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To the memory of Professor Michal Greguš

Abstract. The existence of solutions belonging to the Karamata class of
functions of a class of third order nonlinear differential equations is proved
via some more general results on asymptotic equivalence.

1. Introduction

The theory of Karamata regularly varying functions has proved to be a powerful
tool for the study of asymptotic behavior of nonoscillatory solutions of linear and
nonlinear differential equations. For a variety of results produced in the framework
of regular variation the reader is referred to the monograph [9] and the papers [4–8].

Most of the results found in the literature are concerned exclusively with second
order differential equations, and so it is natural to raise the question as to whether
higher order differential equations could be studied in the framework of regularly
and rapidly varying functions.

The purpose of this paper is to provide a partial affirmative answer to this
question by demonstrating the existence of regularly varying and rapidly varying
solutions for third order differential equations of the type

(A) x′′′ + 2P (t)x′ + P ′(t)x = F (t, x)
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where P is continuously differentiable on [a,∞), for some a > 0, F is continuous
on [a,∞) ×R and

(1.1) |F (t, x)| � G(t, x)

where G : [a,∞) × R → R+, R+ = [0,∞) is a continuous function which is
nondecreasing in the second variable for all t � a.

More specifically, in Section 2 we indicate a situation in which the self-adjoint
linear equation

(A0) y′′′ + 2P (t)y′ + P ′(t)y = 0

has a fundamental set of solutions consisting of regularly and rapidly varying func-
tions.

In Section 3 we establish conditions under which equation (A) possesses a
fundamental set of solutions which are asymptotic as t → ∞ to the indicated
regularly and rapidly varying solutions of equation (A0).

For that purpose a more general result on asymptotic equivalence between
solutions of (A) and (A0) is proved (Theorems 3.1–3.3).

To reader’s benefit we summarize below the definitions and basic properties
of Karamata regularly varying and rapidly varying functions which are needed in
developing the main existence theorems (cf. [1]).

Definition. A measurable positive function f(t) defined in some neighborhood
of infinity is said to be regularly varying (at infinity) of index ρ if

lim
t→∞

f(λt)
f(t)

= λρ for any λ > 0.

The set of all regularly varying functions of index ρ is denoted by RV(ρ). If in
particular ρ = 0, the symbol SV is often used for RV(0) and a member of SV is
called a slowly varying function.

From the definition it follows that f(t) ∈ RV(ρ) is expressed as f(t) = tρL(t)
for some L(t) ∈ SV. So the class SV plays a central role in the theory of regular
variation. Of fundamental importance are the following facts holding for any L(t) ∈
SV:

The function f(t) ∈ RV(0) if and only if it can be represented in the form

(1.2) f(t) = c(t) exp
{∫ t

t0

δ(s)
s
ds

}
, t � t0,

for some t0 > 0 and some measurable functions c(t) and δ(t) such that

lim
t→∞ c(t) = c0 ∈ (0,∞) and lim

t→∞ δ(t) = 0.
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There holds

(1.3) lim
t→∞ tεL(t) = ∞ and lim

t→∞ t−εL(t) = 0 for any ε > 0.

It is obvious that Li(t) ∈ SV, fi(t) ∈ RV(ρi), i = 1, 2, implies

(1.4) L1(t)L2(t) ∈ SV, f1(t)f2(t) ∈ RV(ρ1 + ρ2).

All functions tending to positive constants or the function Πn
1 (logν t)ξν , ξν real

and logν the ν-th iteration of the logarithm, are simple examples of slowly varying
functions.

Definition. A measurable function f : [a,∞) → (0,∞) is called rapidly vary-
ing (at infinity) of index ∞ if

lim
t→∞

f(λt)
f(t)

= ∞ for λ > 1 and lim
t→∞

f(λt)
f(t)

= 0 for 0 < λ < 1

and is called rapidly varying (at infinity) of index −∞ if

lim
t→∞

f(λt)
f(t)

= 0 for λ > 1 and lim
t→∞

f(λt)
f(t)

= ∞ for 0 < λ < 1.

The set of all rapidly varying functions of index ∞ (or −∞) is denoted by RV(∞)
(or RV(−∞)).

The function exp(atα), a, α real and a �= 0, α > 0, is a simple example of
rapidly varying function.

