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ABSTRACT. Let A be a bounded linear operator on a Banach space such that
the resolvent of A is rational. If 0 is in the spectrum of A, then it is well
known that A is Drazin invertible. We investigate spectral properties of the
Drazin inverse of A. For example we show that the Drazin inverse of A is a
polynomial in A.

1. Introduction and terminology

In this paper X is always a complex Banach space and £(X) the Banach algebra
of all bounded linear operators on X. For A € £L(X) we write N(A) for its kernel
and A(X) for its range. We write o(A), p(A) and Rx(A) for the spectrum, the
resolvent set and the resolvent operator (A — X\)~! (X € o(A)) of A, respectively.
The ascent of A is denoted by «(A) and the descent of A is denoted by d(A).

An operator A € L(X) is Drazin invertible if there is C' € £(X) such that

(i) CAC = C, (ii) AC =CA and (iii) A¥*1C = A¥ for nonnegative integer v.

In this case C is uniquely determined (see [2]) and is called the Drazin inverse

of A. The smallest nonnegative integer v such that (iii) holds is called the index
i(A) of A. Observe that

0 € p(A) & A is Drazin invertible and i(A) = 0.

The following proposition tells us exactly which operators are Drazin invertible
with index > 0:

1.1. PROPOSITION. Let A € L(X) and let v be a positive integer. Then the
following assertions are equivalent:
(1) A is Drazin invertible and i(A) = v.
(2) a(A)=06(A) =v.
(3) Rx(A) has a pole of order v at A = 0.
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PROOF. [2, §5.2] and [3, Satz 101.2]. O
The next result we will use frequently in our investigations.

1.2. PROPOSITION. Suppose that A € L(X) is Drazin invertible, i(A) =v > 1,
P is the spectral projection of A associated with the spectral set {0} and that C is
the Drazin inverse of A. Then

P=1-AC, N(C)=N(4")=P(X),

C(X) = N(P) = A"(X),

C' is Drazin invertible, i(C) =1,

ACA is the Drazin inverse of C,

0€0(C) and o(C) {0} = {5 : A € o(A4) ~ {0}}.

PROOF. We have P = I — AC, N(A¥) = P(X) and o(C) ~ {0} = {3 : A €
o(A) ~ {0}} by [2, §52]. It is clear that 0 € o(C). From Proposition 1.1 and [3,
Satz 101.2] we get N(P) = A¥(X). If x € X then Cx = 0 & Px = z, hence
N(C)=P(X). From P=1— AC =1 — CA it is easily seen that N(P) = C(X).
Let B = ACA. Then

C?B =CBC =CACAC = CAC = C,
CB=CACA=ACAC = BC
BCB = ACACACA = ACACA=ACA=B.

This shows that C' is Drazin invertible, B is the Drazin inverse of C' and that
i(C) = 1. O

Now we introduce the class of operators which we will consider in this paper.
We say that A € £(X) has a rational resolvent if
P
Ry (A) L](/\)
where P()) is a polynomial with coefficients in £(X), ¢(\) is polynomial with
coefficients in C and where P and g have no common zeros. We use the symbol
F(X) to denote the subclass of £(X) consisting of those operators whose resolvent
is rational. For A € £(X) let H(A) be the set of all functions f : A(f) — C such
that A(f) is an open set in C, o(A) C A(f) and f is holomorphic on A(f). For
f € H(A) the operator f(A) € L(X) is defined by the usual operational calculus
(see [3] or [4]).
The following proposition collects some properties of operators in F(X). An
operator A € L(X) is called algebraic if p(A) = 0 for some nonzero polynomial p.

1.3. PROPOSITION. Let A € L(X). Then
(1) A € F(X) if and only if c(A) consists of a finite number of poles of
Ry\(A).
(2) Ae F(X) if and only if A is algebraic.
(3) If dim A(X) < oo, then A € F(X).
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(4) If Ae F(X) and f € H(A), then f(A) = p(A) for some polynomial p.
(5) If A € F(X), the p(A) € F(X) for every polynomial p.

PROOF. [4, Chapter V.11] O

1.4. COROLLARY. Suppose that A € F(X) and 0 € p(A). Then A~ € F(X)
and A~' is a polynomial in A.

PROOF. Define the function f: C ~\ {0} — C by f(\) = A~L. Then f € H(A)
and f(A) = A~!. Now apply Proposition 1.3 (4) and (5). O

REMARK. That A € F(X) and 0 € p(A) implies A~! € F(X) is also shown in
[1, Theorem 2]. In Section 2 we will give a further proof of this fact.

