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A NOTE ON SHOCK PROFILES IN DISSIPATIVE
HYPERBOLIC AND PARABOLIC MODELS

Srboljub S. Simić

Abstract. This note presents a comparative study of shock profiles in dissi-
pative systems. Main assumption is that both hyperbolic and parabolic model
are reducible to the same underlying equilibrium system when dissipative ef-
fects are neglected. It will be shown that the highest characteristic speed of
equilibrium system determines the critical value of the shock speed for which
downstream equilibrium state bifurcates. It will be also shown that it obeys
the same transcritical bifurcation pattern in hyperbolic, as well as in parabolic
case.

1. Introduction and preliminaries

Mathematical models of dynamical processes in continuous media may have
different structure and may posses different degrees of complexity. Their main
ingredients are conservation laws of continuum physics adjoined with constitutive
relations which describe material response. Structure of the model mainly depends
on assumptions used in building up constitutive relations. Typical outcomes are
hyperbolic and parabolic PDE’s.

Complete models of physical phenomena could be rather complicated. There-
fore, analysis may be pursued in a different direction—development of so-called
model equations which have simpler form, but capture all important qualitative
features of the complete model.

The purpose of this paper is to analyze common properties of shock profiles
which appear both in parabolic and hyperbolic model equations. To motivate
this study some preliminary assumptions will be established first. Models which
will be dealt with will be confined to one space dimension, say x, without loss of
generality. The basic system—we call it the equilibrium system in the remainder
of the paper—will be the system of hyperbolic conservation laws

(1.1) ∂tu + ∂xF (u) = 0.
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Here u ∈ Rn are state variables and F (u) is smooth vector-function in an open set
of the state space. The system (1.1) is hyperbolic in the sense that the eigenvalues
λj(u), j = 1, . . . , n of the matrix A(u) = gradF (u) are real, thus forming a set of
characteristic speeds. For convenience it will be assumed that the system (1.1) is
strictly hyperbolic, i.e., that characteristic speeds are distinct with ordering λ1(u) <
λ2(u) < . . . < λn−1(u) < λn(u). It is well known that (1.1) admits piecewise
smooth weak solutions with jump discontinuities—the shocks—which can evolve
even from smooth initial data [7, 12, 14]. These jumps are localized on the lines
of discontinuity—shock fronts—and satisfy Rankine–Hugoniot condition

(1.2) s[u] = [F (u)]

where [(·)] = (·)+−(·)− denotes the difference of variable in front of and behind the
discontinuity, and s is the speed of shock. In addition to (1.2) physically relevant
shocks ought to satisfy a supplementary selection rule. There are several such
rules in the theory of hyperbolic systems. Here, we shall consider probably the
simplest one—Lax condition [9]—which reads λj−1(u−) < s < λj(u−), λj(u+) <
s < λj+1(u+) for some 1 � j � n. From these two inequalities the following simple
rule may be extracted

(1.3) λj(u+) < s < λj(u−),

and it is said that u− and u+ are connected by a j−shock. In the sequel our
attention will be focused on the simplest discontinuous solution of (1.1)

u(x, t) =
{

u−, x < st;
u+, x > st,

u− and u+ being constant states.
Given a state u−, all the states u which can be connected to u− by j−shock

form a one-parameter family of states satisfying Rankine–Hugoniot conditions (1.2),
which can be written in the form Ψ(u) = Ψ(u−) where Ψ(u) = −su + F (u). This
set of equations have trivial solution u = u−, while non-trivial one may exist
as a bifurcating solution for a certain value of shock speed. Existence of non-
trivial solutions is thus related to non-uniqueness of solutions of Rankine–Hugoniot
equations. Therefore, Ψ(u) has to be locally non-invertible and det(−sI +A(u)) =
0. This leads to a conclusion that the state u connected to u− by a j−shock
bifurcates from u− in the neighborhood of the critical value of shock speed s∗ =
λj(u−).