2. The self-adjoint equation (A0)

2.1. Preliminaries. Consider the second order linear differential equation

(2.1) z′′ +
1
2
P (t)z = 0

and suppose it to be nonoscillatory. The following is known:

Lemma 2.1. [3] There exist two linearly independent solutions u(t) and v(t) of
(2.1) such that

u(t)/v(t) → 0 as t→ ∞,∫ ∞

a

dt

u(t)2
= ∞,

∫ ∞

a

dt

v(t)2
<∞,(2.2)

v(t) = u(t)
∫ t

t0

ds

u(s)2
, u(t) = v(t)

∫ ∞

t

ds

v(s)2
.

The solution u(t) satisfying (2.2) is called principal solution and v(t) is called
nonprincipal one.

There is no loss of generality in assuming that both u(t) and v(t) are eventually
positive.
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Lemma 2.2. [2], [10] Let {u(t), v(t)} be a fundamental set of solutions on a
certain interval I of equation (2.1). Then the functions y1(t) = u(t)2, y2(t) =
u(t)v(t) and y3(t) = v(t)2 form a fundamental set of solutions on I of equation
(A0).

Lemma 2.3. [12] Let u(t) be a principal solution of equation (2.10). Then
equation (A) can be written in the canonical factorized form:

(A′) L3x ≡ 2
u(t)2

(u(t)2
2

(
u(t)2

( 1
u(t)2

x
)′)′)′

= F (t, x).

To construct a fundamental set of solutions of (A) choose u(t) and v(t) as
positive principal and nonprincipal solutions of (2.1). Then by Lemma 2.2 and
(2.2), the set of functions

y1(t) = u(t)2,

y2(t) = u(t)v(t) = u(t)2
∫ t

a

ds

u(s)2
,(2.3)

y3(t) = v(t)2 = u(t)2
∫ t

a

1
u(s)2

∫ s

a

2
u(r)2

dr ds

forms a fundamental set of solutions for the equation L3x = 0 (and thus for (A0)).
Notice also that

(2.4)
∫ t

a

1
u(s)2

∫ s

a

1
u(r)2

dr ds =
1
2
v(t)2

u(t)2
.

These solutions are asymptotically ordered in the sense that

lim
t→∞

yi(t)
yj(t)

= 0 and 1 � i < j � 3.

2.2. Results. We present here some sufficient conditions which guarantee the
existence of regularly and rapidly varying solutions of equation (A0).

Theorem 2.1. Let c be a constant such that c < 1/4 and let ρ, σ (ρ < σ)
denote the real roots of the equation

(2.5) λ2 − λ+ c = 0.

If P(t) is conditionally integrable on [a,∞) and satisfies

(2.6) lim
t→∞ t

∫ ∞

t

P (s) ds = 2c,
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then equation (A0) has a fundamental set of regularly varying (hence nonoscillatory)
solutions yi(t), i = 1, 2, 3, of the form

(2.7) y1(t) = t2ρL1(t), y2(t) = tL2(t), y3(t) = t2σL3(t),

where L1(t) is some slowly varying function, L2(t) → (1 − 2ρ)−1 and L3(t) ∼
{(1 − 2ρ)2L1(t)}−1(t) as t→ ∞.

Proof. By [9, Theorem 1.11], condition (2.6) is necessary and sufficient for
equation (2.1) to possess two linearly independent regularly varying (hence nonoscil-
latory) solutions of the form u(t) = tρL1(t) and v(t) = tσL2(t) where L1(t) is some
slowly varying function and L2(t) ∼ {(1 − 2ρ)L1(t)}−1, as t → ∞. An application
of Lemma 2.2 and the use of property (1.4) of regularly varying functions give the
result. �

If c = 1/4 which is the borderline case between nonoscillation and oscillation
of equation (2.1), there holds

Theorem 2.2. Suppose that

lim
t→∞ t

∫ ∞

t

P (s) ds =
1
2
.

Suppose furthermore that the function

φ(t) = t

∫ ∞

t

P (s) ds− 1
2

satisfies ∫ ∞ |φ(t)|
t

dt <∞

and ∫ ∞ |ψ(t)|
t

dt <∞, where ψ(t) =
∫ ∞

t

|φ(s)|
t

ds.