2. Drazin inverses of operators in F(X)

Throughout this section A will be an operator in F(X) and 0(A) = {A1, ..., A},
where A1, ..., Ay are the distinct poles of Ry(A) of orders myq,...,my (see Propo-
sition 1.3 (1)).

Recall that m; = a(A—X;) =0(A—-X;) (j=1,...,k). Let
(2.1) ma(A) = (A=) - (A= X))k,

By [4, Theorem V.10.7],

mA(A) = 0.
The polynomial m4 is called the minimal polynomial of A. Tt follows from [4,
Theorem V.10.7] that m 4 divides any other polynomial p such that p(4) = 0. In
what follows we always assume that m 4 has degree n, thus n = my + - - - +my and
that m 4 has the representations (2.1) and

(2:2) ma(A) = ao + a1 A + T CR R D Lk U
Observe that
0€p(A) =a#0
and that
0 is a pole of order v > 1 of Ry\(A) & ag=---=a,_1 =0 and a, # 0.

Now we are in a position to state our first result. Recall from Proposition 1.1 that
it \g € 0(A), then A — \g is Drazin invertible.

2.1. THEOREM. If \g € o(A) and if C is the Drazin inverse of A — o, then
there is a scalar polynomial p such that C = p(A).

PRrROOF. Without loss of generality we can assume that A\g = Ay = 0. Let
v = mi. Then we have

ma(N) = ay A +av + I g AL
and that a, # 0. Let

1
QI()\) = —;(ath -+ au+2/\ 4+ /\nf(y+1))'

v
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Then
1
Ay+1q1(A) — _;(ay+1Au+1 +CLV+2AV+2 +—|—An)
1
_ - A _ VAV :Ay.
o (ma(4) —a,4%)

Let B = q1(A). Then A*™'B = A" and BA = AB. For the Drazin inverse C we
have

ATIC = A, CAC=C and CA= AC.

Thus
AT (B -C)=A"TIB - A"T1IC =AY — A" =0
This shows that (B — C)(X) € N(AY*!). By Proposition 1.1, a(A) = v, thus
(B - C)(X) € N(A”), therefore (B — C)(X) C Pi(X), where P; denotes the
spectral projection of A associated with the spectral set {0} (see Proposition 1.2).
Since P, =1 — AC =1 — CA, it follows that
B-C=P(B-C)=PB-PC=PB—(I-CAC
= P,B-C+CAC = P,B,

thus C = B — PiB. We have P = f(A) for some f € H(A). By Proposition
1.3 (4), f(A) = g2(A) for some polynomial g;. Now define the polynomial p by
P = q1 — q2q1. It results that

p(A) = q1(A) — 2(A)q1(A) =B - P B=C. O

2.2. COROLLARY. If A\g € 0(A) and if C is the Drazin inverse of A — Ao, then
C e F(X).

PROOF. Theorem 2.1 and Proposition 1.3 (5). O

2.3. COROLLARY. Let A be a complex square matriz and Ay a characteristic
value of A. Then the Drazin inverse of A — Ao is a polynomial in A.

PROOF. Theorem 2.1 and Proposition 1.3 (3). (]

Let T € £(X). An operator S € L(X) is called a pseudo inverse of T provided
that T'ST = T. In general the set of all pseudo inverses of T' is infinite and this
set consists of all operators of the form STS + U — STUTS, where U € L(X)
is arbitrary (see [2, Theorem 2.3.2]). Observe that if T' is Drazin invertible with
i(T) = 1, then the Drazin inverse of T is a pseudo inverse of T'.

2.4. COROLLARY. If \g € o(A), then the following assertions are equivalent:
(1) Ao is a simple pole of Rx(A);
(2) there is a pseudo inverse B of A — Ao such that B(A — o) = (A — X\o)B;
(3) there is a polynomial p such that p(A) is a pseudo inverse of A — Xg.
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PROOF. (1) & (2): Proposition 1.1.
(1)= (3): We can assume that A\ = 0. Let ¢; and B as in the proof of Theorem
2.1. Then A?B = A and AB = BA, hence ABA = A.

(3) = (1): Again we can assume that A\g = 0. With B = p(A4) we have
ABA = A and AB = BA. Set C = BAB; then ACA = A, CAC = C and
AC = CA. This shows that C is the Drazin inverse of A and that i(A) = 1. By
Proposition 1.1, Ag = 0 is a simple pole of Ry(A). O

2.5. COROLLARY. Let X be a complex Hilbert space and suppose that N € L(X)
is normal and that o(N) is finite. We have:

(1) N € F(X),
(2) If Ao € 0(N), then there is a polynomial p such that
(N = 20)p(N)(N = Ag) = N = Xo.