Hyperbolic systems in conservative form usually do not take into account dis-
sipative effects. Starting from (1.1) dissipation can be introduced by non-local
constitutive equations, like Navier–Stokes and Fourier ones in continuum theory of
fluids, arriving to a model

(1.4) ∂tu + ∂xF (u) = ε∂x(B(u)∂xu),

where B(u) is so-called viscosity matrix and ε positive parameter. Under certain
conditions on B(u), see Majda and Pego [10] for a comprehensive account, this
model is parabolic and predicts infinite speed of propagation of disturbances. On
the other hand, dissipation smears out jump discontinuity and transform it into
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a continuous travelling profile which connects two constant equilibrium states u−
and u+. Viscous shock profile is determined by a set of ODE’s

(1.5) B(u)u̇ = F (u) − F (u−) − s(u − u−),

where an overdot denotes differentiation with respect to ξ = (x−st)/ε. It represents
a heteroclinic orbit connecting two stationary points of the system (1.5), u− and
u+, which satisfy Rankine–Hugoniot conditions (1.2) of the equilibrium system.
Since right-hand side of (1.5) has the form Ψ(u) − Ψ(u−) equivalent to Rankine–
Hugoniot equations, stationary point u+ may be regarded as a bifurcating solution
of the ODE system with the same critical value of the shock speed, s∗par = s∗. More
involved problem of bifurcation of non-classical viscous shock profiles has recently
been discussed by Azevedo et al. [1].

Another way of description of dissipative mechanisms emerge by taking into
account relaxation effects. As a result, an extended system of balance laws is
obtained

(1.6) ∂tU + ∂xF̂ (U) =
1
ε
Q(U),

where

U =
(

u

v

)
F̂ (U) =

(
f(u, v)
g(u, v)

)
, Q(U) =

(
0

q(u, v)

)
,

v ∈ Rk, n + k = N . In physical examples v variables usually represent non-
convective fluxes, like stress tensor and heat flux, whose evolution is determined by
balance laws with non-zero source terms rather than by constitutive equations. It
is assumed that q(u, v) = 0 uniquely determines “equilibrium manifold” vE = h(u)
as ε → 0, on which the system (1.6) reduces to the equilibrium system (1.1) with
F (u) = f(u, h(u)). In (1.6) the first n equations are conservation laws, while k
remaining ones contain source terms q(u, v) which describe dissipative effects off
the equilibrium manifold.

Two remarks are in order for the dissipative system (1.6). First, it will be
assumed that its differential part is hyperbolic with characteristic speeds Λi(U),
i = 1, . . . , N determined as eigenvalues of the matrix Â(U) = gradF̂ (U). This
assumption is tightly related to the so-called sub-characteristic condition which
impose bounds for characteristic speeds of equilibrium system

(1.7) min
1�i�N

Λi(u, h(u)) � λj(u) � max
1�i�N

Λi(u, h(u)),

for every j, 1 � j � n. Moreover, the spectrum λj(u) of the equilibrium system
does not have to be contained in the spectrum Λi(u, h(u)) of the hyperbolic dissi-
pative system (1.6). Consequently, jump discontinuities may appear as bifurcating
solutions for the shock speeds which do not coincide with the ones of the system
(1.1). Important role of sub-characteristic condition has already been recognized
by Whitham [14], while more detailed study of the problem has recently been done
by Chen, Levermore and Liu [5] and Boillat and Ruggeri [2]. One may also consult
[11] for a nice account on other aspects of hyperbolic systems with relaxation.

Second remark is concerned with relation between parabolic and hyperbolic sys-
tems (1.4) and (1.6). It will be assumed that the hyperbolic system can be reduced
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to a parabolic one by means of asymptotic expansion in the spirit of Chapman–
Enskog, originally used in kinetic theory for derivation of hydrodynamic equations,
see Chapman and Cowling [4]. In such a way parabolic system (1.4) determines the
effective response of relaxation process in the neighborhood of equilibrium manifold.

This leads to the main issue of the study: in which way does the dissipation
in the system (1.6) affect the jump discontinuity of the equilibrium system (1.1)?
Yong and Zumbrun [15] gave the answer to the question of existence of relaxation
shock profile following the traces of Majda and Pego [10]. In this paper the answer
will be sketched through stability and bifurcation analysis of equilibrium state.
Using Burgers’ equation and a model of isothermal viscoelasticity as persuasive
examples two results will be presented. First, it will be shown that hyperbolic
dissipative system smears out the jump discontinuity of small strength—so-called
weak shock—related to the highest characteristic speed of equilibrium sytem, i.e.,
n−shock, in the same way as parabolic model does. This result will come from
comparative study of the ODE system (1.5) and the system

−sU̇ +
d

dξ
F̂ (U) = Q(U)

obtained from hyperbolic model (1.6) for a travelling profile U = U(ξ), ξ = (x −
st)/ε. Relaxation shock profile connects two stationary points U− = (u−, h(u−))
and U+ = (u+, h(u+)), where U+ may be regarded as bifurcating solution for the
critical value of the shock speed s∗hyp = s∗ = λn(u−). Second, it will be shown that
bifurcating solutions of parabolic and hyperbolic dissipative models obey the same
transcritical bifurcation pattern.