Then, equation (A0) has a fundamental set of regularly varying (hence nonoscil-
latory) solutions yi(t), i = 1, 2, 3, of index one and of the form

y1(t) = tL1(t), y2(t) = t log t L2(t), y3(t) = t log2 t L3(t)

where L1(t) → α, α ∈ (0,∞), L2(t) → 1, L3(t) → 1/α2 as t→ ∞.

Proof. One proceeds exactly as in the proof of Theorem 2.1, using this time
[9, Theorem 1.12]. �
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Theorem 2.3. Let P (t) < 0 for t � a. If for each λ > 1

(2.8) lim
t→∞

(
− t

∫ λt

t

P (s) ds
)

= ∞,

then equation (A0) has at least two rapidly varying solutions such that the first
of these solutions decreases and is of the class RV(−∞) whereas the second one
increases and is of the class RV(∞).

Proof. It is known (e.g., [9, Lemma 1]) that (2.1) has a (positive) decreasing
solution u(t). Let v(t) be the corresponding linearly independent solution defined
by (2.2). Then, by [9, Theorem 1.3], one has u(t) ∈ RV(−∞) and v(t) ∈ RV(∞)
if and only if condition (2.8) holds. It is clear from the definition of rapidly vary-
ing functions that y1(t) = u(t)2 ∈ RV(−∞) and y3(t) = v(t)2 ∈ RV(∞) which
completes the proof. �

However the third linearly independent solution y2(t) = u(t)v(t) need not to
be rapidly varying at all. This is shown by the example:

u(t) = e−t, v(t) = et, so that y2(t) = 1.

3. Regularly and rapidly varying solutions of perturbed equation (A)

The objective of this section is twofold. First, we establish sufficient conditions
for equation (A) to have solutions x1(t), x2(t) and x3(t) with the same asymptotic
behavior as solutions y1(t) = u(t)2, y2(t) = u(t)v(t) and y3(t) = v(t)2 of equation
(A0), respectively. Secondly, we apply these results to construct regularly and
rapidly varying solutions of (A).

3.1. Asymptotic equivalence between xi(t) and yi(t), i = 1, 2, 3. We
prove

Theorem 3.1. If for some α > 0

(3.1)
∫ ∞

a

v(t)2G
(
t, αu(t)2

)
dt <∞,

then there exists an eventually positive solution x1(t) of equation (A) such that for
t→ ∞, x1(t) ∼ α

2 u(t)
2.

Proof. Choose T � a such that

(3.2)
∫ ∞

T

v(t)2G
(
t, αu(t)2

)
dt � α

2
,

which is possible by (3.1). Further, define the set X1 by

X1 =
{
x ∈ C[T,∞) : 0 � x(t) � αu(t)2, t � T

}
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and the integral operator F1 by

F1x(t) =
α

2
u(t)2 + u(t)2

∫ ∞

t

[ ∫ s

t

1
u(s2)2

∫ s2

t

1
u(s1)2

ds1 ds2

]
u(s)2F

(
s, x(s)

)
ds,

t � T.

The set X1 is a convex closed subset of a locally convex space C[T,∞) equipped
with the usual metric topology of uniform convergence on compact subintervals of
[T,∞). We will apply the Schauder–Tychonoff fixed point theorem to prove that
F1 has a fixed element in X1. To this end it suffices to verify that F1 maps X1 into
itself, that F1 is a continuous mapping, and that F1(X1) is relatively compact in
C[T,∞).

(i) Using (3.2), (2.2) and (2.4) one easily checks that x ∈ X1 implies F1x ∈ X1,
that is, F1 is a self-map on X1.

(ii) Let {xν} be a sequence of elements of X1 converging to x0 ∈ X1 in the
topology of C[T,∞). Because of (3.1), the Lebesgue dominated convergence the-
orem can be applied to prove without difficulty that the sequence of functions
{F1xν(t)} converges to F1x0(t) uniformly on any compact subinterval of [T,∞).
This means that the F1 is a continuous mapping on X1.

(iii) Since the set {F1x(t)} is locally uniformly bounded and locally equicontin-
uous on [T,∞), it follows from the Arzela–Ascoli lemma that F1(X1) is relatively
compact in C[T,∞).

