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Abstract. Let A be a bounded linear operator on a Banach space such that

the resolvent of A is rational. If 0 is in the spectrum of A, then it is well
known that A is Drazin invertible. We investigate spectral properties of the
Drazin inverse of A. For example we show that the Drazin inverse of A is a
polynomial in A.

1. Introduction and terminology

In this paper X is always a complex Banach space and L(X) the Banach algebra
of all bounded linear operators on X. For A ∈ L(X) we write N(A) for its kernel
and A(X) for its range. We write σ(A), ρ(A) and Rλ(A) for the spectrum, the
resolvent set and the resolvent operator (A − λ)−1 (λ /∈ σ(A)) of A, respectively.
The ascent of A is denoted by α(A) and the descent of A is denoted by δ(A).

An operator A ∈ L(X) is Drazin invertible if there is C ∈ L(X) such that
(i) CAC = C, (ii) AC = CA and (iii) Aν+1C = Aν for nonnegative integer ν.

In this case C is uniquely determined (see [2]) and is called the Drazin inverse
of A. The smallest nonnegative integer ν such that (iii) holds is called the index
i(A) of A. Observe that

0 ∈ ρ(A) ⇔ A is Drazin invertible and i(A) = 0.

The following proposition tells us exactly which operators are Drazin invertible
with index > 0:

1.1. Proposition. Let A ∈ L(X) and let ν be a positive integer. Then the
following assertions are equivalent:

(1) A is Drazin invertible and i(A) = ν.
(2) α(A) = δ(A) = ν.
(3) Rλ(A) has a pole of order ν at λ = 0.
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Proof. [2, § 5.2] and [3, Satz 101.2]. �

The next result we will use frequently in our investigations.

1.2. Proposition. Suppose that A ∈ L(X) is Drazin invertible, i(A) = ν � 1,
P is the spectral projection of A associated with the spectral set {0} and that C is
the Drazin inverse of A. Then

P = I − AC, N(C) = N(Aν) = P (X),

C(X) = N(P ) = Aν(X),

C is Drazin invertible, i(C) = 1,
ACA is the Drazin inverse of C,

0 ∈ σ(C) and σ(C) � {0} = { 1
λ : λ ∈ σ(A) � {0}}.

Proof. We have P = I − AC, N(Aν) = P (X) and σ(C) � {0} = { 1
λ : λ ∈

σ(A) � {0}} by [2, § 52]. It is clear that 0 ∈ σ(C). From Proposition 1.1 and [3,
Satz 101.2] we get N(P ) = Aν(X). If x ∈ X then Cx = 0 ⇔ Px = x, hence
N(C) = P (X). From P = I − AC = I − CA it is easily seen that N(P ) = C(X).
Let B = ACA. Then

C2B = CBC = CACAC = CAC = C,

CB = CACA = ACAC = BC

BCB = ACACACA = ACACA = ACA = B.

This shows that C is Drazin invertible, B is the Drazin inverse of C and that
i(C) = 1. �

Now we introduce the class of operators which we will consider in this paper.
We say that A ∈ L(X) has a rational resolvent if

Rλ(A) =
P (λ)
q(λ)

where P (λ) is a polynomial with coefficients in L(X), q(λ) is polynomial with
coefficients in C and where P and q have no common zeros. We use the symbol
F(X) to denote the subclass of L(X) consisting of those operators whose resolvent
is rational. For A ∈ L(X) let H(A) be the set of all functions f : �(f) → C such
that �(f) is an open set in C, σ(A) ⊆ �(f) and f is holomorphic on �(f). For
f ∈ H(A) the operator f(A) ∈ L(X) is defined by the usual operational calculus
(see [3] or [4]).

The following proposition collects some properties of operators in F(X). An
operator A ∈ L(X) is called algebraic if p(A) = 0 for some nonzero polynomial p.

1.3. Proposition. Let A ∈ L(X). Then
(1) A ∈ F(X) if and only if σ(A) consists of a finite number of poles of

Rλ(A).
(2) A ∈ F(X) if and only if A is algebraic.
(3) If dim A(X) < ∞, then A ∈ F(X).
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(4) If A ∈ F(X) and f ∈ H(A), then f(A) = p(A) for some polynomial p.
(5) If A ∈ F(X), the p(A) ∈ F(X) for every polynomial p.