2. Burgers’ equation

Comparative analysis of hyperbolic and parabolic models will commence with
Burgers’ equation. Its non-dissipative hyperbolic version reads

(2.1) ∂tu + ∂x

(
1
2
u2

)
= 0.

Since F (u) = u2/2, characteristic speed is λ(u) = F ′(u) = u. Corresponding
Rankine–Hugoniot condition yields the following solutions

(2.2) −s[u] + [F (u)] = 0 ⇒ u+ = u− or u+ = 2s − u−,

where u− and u+ are respectively downstream and upstream equilibrium states.
Nontrivial solution u+ �= u− bifurcates from trivial one for the critical value of
shock speed s∗ = u−. The admissibility of shock can be simply determined by
means of Lax condition (1.3) which in this case reads

λ(u+) = u+ < s < u− = λ(u−).

For a pair of equilibrium states u− and u+ determined by Rankine–Hugoniot equa-
tion and admitted by Lax condition, shock speed is s = (u− + u+)/2.
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Burgers’ equation can be regularized as classical parabolic equation

(2.3) ∂tu + ∂x

(
1
2
u2

)
= ε∂xxu.

where diffusive term ε∂xxu takes into account dissipation in the system. Assume
the solution of equation (2.3) in the form of travelling wave u = u(ξ), ξ = (x−st)/ε,
which reduces the original PDE into a second order ODE

−su̇ +
d

dξ

(
1
2
u2

)
= ü.

It can be integrated from −∞ to ξ to obtain

(2.4) u̇ = −s(u − u−) +
1
2
(u2 − u2

−) = ϕ(u, s).

where boundary conditions u(−∞) = u−, u̇(−∞) = 0 were used, expressing the
fact that u− is equilibrium state and ϕ(u−, s) ≡ 0 for any s. Moreover, upstream
equilibrium u+ determined by Rankine–Hugoniot condition is also a stationary
point of dynamical equation (2.4) for a shock speed s = (u− + u+)/2. In other
words, shock profile represents a heteroclinic orbit of equation (2.4) connecting two
equilibrium states.

The solution of parabolic profile equation (2.4) is well known, but our intention
is to perform stability and bifurcation analysis. Stability of stationary point u−
may simply be studied by means of linear stability analysis. To that end linear
variational equation corresponding to (2.4) may be derived

ẏ = Φ(u−, s)y; Φ(u−, s) = ϕu(u−, s) = −(s − u−),

where y = u − u− is perturbation. Stationary point is stable for Φ(u−, s) < 0 and
unstable for Φ(u−, s) > 0. Critical value of shock speed is reached for Φ(u−, s∗par) =
0 and exchange of stability occurs when Φs(u−, s∗par) �= 0. Both these conditions
are satisfied for s∗par = s∗ = u−, in particular Φs(u−, s∗par) = −1 and downstream
equilibrium state has the following stability properties

s < s∗par ⇒ u−-unstable;
s > s∗par ⇒ u−-stable.

It is important to note that critical value s∗par of shock speed s, obtained through
stability analysis of equation (2.4), coincides with the value s∗ for which uniqueness
of solution of Rankine–Hugoniot equation (2.2) is lost. This fact motivates the
analysis of bifurcation pattern in the neighborhood of bifurcation point (u, s) =
(u−, s∗par). To achieve this goal it is sufficient to calculate all the partial derivatives
up to second order (for a detailed explanation see Guckenheimer and Holmes [8])

ϕ(u−, s∗par) = 0, ϕu(u−, s∗par) = 0, ϕuu(u−, s∗par) = 1,

ϕs(u−, s∗par) = 0, ϕus(u−, s∗par) = −1,

ϕss(u−, s∗par) = 0.
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Denoting bifurcation parameter as µ = s − s∗par, a bifurcation equation in normal
form is obtained

(2.5) ẏ ≈ 1
2

(−µy + y2
)
,

describing the transcritical bifurcation pattern.
Second part of our analysis is devoted to dissipative hyperbolic system related

to Burgers’ equation (2.1). Namely, one may introduce so-called non-equilibrium
variable v with intention to describe processes far from equilibrium state or ones in
which large gradients of state variable u occur. Evolution of v is determined by an
additional balance law, but it may also appear in basic conservation law as follows

∂tu + ∂x

(
1
2
u2 + v

)
= 0;

∂tv + ∂xu = −1
ε

v.