PRrROOF. By [3, Satz 111.2], each point in o (V) is a simple pole of Ry(N), thus

N € F(X). Now apply Theorem 2.4. O

Our results suggest the following.

QUESTION. If A € F(X) and if B is a pseudo inverse such that AB = BA,
does there exist a polynomial p with B = p(A)?

The answer is negative:

ExXAMPLE. Consider the square matrix

1 1 1
A=11 1 1
1 1 1
It is easy to see that the minimal polynomial of A is given by ma()\) = A2 — 3\ =
A(A = 3), hence o(A) = {0,3} and A? = 3A. Let

1 0 01
1 0 0

Then AB = BA = %A, thus ABA = %AQ = A, hence B is a pseudo inverse of A.
Since A% = 3A, any polynomial in A has the form al + 3A with «,3 € C. But
there are no « and 3 such that B = al + SA. An easy computation shows that
the Drazin inverse of A is given by $A and that i(A) = 1.

If 0 is a simple pole of Ry(A), then we have seen in Theorem 2.4 that A has a
pseudo inverse. If 0 is a pole of Ry\(A) of order > 2, then, in general A does not
have a pseudo inverse, as the following example shows.

ExXAMPLE. Let T € L(X) be any operator with T'(X) not closed (of course X
must be infinite dimensional). Define the operator A € £(X @® X) by the matrix

a=(29)
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Then the range of A is not closed. By [2, Theorem 2.1], A has no pseudo inverse.
From A? = 0 it follows that A € F(X & X) and that 0 is a pole of order 2 of R)(A).

Now we return to the investigations of our operator A € F(X). To this end we
need the following propositions.

2.6. PROPOSITION. Suppose that T € L(X), 0 € p(T), A € C~ {0} and that k
is a nonnegative integer. Then:
(1) N(T =N =N(T" = 5)*);
(2) a(T =) =a(T7 - 3).

ProoF. We only have to show that N( (T —N) k) - ( — %)k) Take
€ N((T—A)*). Then 0 = (T — A)*z, thus 0 = (T"1)*(T — \)Fz = (1 - AT~ 1)kz,
hence z € N((T~! — 1)¥). O

2.7. PROPOSITION. Suppose that T € L(X), 0 € o(T), A € C~ {0} and k is
a nonnegative integer. Furthermore suppose that T is Drazin invertible and that C
is the Drazin inverse of T'. Then:

(1) N(T = N*) =N((C - 3)"):
(2) (T = A) =a(C - 3);
PROOF. (2) follows from (1).
(2) Let v = i(T). We use induction. First we show that N(T'—X) = N(C — ).
Let € N(T — \), then Tz = Az and T"z = AYz. We have
\C?x = C?Tx = CTCzx = Cx,

hence C(1-AC)z = 0, thus (1-AC)x C N(C'). By Proposition 1.2, N(C) = N(T"),
therefore
0=T"1-XC)z=(1—-XC)T"z = (1—-AC)\x,

therefore € N(C' — §). Now let # € N(C — 1). From Cz = 2 we sece that

x € C(X) = N(P), where P is as in Proposition 1.2. From P = I — T'C we get
2 =TCx = T(5x), thus Tx = Az, hence 2 € N(T — ). Now suppose that n is a
positive integer and that

N((T-XN")=N((C-1%)").
Take x € N((T — A)"™). Then (T — Nz € N((T —A\)") = N((C — )"), thus
0=(C—)"(T~Nz=(T-X(C~5)"z

This gives

(€ -4z e NT -3 = N(C- b,
therefore = € N((C - %)”H). Similar arguments show that N((C — %)”*1) C
N((T = N+, O

In what follows we use the notation of the beginning of this section. Recall that
we have o(A) = {A1,...,\t}. If 0 € 6(A), then we always assume that A; = 0,
hence o(A) ~ {0} = {A2,..., Ac}
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2.8. PROPOSITION.
(1) If0 € p(A), then o(A™1) = {%1, ce i :
(2) If 0 € o(A) and if C is the Drazin inverse of A, then 0 € o(C) and
U(C)\{O}:{A%“'"le )
PRrOOF. (1) follows from the spectral mapping theorem.
(2) is a consequence of Proposition 1.2. O

For our next result recall from Corollary 1.4 that if 0 € p(A), then A=t € F(X).
2.9. THEOREM. Suppose that 0 € p(A). Then

