ∈ O′

C(Rd)(0,1] | (F−1(Tε))ε ∈ NOM
(Rd)

}
.

From the linearity of F−1 and the linear properties of the spaces MOM
(Rd) and

NOM
(Rd), we immediately get that MO′

C
(Rd) is a C̃-submodule (resp. C-subvector

space) of O′
C(Rd)(0,1] and NO′

C
(Rd) a C̃-submodule (resp. C-subvector space) of

MO′
C
(Rd).

Definition 4.1. The factor space GO′
C
(Rd) = MO′

C
(Rd)/NO′

C
(Rd) is called

the space of rapidly decreasing generalized distributions.

With this previous material, the Fourier transform of elements of Gτ (Rd) (we
keep the notation F) F : Gτ (Rd) → GO′

C
(Rd) is well defined by

∀u∈Gτ (Rd), F(u) = F(uε) + NO′
C
(Rd) with (uε)ε ∈ u.
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The inverse Fourier transform from GO′
C
(Rd) into Gτ (Rd) is defined analogously.

This Fourier transform has the expected classical properties as they only have to
be verified component-wise.

Proposition 4.1. (i) The map

σO′
C

: O′
C(Rd) → GO′

C
(Rd), u �→ (u)

ε
+ NO′

C
(Rd)

is an embedding of C-vector spaces.
(ii) Take, as in Proposition 3.4, ρ ∈ S(Rd) satisfying (3.2) and (ρε)ε defined

by (3.3). The map

ιO′
C

: S ′
C(Rd) → GO′

C
(Rd), T �→ (T ρ̂(ε·))

ε
+ NO′

C
(Rd)

is an embedding of C-vector spaces.

The proof of (i) is immediate, whereas (ii) is obtained by “taking the Fourier
transform image of the diagram (3.4)” in Proposition 3.4. In fact, the following
diagram is commutative

OM (Rd)
στ−−−→ Gτ (Rd)

↘ ιτ↗
S ′(Rd)

F
⏐⏐⏐⏐�

�⏐⏐⏐⏐F−1 F
⏐⏐��⏐⏐F−1 F

⏐⏐⏐⏐�
�⏐⏐⏐⏐F−1

S ′(Rd)
↗ ιO′

C

↘
O′
C(Rd) −−−→

σO′
C

GO′
C
(Rd)

(The arrows without labels are the usual embeddings of OM (Rd) and O′
C(Rd)

into S ′(Rd).)

Remark 4.1. Following ideas of Jean-André Marti (private communication),
the Fourier transform in Gτ (Rd) can be used to define Sobolev type subspaces of
Gτ (Rd). More precisely, we say that (uε)ε ∈ MOM

(Rd) is of Hs type if, for all
ε ∈ (0, 1], 〈·〉s(·)ûε(·) ∈ L2(Rd) and (‖〈·〉sûε(·)‖L2)

ε
∈ M(R). One shows that

the space Hs(Rd) is embedded into G(s)
τ (Rd) through ιτ defined in Proposition 3.4.

This will be used in a forthcoming paper to introduce a Hs local and microlocal
analysis in spaces of generalized functions.

5. Introduction to regularity theory

5.1. The spaces M∞
τ (Ω) and G∞

τ (Ω). In analogy to the definition of G∞

[7, 16], we set

M∞
OM

(Ω) =
{
(fε)ε ∈ OM (Ω)(0,1] | ∀ϕ∈S(Ω) ∃m∈N ∀l∈N νϕ,l(fε) = o(ε−m)

}
.

It is easy to check that M∞
OM

(·) is a subpreasheaf of algebras of MOM
(·). From

this, we get:
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Proposition 5.1. G∞
τ (·) = M∞

OM
(·)/N∞

OM
(·) is a subpresheaf of differential

algebras of Gτ (·).
Going further with the above mentioned analogy, we recall that G∞(Rd) ∩

D′(Rd) = C∞(Rd) [16]. This result can be interpreted as follows: The subsheaf
G∞ of regular sections of G is such that the sheaf embedding G∞ → G is the natural
extension of the classical one C∞ → D′. We have here the same situation (modulo
the fact Gτ (·) is only a presheaf) that given by:

Proposition 5.2. G∞
τ (Rd) ∩ S ′(Rd) = OM (Rd).

The result should be understood as follows. For u ∈ S ′(Rd), if ιτ (u) is in
G∞
τ (Rd), then u is in OM (Rd).

Proof. Take u ∈ S ′(Rd) such that ιτ (u) is in G∞
τ (Rd). Then (u ∗ ρε)ε is in

M∞
OM

(Rd). Recall that

u ∈ OM (Rd) ⇔ û ∈ O′
C(Rd) ⇔ ∀ψ ∈ S(Rd), û ∗ ψ ∈ S(Rd).

So consider ψ ∈ S(Rd). We are going to show that 〈·〉mû ∗ ψ(·) is bounded for all
m ∈ N. We have

(5.1) û ∗ ψ = (û(1 − ρ̂ε)) ∗ ψ + (û ρ̂ε) ∗ ψ.
Recalling that ρε = ε−dρ(·/ε), we easily get that ρ̂ε(·) = ρ̂(ε·). Note also that
ρ̂(0) =

∫
ρ(x) dx = 1. Thus

1 − ρ̂ε(x) = −ε
∫ 1

0

∇ρ̂(εxt) · x dt = εB(ε, x).