Proof. [4, Chapter V.11] �

1.4. Corollary. Suppose that A ∈ F(X) and 0 ∈ ρ(A). Then A−1 ∈ F(X)
and A−1 is a polynomial in A.

Proof. Define the function f : C � {0} → C by f(λ) = λ−1. Then f ∈ H(A)
and f(A) = A−1. Now apply Proposition 1.3 (4) and (5). �

Remark. That A ∈ F(X) and 0 ∈ ρ(A) implies A−1 ∈ F(X) is also shown in
[1, Theorem 2]. In Section 2 we will give a further proof of this fact.

2. Drazin inverses of operators in F(X)

Throughout this section A will be an operator in F(X) and σ(A) = {λ1, . . . , λk},
where λ1, . . . , λk are the distinct poles of Rλ(A) of orders m1, . . . ,mk (see Propo-
sition 1.3 (1)).

Recall that mj = α(A − λj) = δ(A − λj) (j = 1, . . . , k). Let

(2.1) mA(λ) = (λ − λ1)m1 · · · (λ − λk)mk .

By [4, Theorem V.10.7],
mA(A) = 0.

The polynomial mA is called the minimal polynomial of A. It follows from [4,
Theorem V.10.7] that mA divides any other polynomial p such that p(A) = 0. In
what follows we always assume that mA has degree n, thus n = m1 + · · ·+ mk and
that mA has the representations (2.1) and

(2.2) mA(λ) = a0 + a1λ + a2λ
2 + · · · + an−1λ

n−1 + λn.

Observe that
0 ∈ ρ(A) ⇔ a0 �= 0

and that

0 is a pole of order ν � 1 of Rλ(A) ⇔ a0 = · · · = aν−1 = 0 and aν �= 0.

Now we are in a position to state our first result. Recall from Proposition 1.1 that
if λ0 ∈ σ(A), then A − λ0 is Drazin invertible.

2.1. Theorem. If λ0 ∈ σ(A) and if C is the Drazin inverse of A − λ0, then
there is a scalar polynomial p such that C = p(A).

Proof. Without loss of generality we can assume that λ0 = λ1 = 0. Let
ν = m1. Then we have

mA(λ) = aνλν + aν + 1λν+1 + · · · + λn−1 + λn

and that aν �= 0. Let

q1(λ) = − 1
aν

(
aν+1 + aν+2λ + · · · + λn−(ν+1)

)
.
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Then

Aν+1q1(A) = − 1
aν

(
aν+1A

ν+1 + aν+2A
ν+2 + · · · + An

)

= − 1
aν

(
mA(A) − aνAν

)
= Aν .

Let B = q1(A). Then Aν+1B = Aν and BA = AB. For the Drazin inverse C we
have

Aν+1C = A, CAC = C and CA = AC.

Thus
Aν+1(B − C) = Aν+1B − Aν+1C = Aν − Aν = 0

This shows that (B − C)(X) ⊆ N(Aν+1). By Proposition 1.1, α(A) = ν, thus
(B − C)(X) ⊆ N(Aν), therefore (B − C)(X) ⊆ P1(X), where P1 denotes the
spectral projection of A associated with the spectral set {0} (see Proposition 1.2).
Since P1 = I − AC = I − CA, it follows that

B − C = P1(B − C) = P1B − P1C = P1B − (I − CA)C
= P1B − C + CAC = P1B,

thus C = B − P1B. We have P1 = f(A) for some f ∈ H(A). By Proposition
1.3 (4), f(A) = q2(A) for some polynomial q2. Now define the polynomial p by
p = q1 − q2q1. It results that

p(A) = q1(A) − q2(A)q1(A) = B − P1B = C. �

2.2. Corollary. If λ0 ∈ σ(A) and if C is the Drazin inverse of A − λ0, then
C ∈ F(X).

Proof. Theorem 2.1 and Proposition 1.3 (5). �

2.3. Corollary. Let A be a complex square matrix and λ0 a characteristic
value of A. Then the Drazin inverse of A − λ0 is a polynomial in A.

Proof. Theorem 2.1 and Proposition 1.3 (3). �

Let T ∈ L(X). An operator S ∈ L(X) is called a pseudo inverse of T provided
that TST = T . In general the set of all pseudo inverses of T is infinite and this
set consists of all operators of the form STS + U − STUTS, where U ∈ L(X)
is arbitrary (see [2, Theorem 2.3.2]). Observe that if T is Drazin invertible with
i(T ) = 1, then the Drazin inverse of T is a pseudo inverse of T .