(2.6)

Equation (2.6)2 determines an equilibrium value of v as ε → 0, i.e., vE = 0. In
such a way (2.6)1 reduces to an equilibrium system which is exactly non-dissipative
equation (2.1).

On the other hand, hyperbolic system (2.6) may be analyzed per se and char-
acteristic speeds determined from its differential part are

Λ1(u) =
1
2

(
u −

√
u2 + 4

)
, Λ2(u) =

1
2

(
u +

√
u2 + 4

)
.

They satisfy sub-characteristic conditions for any u

Λ1(u) < λ(u) < Λ2(u).

In order to identify effective response of the relaxation process in the course
of approaching equilibrium state a Chapman–Enskog-like expansion will be per-
formed. Non-equilibrium variable may be expressed as

vε = vE + εS(uε, ∂xuε, ...) + O(ε2),

where function S is to be determined. Putting this expression in (2.6)2 and retaining
terms of the lowest order in ε one easily obtains S = −∂xuε, i.e., vε = −ε∂xuε.
With this expansion formula equation (2.6)1 reduces to a parabolic model (2.3)

∂tu
ε + ∂x

(
1
2
(uε)2

)
= ε∂xxuε.

In this sense hyperbolic system (2.6) predicts the same response as parabolic one
in the neighborhood of equilibrium manifold.

Since both assumptions about hyperbolic system are satisfied we may proceed
with the analysis of shock profile determined by (2.6). Assuming the solution in
the form of travelling wave, u = u(ξ), v = v(ξ), ξ = (x−st)/ε, equation (2.6)1 may
be integrated to obtain

v = s(u − u−) − 1
2

(
u2 − u2

−
)
,
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where equilibrium boundary data have been used, u(−∞) = u−, v(−∞) = 0. Using
this result (2.6)2 reduces to a single ODE for a shock profile

(2.7) u̇ = −−2su + u2 + 2su− − u2
−

2 (−1 + s2 − su)
= θ(u, s).

It is easy to show that non-trivial solution u+ = 2s − u− of Rankine–Hugoniot
equation (2.2) solves θ(u+, s) = 0 meaning that u+ is also a stationary point of
(2.7).

Like in parabolic case we may perform stability and bifurcation analysis of
stationary point u−. Linear variational equation corresponding to (2.7) reads

ż = Θ(u−, s)z; Θ(u−, s) = θu(u−, s) =
s − u−

−1 + s2 − su−
,

where z = u − u− is perturbation. Critical value of shock speed is obtained as
solution of Θ(u−, s∗hyp) = 0, i.e., s∗hyp = s∗ = u−, and exchange of stability occurs
since Θs(u−, s∗hyp) = −1 �= 0. This confirms our first conjecture that downstream
equilibrium state of (2.7) changes its stability when the speed of profile coincides
with the highest characteristic speed of an equilibrium system. Moreover, stability
properties are changed in the same way as in the parabolic case

s < s∗hyp ⇒ u−-unstable;
s > s∗hyp ⇒ u−-stable.

To determine the bifurcation pattern which occurs during the exchange of sta-
bility partial derivatives up to second order will be calculated

θ(u−, s∗hyp) = 0, θu(u−, s∗hyp) = 0, θuu(u−, s∗hyp) = 1,

θs(u−, s∗hyp) = 0, θus(u−, s∗hyp) = −1,

θss(u−, s∗hyp) = 0.

If bifurcation parameter is denoted as µ = s − s∗hyp, a bifurcation equation is
obtained in normal form

ż ≈ 1
2

(−µz + z2
)
,

which has the same form as (2.5). This is to confirm our second conjecture: bi-
furcation pattern of downstream equilibrium state is the same in hyperbolic and
parabolic models related to the same equilibrium system and occurs for the same
same critical value of bifurcation parameter—shock speed s—coinciding with the
characteristic speed of equilibrium system.