Therefore the Schauder–Tychonoff fixed point theorem ensures the existence
of an element x1 ∈ X1 such that x1 = F1x1, which is equivalent to the integral
equation

x1(t) =
α

2
u(t)2+ u(t)2

∫ ∞

t

[ ∫ s

t

1
u(s2)2

∫ s2

t

1
u(s1)2

ds1 ds2

]

× u(s)2F
(
s, x1(s)

)
ds, t � T.(3.3)

It is a matter of simple calculation to verify via differentiation of (3.3) that the
function x1(t) is a solution of the equation (A’) and hence of (A) on [T,∞). Also
the asymptotics of x1(t) is an immediate consequence of (3.3). This completes the
proof. �

Theorem 3.2. If for some β > 0

(3.4)
∫ ∞

a

u(t) v(t)G
(
t, β u(t) v(t)

)
dt <∞,

then there exists an eventually positive solution x2(t) of equation (A) such that for
t→ ∞, x2(t) ∼ β

2u(t)v(t).

Proof. Such solution is obtained as before via the Schauder–Tychonoff theo-
rem, as a solution of the integral equation

(3.5) x2(t) =
β

2
u(t) v(t) + u(t)2

∫ t

T

1
u(s)2

∫ ∞

s

[ ∫ r

s

dσ

u(σ)2

]
u(r)2F

(
r, x2(r)

)
dr ds
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for some T � a.
Choose T � a such that

(3.6)
∫ ∞

T

u(t) v(t)G
(
t, β u(t) v(t)

)
dt � β

2
.

Further, consider the set X2 ⊂ C[T,∞) and the integral operator F2 : X2 →
C[T,∞) defined by

X2 =
{
x ∈ C[T,∞) : 0 � x(t) � β u(t) v(t), t � T

}

and

F2x(t) =
β

2
u(t) v(t) + u(t)2

∫ t

T

1
u(s)2

∫ ∞

s

[ ∫ r

s

dσ

u(σ)2

]
u(r)2F

(
r, x(r)

)
dr ds.

Using (3.4) and proceeding exactly as in the proof of Theorem 3.1, F2 is shown
to be a continuous mapping which sends X2 into a relatively compact subset of
C[T,∞), and consequently there exists an element x2 ∈ X2 such that x2 = F2x2,
which is nothing else but (3.5). That x2(t) is a solution of (A) on [T,∞) with the
desired asymptotic property, one obtains as before. This completes the proof. �

Theorem 3.3. If for some γ > 0

(3.7)
∫ ∞

a

u(t)2G
(
t, γv(t)2

)
dt <∞,

then there exists an eventually positive solution x3(t) of (A) such that x3(t) ∼
γ
2 v(t)

2 as t→ ∞.

Proof. Again take T � a such that

(3.8)
∫ ∞

T

u(t)2G
(
t, γv(t)2

)
dt � γ

2
.

The integral equation which generates a sought solution of (A) is this time

(3.9) x3(t) =
γ

2
v(t)2 + u(t)2

∫ t

T

1
u(s)2

∫ t

s

dσ

u(σ)2

∫ ∞

s

u(r)2F
(
r, x3(r)

)
dr ds.

Let X3 denote the set

X3 =
{
x ∈ C[T,∞) : 0 � x(t) � γv(t)2, t � T

}
.

It is easy to see that the operator F3 defined by

F3x(t) =
γ

2
v(t)2 + u(t)2

∫ t

T

1
u(s)2

∫ t

s

dσ

u(σ)2

∫ ∞

s

u(r)2F
(
r, x(r)

)
dr ds
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maps X3 into X3. Since the continuity of F3 and the relative compactness of
F3(X3) are verified routinely, there exists a fixed element x3 of F3 in X3 which
satisfies (3.9) and hence solves the equation (A). The asymptotic property of x3(t)
follows from (3.9). This completes the proof. �

In the case of the specialization

(3.10) x′′′ + 2P (t)x′ + P ′(t)x = Q(t)|x|m sgnx,

where m > 0 is a constant and Q : [a,∞) → R is continuous, the function G in
(1.1) can be taken to be

G(t, x) = |Q(t)||x|m, t � a, x ∈ R,

and conditions (3.1), (3.4) and (3.7) reduce to
∫ ∞

a

v(t)2u(t)2m|Q(t)| dt <∞,(3.11)
∫ ∞

a

[u(t)v(t)]m+1|Q(t)| dt <∞,(3.12)
∫ ∞

a

u(t)2v(t)2m|Q(t)| dt <∞,(3.13)

respectively.