As ρ̂ is rapidly decreasing, there exists C > 0 such that |∇ρ̂(εxt) · x| � C〈x〉 for all
(ε, x, t) ∈ (0, 1] × R

d × [0, 1]. The same holds for the derivatives with respect to x
and, thus, for the function B and its derivatives. From this, for example by using
the structure of elements of S ′(Rd), it can be shown that û(1 − ρ̂ε)) ∗ ψ satisfies

(5.2) ∀x∈R
d |((û(1 − ρ̂ε)) ∗ ψ)(x)| � C0ε〈x〉q,

for some C0 > 0 and q not depending on ε.
Consider l ∈ N and β ∈ Nd with |β| = l. We have, for all x ∈ Rd,

(ıx)β((û ρ̂ε) ∗ ψ)(x) = (ıx)βF (
(u ∗ ρε)F−1(ψ)

)
(x)

= F (
(∂β(u ∗ ρε))F−1(ψ)

)
(x).

Applying the definition of M∞
OM

(Rd) for (ρε ∗ u)ε with ϕ = 〈·〉(d+1)/2F−1(ψ), we
get the existence of N (only depending on (ρε ∗ u)ε and ψ) and C1 > 0 such that

∀y∈R
d

∣∣(∂β(u ∗ ρε))(y)F−1(ψ)(y)
∣∣ � C1〈y〉−(d+1)/2ε−N for ε small enough.

Thus, we get the existence of C2 > 0 such that∣∣(ıx)β((û ρ̂ε) ∗ ψ)(x)
∣∣ =

∣∣F((∂β(u ∗ ρε))F−1(ψ))(x)
∣∣ � C2 ε

−N
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for ε small enough and all x ∈ Rd. Using a classical argument, we get a constant
C3 > 0 such that

∀x∈R
d 〈x〉l∣∣(û ρ̂ε) ∗ ψ)(x)

∣∣ � C3 ε
−N for ε small enough.

Fix m ∈ N and take l = m + (m + q)N . Writing the previous inequality in the
form 〈x〉m |(û ρ̂ε) ∗ψ)(x)| � C3(ε〈x〉m+q)−N , using (5.2) and finally inserting these
intermediates steps in (5.1), we get

∀x∈R
d |〈x〉m(û ∗ ψ)(x)| = C

(
ε〈x〉m+q + (ε〈x〉m+q)−N

)
= T (ε〈x〉m+q)

for ε smaller than some ε0 and some C > 0. Thus, for x such that 〈x〉m+q � ε−1
0 ,

take εx such that εx = 〈x〉−m−q to obtain that |〈x〉m(û ∗ψ)(x)| � T (1). From this,
it follows that the function |〈·〉m(û ∗ ψ)| is bounded on R

d, as claimed. �

5.2. Regularities for temperate generalized functions. As in the pre-
sheaf Gτ (·) the localization principle (F1) is not fulfilled, we are not in the situation
to apply the results of [14] concerning singular supports and their properties. In-
deed, following the notations of the quoted paper, we need a presheaf A(·) (of vector
spaces, of algebras,. . . ) with localization principle and a subpresheaf B(·) of A(·)
to define the B-singular support of a section u ∈ A(Ω). Thus, as it is done in [13]
for the definition of the presheaf GL(·), we shall start from the sheaf G(·) and define
some regular subpresheaves of it. More precisely, for the two cases B(·) = Gτ (·),
G∞
τ (·), we set N 	

OM ,∗(·) = N (·) ∩M	
OM

(·), where the symbol 
 means successively
the blank character and ∞. According to the results recalled in Section 2 and to the
inclusion MOM

(Rd) ⊂ MC∞(Rd)), G	τ,∗(·) = M	
OM

(·)/N 	
OM ,∗(·) is a subpresheaf

of G(·). Using the framework and the results of [14], we say that the elements of
G	τ,∗(Ω) are G	τ -regular elements of G(Ω). For u ∈ G(Ω), we can define O	

τ (u), the
set of all x ∈ Ω such that u is G	τ -regular at x, that is

O	
τ (u) =

{
x∈Ω ∃V ∈Vx : u|V ∈ G	OM,∗(V )

}
(Vx being the family of all open neighborhoods of x.) The G	τ -singular support of
u is the well defined set S	τ (u) = singsuppG�

τ
u = Ω � O	

τ (u) and has the following
properties [14]:

Proposition 5.3. Consider u, v ∈ G(Ω), α in N
d and g in G	τ,∗(Ω). We have:

(i) S	τ (u+ v) ⊂ S	τ (u) ∪ S	τ (v); (iii) S	τ (∂αu) ⊂ S	τ (u);
(ii) S	τ (uv) ⊂ S	τ (u) ∪ S	τ (v); (iv) S	τ (gu) ⊂ S	τ (u).

From these properties, one easily gets:

Corollary 5.1. Let P (∂) =
∑

|α|�m Cα∂
α be a differential polynomial with

coefficients in Gτ,∗(Ω) (resp. G∞
τ,∗(Ω)). For any u ∈ G(Ω), we have

Sτ (P (∂)u) ⊂ Sτ (u) (resp. S∞
τ (P (∂)u) ⊂ S∞

τ (u)).
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[10] L. Hörmander, The analysis of Linear Partial Differential Operators I, distribution theory

and Fourier Analysis, Grundlehren der mathematischen Wissenchaften 256, Springer Verlag,
Berlin, 1990.

[11] V.K. Khoan, Distributions, Analyse de Fourier, Opérateurs aux Dérivées Partielles, Vol. 2,
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