3. Isothermal viscoelasticity

In this section stability and bifurcation analysis will be performed for a model
which primarily arises in isothermal elastodynamics, so-called p-system

(3.1)
∂tu

1 − ∂xu2 = 0;

∂tu
2 − ∂xp(u1) = 0,
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It is hyperbolic provided p′(u1) > 0 with characteristic speeds

(3.2) λ1(u) = −
√

p′(u1), λ2(u) =
√

p′(u1).

for u = (u1, u2)T . Furthermore, we shall assume that eigenvalues (3.2) are genuinely
nonlinear, which implies p′′(u1) �= 0 for all u1. Our analysis will be focused on weak
shocks which bifurcate from u− in the neighborhood of the highest characteristic
speed, i.e., when s → s∗ = λ2(u−) and satisfy Lax condition λ2(u+) < s < λ2(u−).
They are determined as solutions of Rankine–Hugoniot equations

s(u1
+ − u1

−) + (u2
+ − u2

−) = 0; s(u2
+ − u2

−) + (p(u1
+) − p(u1

−)) = 0.

In contrast to the analysis of Burgers’ equation we shall first analyze a hyper-
bolic dissipative model

(3.3)

∂tu
1 − ∂xu2 = 0;

∂tu
2 − ∂xv = 0;

∂tv − ν∂xu2 = −1
ε

(
v − p(u1)

)
.

where ν > 0 and ε is small positive parameter. It was proposed by Suliciu [13] as
a model system which describes isothermal viscoelastic response of continuum. As
ε → 0 an equilibrium manifold vE = p(u1) is determined from (3.3)3 and (3.3)1,2

is reduced to the equilibrium system (3.1). Characteristic speeds of the differential
part of (3.3) are

Λ1(U) = −√
ν; Λ2(U) = 0; Λ3(U) =

√
ν,

for U = (u1, u2, v)T . Sub-characteristic condition (1.7) is satisfied if p′(u1) � ν.
In the sequel we shall assume that strict inequality holds. Otherwise, a continuous
shock profile determined by (3.3) will seize to exist.

Corresponding parabolic model will be obtained by means of Chapman–Enskog
expansion of non-equilibrium variable

vε = p(u1ε) + εS(uε, ∂xuε, . . . ) + O(ε2).

From (3.3)3 and compatibility condition (3.3)1 one obtains

S =
(
ν − p′(u1ε)

)
∂xu2ε

and (3.3)1,2 become

∂tu
1 − ∂xu2 = 0;

∂tu
2 − ∂xp(u1) = ε∂x

((
ν − p′(u1)

)
∂xu2

)
,

(3.4)

where superscript ε is dropped for convenience. Parabolicity of (3.4) is ensured by
the same condition needed to meet the sub-characteristic condition. It is obviously
reduced to (3.1) when ε → 0.

Assuming solution in the form of travelling wave and integrating equations
(3.4) once with the use of boundary equilibrium data, one obtains the following set
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of equations which determines the shock profile

s(u1 − u1
−) + (u2 − u2

−) = 0;

−s(u2 − u2
−) − (p(u1) − p(u1

−)) = (ν − p′(u1))u̇2.

By eliminating u2 using an algebraic equation, a single ODE is derived which
determines the structure of shock wave

(3.5) u̇1 =
−s2

(
u1 − u1

−
)

+ p(u1) − g(u1
−)

s (ν − p′(u1))
= ϕ(u1, s)

Stability analysis of stationary point u1
− of (3.5) starts with linear variational

equation

ẏ = Φ(u1
−, s)y; Φ(u1

−, s) = ϕu1(u1
−, s) =

−s2 + p′(u1
−)

s(ν − p′(u1−))
,

where y = u1 − u1
− is perturbation. Critical values of shock speed are reached

for Φ(u1
−, s∗par) = 0 and coincide with characteristic speeds of equilibrium system

(3.2). In the sequel critical value will be referred to as s∗par = s∗ = λ2(u1
−) =√

p′(u1−). Stability of stationary point is changed in the neighborhood of s∗par

since Φs(u1
−, s∗par) = −2/(ν − p′(u1

−)) �= 0. Bifurcation pattern is determined by
Taylor expansion of the right hand side of (3.5) up to the second order terms.
Corresponding partial derivatives read

ϕ(u1
−, s∗par) = 0, ϕu1(u1

−, s∗par) = 0, ϕu1u1(u1
−, s∗par) =

p′′(u1
−)

(ν − p′(u1−))
√

p′(u1
−)

,

ϕs(u1
−, s∗par) = 0, ϕu1s(u1

−, s∗par) = − 2
ν − p′(u1−)