2.4. Corollary. If λ0 ∈ σ(A), then the following assertions are equivalent:

(1) λ0 is a simple pole of Rλ(A);
(2) there is a pseudo inverse B of A − λ0 such that B(A − λ0) = (A − λ0)B;
(3) there is a polynomial p such that p(A) is a pseudo inverse of A − λ0.
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Proof. (1) ⇔ (2): Proposition 1.1.
(1)⇒ (3): We can assume that λ0 = 0. Let q1 and B as in the proof of Theorem

2.1. Then A2B = A and AB = BA, hence ABA = A.
(3) ⇒ (1): Again we can assume that λ0 = 0. With B = p(A) we have

ABA = A and AB = BA. Set C = BAB; then ACA = A, CAC = C and
AC = CA. This shows that C is the Drazin inverse of A and that i(A) = 1. By
Proposition 1.1, λ0 = 0 is a simple pole of Rλ(A). �

2.5. Corollary. Let X be a complex Hilbert space and suppose that N ∈ L(X)
is normal and that σ(N) is finite. We have:

(1) N ∈ F(X),
(2) If λ0 ∈ σ(N), then there is a polynomial p such that

(N − λ0)p(N)(N − λ0) = N − λ0.

Proof. By [3, Satz 111.2], each point in σ(N) is a simple pole of Rλ(N), thus
N ∈ F(X). Now apply Theorem 2.4. �

Our results suggest the following.

Question. If A ∈ F(X) and if B is a pseudo inverse such that AB = BA,
does there exist a polynomial p with B = p(A)?

The answer is negative:

Example. Consider the square matrix

A =

⎛
⎝1 1 1

1 1 1
1 1 1

⎞
⎠ .

It is easy to see that the minimal polynomial of A is given by mA(λ) = λ2 − 3λ =
λ(λ − 3), hence σ(A) = {0, 3} and A2 = 3A. Let

B =
1
3

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ .

Then AB = BA = 1
3A, thus ABA = 1

3A2 = A, hence B is a pseudo inverse of A.
Since A2 = 3A, any polynomial in A has the form αI + βA with α, β ∈ C. But
there are no α and β such that B = αI + βA. An easy computation shows that
the Drazin inverse of A is given by 1

9A and that i(A) = 1.

If 0 is a simple pole of Rλ(A), then we have seen in Theorem 2.4 that A has a
pseudo inverse. If 0 is a pole of Rλ(A) of order � 2, then, in general A does not
have a pseudo inverse, as the following example shows.

Example. Let T ∈ L(X) be any operator with T (X) not closed (of course X
must be infinite dimensional). Define the operator A ∈ L(X ⊕ X) by the matrix

A =
(

0 0
T 0

)
.
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Then the range of A is not closed. By [2, Theorem 2.1], A has no pseudo inverse.
From A2 = 0 it follows that A ∈ F(X⊕X) and that 0 is a pole of order 2 of Rλ(A).

Now we return to the investigations of our operator A ∈ F(X). To this end we
need the following propositions.

2.6. Proposition. Suppose that T ∈ L(X), 0 ∈ ρ(T ), λ ∈ C � {0} and that k
is a nonnegative integer. Then:

(1) N(T − λ)k) = N
(
(T−1 − 1

λ )k
)
;

(2) α(T − λ) = α(T−1 − 1
λ ).

Proof. We only have to show that N
(
(T − λ)k

) ⊆ N
(
(T−1 − 1

λ )k
)
. Take

x ∈ N
(
(T −λ)k

)
. Then 0 = (T −λ)kx, thus 0 = (T−1)k(T −λ)kx = (1−λT−1)kx,

hence x ∈ N
(
(T−1 − 1

λ )k
)
. �

2.7. Proposition. Suppose that T ∈ L(X), 0 ∈ σ(T ), λ ∈ C � {0} and k is
a nonnegative integer. Furthermore suppose that T is Drazin invertible and that C
is the Drazin inverse of T . Then:

(1) N((T − λ)k) = N
(
(C − 1

λ )k
)
;

(2) α(T − λ) = α(C − 1
λ );

Proof. (2) follows from (1).
(2) Let ν = i(T ). We use induction. First we show that N(T −λ) = N(C− 1