Corollary 3.1. Condition (3.11) is sufficient for equation (3.10) to have for
any α > 0 an eventually positive solution x1(t) such that x1(t) ∼ αu(t)2 as t→ ∞.

Corollary 3.2. If (3.12) holds, then for any β > 0 the equation (3.10) has
an eventually positive solution x2(t) such that x2(t) ∼ βu(t)v(t) as t→ ∞.

Corollary 3.3. Condition (3.13) is sufficient for equation (3.10) to have for
any γ > 0 an eventually positive solution x3(t) such that x3(t) ∼ γv(t)2 as t→ ∞.

3.2. Regularly and rapidly varying solutions. If P (t) satisfies condition
(2.6), then Theorem 2.1 guarantees the existence of a fundamental set of regularly
varying solutions of equation (A0) as given by (2.7). Then, if conditions (3.1), (3.4)
and (3.7) hold, Theorems 3.1, 3.2 and 3.3, respectively, guarantee the existence of a
fundamental set of solutions xi(t), i = 1, 2, 3, of equation (A) such that for t→ ∞,
xi(t) ∼ αiyi(t), αi > 0. But this also means that xi(t) are regularly varying since
φ(t) ∼ L(t) as t → ∞ implies φ(t) = L∗(t) where L∗(t) is some slowly varying
function such that L∗(t) ∼ L(t) as t→ ∞ [9, Proposition 7].

As an illustration, take in (A)

(3.14) F (t, x) = tqM(t)|x|m sgnx, q real, m > 0, M(t) ∈ SV,

which case might occur in some applications. Here all three conditions (3.11),
(3.12) and (3.13) reduce to a single one: for m > 1 (superlinear case), to q <
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−2σ(m − 1) − 3, for m < 1 (sublinear one), to q < −2ρ(m − 1) − 3 and for the
linear case m = 1 all three conditions would reduce to q < −3. This is obtained by
using (1.3), (1.4) and since ρ+ σ = 1. Thus one obtains in the special case (3.14)
of (A) that the fundamental set xi(t), i = 1, 2, 3, exists and that for t→ ∞

x1(t) ∼ αt2ρL(t), x2(t) ∼ βt, x3(t) ∼ γt2σ/L(t)2

for any positive constants α, β, γ and for some slowly varying L(t).
To obtain the existence and the asymptotic behaviour of rapidly varying solu-

tions of the perturbed equation (A) with P (t) < 0, one proceeds in the same way
as above in the regularly varying case. That is: assume condition (2.7) and apply
first Theorem 2.3 to obtain two rapidly varying solutions y1(t) and y2(t). Then
assuming conditions (3.11) and (3.13), and applying Theorem 3.1 and Theorem 3.3
one concludes the existence of two rapidly varying solutions x1(t) and x2(t) such
that for t→ ∞

xi(t) ∼ αiyi(t), αi > 0, i = 1, 2.

4. Examples

Example 1. Consider the equation

(4.1) x′′′ + 2 sin(et)x′ + et cos(et)x = tqM(t)|x|m sgnx, q real, M(t) ∈ SV,

which is a special case of (A) with P (t) = sin(et). Since this P (t) satisfies (2.6)
with c = 0, the second order equation

z′′ + sin(et)z = 0

has linearly independent solutions u(t) ∈ RV(0) = SV and v(t) ∈ RV(1). A further
analysis shows that

u(t) ∼ A0 and v(t) ∼ t

A0
for some constant A0

[9, Example 2.1]. From the above observation, it follows that (4.1) by Section 3.2
has solutions xi(t), i = 1, 2, 3, such that

x1(t) ∼ α, x2(t) ∼ βt, x3(t) ∼ γt2,

for any positive α, β and γ, provided that

q < −3, q < −m− 2, q < −2m− 1,

respectively. Clearly, if m � 1 (resp. m � 1), then q < −2m − 1 (resp. q < −3)
implies the satisfaction of other two conditions.