(1) If the minimal polynomial ma has the representation (2.1), then the min-
imal polynomial m -1 of A™1 is given by

ma(N) = (A~ %)m ()

(2) If the minimal polynomial m has the representation (2.2), then my-1 is
given by

mp

1 Ay
mA—l()\) = ;0 + CLQl

At Tn=t g pn,
ag

PROOF. Proposition 2.6 shows that

Q(Ailf%j):OZ(Af)\j):mj (j:]_,,k),

thus (1) is shown. Furthermore m4-: has degree mq + - -- + my = n. Now define
the polynomial ¢ by

1 a,
a\) = 7+a71)\+...+a71)\n—1+)\7l_
ao ao ao
Then
agA"q(A™Y = A (ag(A™)" +a (AH" 4 a1 AT )
= mA(A) =0.

Since ag # 0 and 0 € p(A), it results that (A=) = 0. Because of degree of ¢ = n =
degree of m -1, we get g = m 4-1. O

REMARK. The proof just given shows that there is a polynomial ¢ such that
q(A™1) = 0. Therefore we have a simple proof for the fact that A=! € F(X).

2.10. THEOREM. Suppose that 0 € o(A) and that 0 is a pole of Rx(A) of
order v > 1. Let C denote the Drazin inverse of A (recall from Corollary 2.2 that
C e F(X)).

(1) If ma has the representation (2.1), then
me(A) = A = )72 - (A — 1),
(2

(2) If ma has the representation (2.2), then

1 n— v — _
me(N) = Sy dnmtye L B k- (vtD) | b lew

ay ay ay
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PRrOOF. Proposition 2.7 gives
o0 = L) = a(A=N) =m; (G=2,...k)
By Proposition 1.1 and Proposition 1.2, a(C) = 1. Thus (1) is valid. We have
ma(\) = a, N +a, AT b a, AT
hence
(2.3) 0=ma(A) =a,A” +a, 1 A" 4 Fa, AV A
If v <1 < n, then
critAl = orttetAl = et eA)
=C"lcA = onTlcAc = ot
Then multiplying (2.3) by C"*+1, it follows that
0=a, 0" 4, C"TIFY L g, CP 4O
Now define the polynomial g by
a) = i)\_i_ %)\2 NI Wl ynt1-(v+1) 4o\t

14 al/
Then ¢(C) = 0. Since degree of g =n+1—v =1+mg+---+my = degree of mc¢,
we get ¢ = mg. O

2.11. COROLLARY. With the notation in Theorem 2.10 we have
C(A—=X)™m2 - (A= X)™ =0.

PROOF. Let D = (A — Xg)™ -+ (A — A\g)™. From AYD = m4(A) = 0 we see
that D(X) C N(AY). Since N(A") = N(C) (Proposition 1.2), CD = 0. O

NOTATION. X* denotes the dual space of X and we write T for the adjoint
of an operator T' € £(X). Recall from [4, Theorem IV. 8.4] that

(2.4) T(X)=N(T*)* (T € L(X)).

2.12. PROPOSITION. Suppose that T € L(X), A € C~ {0} and that j is a
nonnegative integer. Then
(1) If0 € p(T), then (T — A (X) = (T~ = 1)i(X).
(2) If0 € o(T), if T is Drazin invertible and if C' denotes the Drazin inverse

of T, then (T — A\)J(X) = (C — 5)i(X).
PROOF. (1) Let y = (T — X\ z € (T — \)!(z) (2 € X). Then

(T =3 Tae= (T =Tz =(1- Ve

(_1)j (T _ )\)jl‘ — (_1)j

therefore y € (T~! — 1)7(X).
(2) Let v = i(T). Then T"*'C =T", TC = CT and CTC = C. Hence
(T*VHC* = (T*), T*C* = C*T* and C*T*C* = C*.
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Thus T™ is Drazin invertible and C* is the Drazin inverse of 7. By Proposition 2.7,
N((T* =) = N((C" = %)),
therefore the result follows in view of (2.4). O

2.13. COROLLARY.
(1) IF 0 € p(A), then (A= X;))™ (X) = (A" = 5)™(X) (j=1,....k).
(2) If 0 € o(A) is a pole of order v > 1 of Rx(A) and if C is the Drazin
inverse of A, then AY(X) = C(X) and
(A=2)™(X)=(C= )™ (X) (=2....k).