λ ).
Let x ∈ N(T − λ), then Tx = λx and T νx = λνx. We have

λC2x = C2Tx = CTCx = Cx,

hence C(1−λC)x = 0, thus (1−λC)x ⊆ N(C). By Proposition 1.2, N(C) = N(T ν),
therefore

0 = T ν(1 − λC)x = (1 − λC)T νx = (1 − λC)λνx,

therefore x ∈ N(C − 1
λ ). Now let x ∈ N(C − 1

λ ). From Cx = 1
λx we see that

x ∈ C(X) = N(P ), where P is as in Proposition 1.2. From P = I − TC we get
x = TCx = T ( 1

λx), thus Tx = λx, hence x ∈ N(T − λ). Now suppose that n is a
positive integer and that

N
(
(T − λ)n

)
= N

(
(C − 1

λ )n
)
.

Take x ∈ N
(
(T − λ)n+1

)
. Then (T − λ)x ∈ N

(
(T − λ)n

)
= N

(
(C − 1

λ )n
)
, thus

0 = (C − 1
λ )n(T − λ)x = (T − λ)(C − 1

λ )nx.

This gives
(C − 1

λ )nx ∈ N(T − λ) = N(C − 1
λ ),

therefore x ∈ N
(
(C − 1

λ )n+1
)
. Similar arguments show that N

(
(C − 1

λ )n+1
) ⊆

N
(
(T − λ)n+1

)
. �

In what follows we use the notation of the beginning of this section. Recall that
we have σ(A) = {λ1, . . . , λk}. If 0 ∈ σ(A), then we always assume that λ1 = 0,
hence σ(A) � {0} = {λ2, . . . , λk}.
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2.8. Proposition.

(1) If 0 ∈ ρ(A), then σ(A−1) = { 1
λ1

, . . . , 1
λk

}.
(2) If 0 ∈ σ(A) and if C is the Drazin inverse of A, then 0 ∈ σ(C) and

σ(C) � {0} = { 1
λ2

, . . . , 1
λk

}.
Proof. (1) follows from the spectral mapping theorem.
(2) is a consequence of Proposition 1.2. �

For our next result recall from Corollary 1.4 that if 0 ∈ ρ(A), then A−1 ∈ F(X).

2.9. Theorem. Suppose that 0 ∈ ρ(A). Then
(1) If the minimal polynomial mA has the representation (2.1), then the min-

imal polynomial mA−1 of A−1 is given by

mA−1(λ) =
(
λ − 1

λ1

)m1 · · ·
(
λ − 1

λk

)mk

.

(2) If the minimal polynomial mA has the representation (2.2), then mA−1 is
given by

mA−1(λ) =
1
a0

+
an−1

a0
λ + · · · + a1

a0
λn−1 + λn.

Proof. Proposition 2.6 shows that

α(A−1 − 1
λj

) = α(A − λj) = mj (j = 1, . . . , k),

thus (1) is shown. Furthermore mA−1 has degree m1 + · · · + mk = n. Now define
the polynomial q by

q(λ) =
1
a0

+
an−1

a0
λ + · · · + a1

a0
λn−1 + λn.

Then

a0A
nq(A−1) = An(a0(A−1)n + a1(A−1)n−1 + · · · + an−1A

−1 + 1)

= mA(A) = 0.

Since a0 �= 0 and 0 ∈ ρ(A), it results that q(A−1) = 0. Because of degree of q = n =
degree of mA−1 , we get q = mA−1 . �

Remark. The proof just given shows that there is a polynomial q such that
q(A−1) = 0. Therefore we have a simple proof for the fact that A−1 ∈ F(X).

2.10. Theorem. Suppose that 0 ∈ σ(A) and that 0 is a pole of Rλ(A) of
order ν � 1. Let C denote the Drazin inverse of A (recall from Corollary 2.2 that
C ∈ F(X)).

(1) If mA has the representation (2.1), then

mC(λ) = λ(λ − 1
λ2

)m2 · · · (λ − 1
λk

)mk .

(2) If mA has the representation (2.2), then

mC(λ) =
1
aν

λ +
an−1

aν
λ2 + · · · + aν+1

aν
λn+1−(ν+1) + λn+1−ν .
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Proof. Proposition 2.7 gives

α(C − 1
λj

) = α(A − λj) = mj (j = 2, . . . , k).