,

ϕss(u1
−, s∗par) = 0,

and bifurcation equation resembles transcritical bifurcation pattern

(3.6) ẏ ≈ 1
2(ν − p′(u1−))

(
−2µy +

p′′(u1
−)√

p′(u1
−)

y2

)
,

µ = s − s∗par being a bifurcation parameter.
Turning the attention now to hyperbolic dissipative system (3.3), by similar

analysis the following set of equations is obtained for a shock profile

s(u1 − u1
−) + (u2 − u2

−) = 0;

s(u2 − u2
−) + (v − p(u1

−)) = 0;

sv̇ + νu̇2 = v − p(u1
−),

where downstream equilibrium state v(−∞) = vE(−∞) = p(u1
−) for v is used in

the course of integration. By eliminating u2 and v from this set one arrives at a
single ODE which reads

(3.7) u̇1 =
s2

(
u1 − u1

−
) − p(u1) + p(u1

−)
s (s2 − ν)

= θ(u1, s).
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Stability of downstream equilibrium point u1
− of (3.7) is determined by the

linear variational equation

ż = Θ(u1
−, s)z; Θ(u1

−, s) = θu1(u1
−, s) =

s2 − p′(u1
−)

s (s2 − ν)
.

where z = u1 − u1
− is perturbation. Critical values of the shock speed s occur

when Θ(u1
−, s∗hyp) = 0 and again coincide with characteristic speeds of equilibrium

system. Taking s∗hyp = s∗ = λ2(u1
−) it is easy to check that stability of stationary

point is changed in the neighborhood of this critical value since Θs(u1
−, s∗hyp) =

−2/(ν − p′(u1
−)) �= 0. By Taylor expansion of the right hand side of (3.7) up to

the second order terms a bifurcation pattern is determined. Corresponding partial
derivatives read

θ(u1
−, s∗par) = 0, θu1(u1

−, s∗par) = 0, θu1u1(u1
−, s∗par) =

p′′(u1
−)

(ν − p′(u1−))
√

p′(u1
−)

,

θs(u1
−, s∗par) = 0, θu1s(u1

−, s∗par) = − 2
ν − p′(u1−)

,

θss(u1
−, s∗par) = 0,

and bifurcation equation becomes

ż ≈ 1
2(ν − p′(u1−)

(
−2µz +

p′′(u1
−)√

p′(u1
−)

z2

)
,

for a bifurcation parameter µ = s − s∗par. This equation describes the same trans-
critical bifurcation likewise (3.6) in the parabolic case.

Two remarks concerned with this stability analysis have to be given. First,
stationary point u1

− changes its stability in the same way as in the case of stationary
point of Burgers’ equation. However, complete downstream equilibrium state U− =
(u1

−, u2
−, v−)T is non-hyperbolic stationary point of the ODE system derived from

(3.3) for a travelling profile U = U(ξ). Linearized variational equations have two
zero eigenvalues, while the remaining one has the same behaviour as predicted by
linearization of (3.7). Second, one may observe that right hand side of (3.7) has
singularity when s approaches the characteristic speeds of (3.3). The consequence
is that continuous relaxation shock profile seize to exist when shock speed exceeds
the highest characteristic speed of the full system. For a discussion of this problem
one may consult Boillat and Ruggeri [3] and Currò and Fusco [6].

4. Conclusions

In this paper the problem of shock structure is analyzed through the compara-
tive study of dissipative hyperbolic and parabolic models. Two examples, Burgers’
equation and a model of isothermal viscoelasticity, have been picked up to demon-
strate two properties of weak shocks revealed through stability and bifurcation
analysis of stationary points of an ODE system which describe the shock profile.
First, it was shown that downstream equilibrium state, both in parabolic and hy-
perbolic case, changes its stability properties in the neighborhood of the critical
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value of shock speed s∗par = s∗hyp = s∗; it coincides with the critical value of shock
speed s∗ for the equilibrium system. Second, upstream equilibrium state can be re-
garded as a bifurcating solution; it obeys the same transcritical bifurcation pattern
in parabolic, as well as in hyperbolic case.

Although the examples studied in this paper are rather simple, they are never-
theless convincing and trigger the interest for more involved models. In particular,
hyperbolic models discussed here had only one equation in the form of balance law
which contain source term. Increasing number of balance laws requires applica-
tion reduction techniques in order to obtain appropriate stability and bifurcation
results. This will be the subject of our prospective study.
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