J

PRrOOF. (1) is a consequence of Proposition 2.12.
(2) That A¥(X) = C(X) is a consequence of Proposition 1.2. Now let j <
{2,...,k}. Because of Proposition 1.1 and Theorem 2.10 we see that
a(C — A%) =40(C — )\%) =mj=a(Ad—X;)=358A-)\).
By [3, Satz 101.2], the subspaces (A — A;)™(X) and (C — )\%)mﬂ (X) are closed.
Now apply Proposition 2.12. O

For j =1,...,k let P; denote the spectral projection of A associated with the
spectral set {A;}. Observe that

PPj=0 for i#j and P +---+P, =1

If 0 € p(A), then denote by Q; the spectral projection of A~ associated with
the spectral set {~} (j = 1,...,k). If 0 € o(A) and if C is the Drazin inverse,

then denote by )1 the spectral projection of C' associated with the spectral set
{0} and by Q; the spectral projection of C' associated with the spectral set {)‘i}
J

(j=2,...,k).
2.14. COROLLARY. P; =Q; (j=1,...,k).
Proor. By [3, Satz 101.2], we have
Pi(X) =N((A=X;))™) and N(P;)=(A- ;)" (X)
(j=1,...,k). If 0 € p(A), then
Qi(X) =N((A™" = 5)™) and N(Qj) = (A" - £)™(X)
(j =1,...,k). Now apply Proposition 2.6 and Corollary 2.13 (1) to get
Pj(X) =Q;(X) and N(F;) = N(Q)),

hence P; =Q; (j=1,...,k).
Now let 0 € o(A). By Proposition 1.2, Proposition 2.7, Corollary 2.13 (2) and
[3, Satz 101.2], we derive

P(X) =N C(X) = N(Q1),

3
Il
o
=
=
G
Il
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(1=2,...,k). Hence P, =Q; (j =1,...,k). O

For A we have the representation A = Z?:l AjP;+ N, where N € £(X) is nil-
potent and N = Zf:I(A—)\j)Pj (see [4, Chapter V. 11]). If p = max{mq,...,my},
then it is easily seen that NP = 0. If A has only simple poles, then N = 0.

2.15. COROLLARY.

(1) If 0 € p(A), then there is a nilpotent operator Ny € L(X) with

k
1
A_1: E TPJ—'_NI
j=1"7

(2) If 0 € 0(A) and if C is the Drazin inverse of A, then
Eoq o
C = Z YPJ- + N1,  where Ny € L(X) is nilpotent.
j=2""

ProOF. Corollary 2.14. O

With the notation of Corollary 2.15 (2) we have AC =1 — P, CP; = 0 (see
Proposition 1.2) and

k
ACA:(I—P1)<Zk>\ij+N> :A—P1<Z/\ij+N> =A-PN;

Jj=2 j=2
hence A= ACA+ PN, P, N is nilpotent and
(ACA)P N = ACPLAN =0= NACP, A= P N(ACA).

Recall that AC'A is the Drazin inverse of C' and that i(AC A) = 1. The following
more general result holds:

2.16. THEOREM. Suppose that T € L(X) is Drazin invertible, i(T) = v > 1
and that C' is the Drazin inverse of T. Then there is a nilpotent N € L(X) such
that T = TCT + N, N(TCT) = (TCT)N =0 and N” = 0.

This decomposition is unique in the following sense: if S,N1 € L(X), S is
Drazin invertible, i(S) = 1, Ny is nilpotent, NyS = SNy =0 and if T = S + Ny,
then S =TCT and N = N;.

ProOF. Let N =T — TCT; then
NY=(T(1-CT))" =T"(1 - CT)" =T"(1 - CT)
=T"-T'CT=T"-T""'C=T"-T" =0.

For the uniqueness of the decomposition we only have to show that S = TCT.
There is R € £(X) such that SRS = S, RSR = R and SR = RS. Consequently,

N1R = N;RSR = N,SR>=0= R°SN, = RN,

hence
TR=(S+ N;)R=SR=RS =R(S+ N;)=RT.
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Now let n be a nonnegative integer such that N{* = 0. Since SN; = 0 = N1 S, it
follows that
T" = (S+Np)"=8"+Ni"=8"
We can assume that n > v. Thus
T"H'R=S""R=5"""SRS =S" =T".
Furthermore we have TR = RT and
RTR=R(S+ N;)R=RSR=R,
hence R = C. With S; = TCT we get
S1RS1 =TCTCTCT =TCT = 5,
RSIR=CTCTC=CTC=RTR=R
S1R=TCTC =CTCT = RS;.
This shows that S = S; =TCT. O
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