By Proposition 1.1 and Proposition 1.2, α(C) = 1. Thus (1) is valid. We have

mA(λ) = aνλν + aν+1λ
ν+1 + · · · + an−1λ

n−1 + λn,

hence

(2.3) 0 = mA(A) = aνAν + aν+1A
ν+1 + · · · + an−1A

n−1 + An.

If ν � l � n, then

Cn+1Al = Cn+1ClAl = Cn+1−l(CA)l

= Cn+1−lCA = Cn−lCAC = Cn+1−l.

Then multiplying (2.3) by Cn+1, it follows that

0 = aνCn+1−ν + aν+1C
n+1−(ν+1) + · · · + an−1C

2 + C.

Now define the polynomial q by

q(λ) =
1
aν

λ +
an−1

aν
λ2 + · · · + aν+1

aν
λn+1−(ν+1) + λn+1−ν .

Then q(C) = 0. Since degree of q = n+1− ν = 1+m2 + · · ·+mk = degree of mC ,
we get q = mC . �

2.11. Corollary. With the notation in Theorem 2.10 we have

C(A − λ2)m2 · · · (A − λk)mk = 0.

Proof. Let D = (A − λ2)mk · · · (A − λk)mk . From AνD = mA(A) = 0 we see
that D(X) ⊆ N(Aν). Since N(Aν) = N(C) (Proposition 1.2), CD = 0. �

Notation. X∗ denotes the dual space of X and we write T ∗ for the adjoint
of an operator T ∈ L(X). Recall from [4, Theorem IV. 8.4] that

(2.4) T (X) = N(T ∗)⊥ (T ∈ L(X)).

2.12. Proposition. Suppose that T ∈ L(X), λ ∈ C � {0} and that j is a
nonnegative integer. Then

(1) If 0 ∈ ρ(T ), then (T − λ)j(X) = (T−1 − 1
λ )j(X).

(2) If 0 ∈ σ(T ), if T is Drazin invertible and if C denotes the Drazin inverse
of T , then (T − λ)j(X) = (C − 1

λ )j(X).

Proof. (1) Let y = (T − λ)jx ∈ (T − λ)j(x) (x ∈ X). Then

(T−1 − 1
λ )jT jx =

(
(T−1 − 1

λ )T
)j

x = (1 − T
λ )jx

=
(−1)j

λj
(T − λ)jx =

(−1)j

λj
y,

therefore y ∈ (T−1 − 1
λ )j(X).

(2) Let ν = i(T ). Then T ν+1C = T ν , TC = CT and CTC = C. Hence

(T ∗)ν+1C∗ = (T ∗)ν , T ∗C∗ = C∗T ∗ and C∗T ∗C∗ = C∗.
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Thus T ∗ is Drazin invertible and C∗ is the Drazin inverse of T ∗. By Proposition 2.7,

N
(
(T ∗ − λ)j

)
= N

(
(C∗ − 1

λ )j
)
,

therefore the result follows in view of (2.4). �
2.13. Corollary.

(1) If 0 ∈ ρ(A), then (A − λj)mj (X) = (A−1 − 1
λj

)mj (X) (j = 1, . . . , k).
(2) If 0 ∈ σ(A) is a pole of order ν � 1 of Rλ(A) and if C is the Drazin

inverse of A, then Aν(X) = C(X) and

(A − λJ)mj (X) = (C − 1
λj

)mj (X) (j = 2, . . . , k).

Proof. (1) is a consequence of Proposition 2.12.
(2) That Aν(X) = C(X) is a consequence of Proposition 1.2. Now let j �

{2, . . . , k}. Because of Proposition 1.1 and Theorem 2.10 we see that

α(C − 1
λj

) = δ(C − 1
λj

) = mj = α(A − λj) = δ(A − λj).

By [3, Satz 101.2], the subspaces (A − λj)mj (X) and (C − 1
λj

)mj (X) are closed.
Now apply Proposition 2.12. �

For j = 1, . . . , k let Pj denote the spectral projection of A associated with the
spectral set {λj}. Observe that

PiPj = 0 for i �= j and P1 + · · · + Pk = 1.

If 0 ∈ ρ(A), then denote by Qj the spectral projection of A−1 associated with
the spectral set { 1

λj
} (j = 1, . . . , k). If 0 ∈ σ(A) and if C is the Drazin inverse,

then denote by Q1 the spectral projection of C associated with the spectral set
{0} and by Qj the spectral projection of C associated with the spectral set { 1

λj
}

(j = 2, . . . , k).

2.14. Corollary. Pj = Qj (j = 1, . . . , k).

Proof. By [3, Satz 101.2], we have

Pj(X) = N((A − λj)mj ) and N(Pj) = (A − λj)mj (X)

(j = 1, . . . , k). If 0 ∈ ρ(A), then

Qj(X) = N
(
(A−1 − 1

λj
)mj

)
and N(Qj) = (A−1 − 1

λj
)mj (X)

(j = 1, . . . , k). Now apply Proposition 2.6 and Corollary 2.13 (1) to get

Pj(X) = Qj(X) and N(Pj) = N(Qj),

hence Pj = Qj (j = 1, . . . , k).
Now let 0 ∈ σ(A). By Proposition 1.2, Proposition 2.7, Corollary 2.13 (2) and

[3, Satz 101.2], we derive

P1(X) = N(C) = Q1(X), N(P1) = C(X) = N(Q1),

Pj(X) = N
(
(C − 1

λj
)mj

)
= Qj(X)

N(Pj) =
(
C − 1

λj

)mj (X) = N(Qj)
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(j = 2, . . . , k). Hence Pj = Qj (j = 1, . . . , k). �

For A we have the representation A =
∑k

j=1 λjPj +N , where N ∈ L(X) is nil-

potent and N =
∑k

j=1(A−λj)Pj (see [4, Chapter V. 11]). If p = max{m1, . . . ,mk},
then it is easily seen that Np = 0. If A has only simple poles, then N = 0.

2.15. Corollary.

(1) If 0 ∈ ρ(A), then there is a nilpotent operator N1 ∈ L(X) with

A−1 =
k∑

j=1

1
λj

Pj + N1

(2) If 0 ∈ σ(A) and if C is the Drazin inverse of A, then

C =
k∑

j=2

1
λj

Pj + N1, where N1 ∈ L(X) is nilpotent.

Proof. Corollary 2.14. �

With the notation of Corollary 2.15 (2) we have AC = 1 − P1, CP1 = 0 (see
Proposition 1.2) and

ACA = (1 − P1)
( ∑

j=2

kλjPj + N

)
= A − P1

( k∑
j=2

λjPk + N

)
= A − P1N ;

hence A = ACA + P1N , P1N is nilpotent and

(ACA)P1N = ACP1AN = 0 = NACP1A = P1N(ACA).

Recall that ACA is the Drazin inverse of C and that i(ACA) = 1. The following
more general result holds:

2.16. Theorem. Suppose that T ∈ L(X) is Drazin invertible, i(T ) = ν � 1
and that C is the Drazin inverse of T . Then there is a nilpotent N ∈ L(X) such
that T = TCT + N , N(TCT ) = (TCT )N = 0 and Nν = 0.

This decomposition is unique in the following sense: if S,N1 ∈ L(X), S is
Drazin invertible, i(S) = 1, N1 is nilpotent, N1S = SN1 = 0 and if T = S + N1,
then S = TCT and N = N1.

Proof. Let N = T − TCT ; then

Nν = (T (1 − CT ))ν = T ν(1 − CT )ν = T ν(1 − CT )

= T ν − T νCT = T ν − T ν+1C = T ν − T ν = 0.

For the uniqueness of the decomposition we only have to show that S = TCT .
There is R ∈ L(X) such that SRS = S, RSR = R and SR = RS. Consequently,

N1R = N1RSR = N1SR2 = 0 = RSSN1 = RN1,

hence
TR = (S + N1)R = SR = RS = R(S + N1) = RT.
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Now let n be a nonnegative integer such that Nn
1 = 0. Since SN1 = 0 = N1S, it

follows that
Tn = (S + N1)n = Sn + Nn

1 = Sn.

We can assume that n � ν. Thus

Tn+1R = Sn+1R = Sn−1SRS = Sn = Tn.

Furthermore we have TR = RT and

RTR = R(S + N1)R = RSR = R,

hence R = C. With S1 = TCT we get

S1RS1 = TCTCTCT = TCT = S1,

RS1R = CTCTC = CTC = RTR = R

S1R = TCTC = CTCT = RS1.

This shows that S = S1 = TCT . �
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