We next consider the case where the function P (t) satisfies the conditions
of Theorem 2.2. The equation (2.1) with this P (t) has two linearly independent
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solutions u(t) and v(t) such that u(t) ∼ At
1
2 and v(t) ∼ t

1
2 (log t)/A for some A > 0,

and so the equation (A0) has a fundamental set of solutions {u(t)2, u(t)v(t), v(t)2}
satisfying

u(t)2 ∼ A2t, u(t)v(t) ∼ t log t, v(t)2 ∼ t(log t)2

A2
.

It can be shown easily that the conditions (3.1), (3.4) and (3.7) formulated for this
case are fulfilled if, for example, q < −m−2. If this inequality holds, our Theorems
3.1–3.3 guarantee the existence of three types of solutions xi(t), i = 1, 2, 3, having
the properties

x1(t) ∼ αt, x2(t) ∼ βt log t, x3(t) ∼ γt(log t)2

for any given positive constants α, β and γ.
Notice that this is in particular true if in (A) P (t) = 1/2t2, in which case (2.1)

is an Euler equation with solutions u(t) = t1/2 and v(t) = t1/2 log t.

Example 2. Consider the equation

(4.2) x′′′ − 4k2t2rx′ − 4k2rt2r−1x = Q(t)|x|m sgnx, t � 1,

where k > 0 is a constant and 2r is a positive integer. The associated second order
linear equation is the generalized Airy’s differential equation

(4.3) z′′ − k2t2rz = 0.

Since the condition (2.8) is clearly satisfied, the equation (4.3) has a fundamental
set {u(t), v(t)} of eventually positive solutions, of which u(t) is a (principal) rapidly
varying solution of index −∞ and v(t) is a (non-principal) rapidly varying solution
of index ∞ with the asymptotic behavior

u(t) ∼ t−r/2 exp
(
− ktr+1

r + 1

)
, v(t) ∼ t−r/2 exp

(ktr+1

r + 1

)

as t → ∞ (see [11, p. 285]). It follows that the third order linear differential
equation

(4.4) y′′′ − 4k2t2ry′ − 4k2rt2r−1y = 0, t � 1,

has a fundamental set of eventually positive, asymptotically ordered solutions y1(t),
y2(t) and y3(t) such that

y1(t) = u(t)2 ∼ t−r exp
(
− 2ktr+1

r + 1

)
,

y2(t) = u(t)v(t) ∼ t−r,

y3(t) = v(t)2 ∼ t−r exp
(2ktr+1

r + 1

)
.
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The conditions (3.11), (3.12) and (3.13) reduce to

∫ ∞

1

t−r(m+1) exp
{

2k(1 −m)tr+1

r + 1

}
|Q(t)| dt <∞,(4.5)

∫ ∞

1

t−r(m+1)|Q(t)| dt <∞(4.6)
∫ ∞

1

t−r(m+1) exp
{

2k(m− 1)tr+1

r + 1

}
|Q(t)| dt <∞,(4.7)

respectively.

It is a matter of elementary calculation to check that, in case the function Q(t)
satisfies

(4.8) |Q(t)| � Mtρ exp(Atr+1), t � 1,

for some constants A,M and ρ,

(i) the condition (4.5) guaranteeing the existence of a solution x1(t) ∼ αu(t)2 is
fulfilled if either

A <
2k(m− 1)
r + 1

or A =
2k(m− 1)
r + 1

and ρ < r(m+ 1) − 1;

(ii) the condition (4.6) guaranteeing the existence of a solution x2(t) ∼ βu(t)v(t)
is satisfied if either

A < 0 or A = 0 and ρ < r(m+ 1) − 1;

(iii) the condition (4.7) guaranteeing the existence of a solution x3(t) ∼ v(t)2 is
fulfilled if either

A <
2k(1 −m)
r + 1

or A =
2k(1 −m)
r + 1

and ρ < r(m+ 1) − 1.

Ifm = 1, that is, if the equation (4.2) is linear, then clearly A = 0 and the above
conditions (i), (ii) and (iii) reduce to the single condition ρ < 2r− 1 which implies
the existence of positive solutions x1(t), x2(t) and x3(t) of all three asymptotic
types.

In the inequality (4.8) instead of M = const one may take some slowly varying
function M(t). Then the requested convergence may hold even for ρ = r(m+1)−1
when the exp factor disappears, but that will depend on M(t). Namely, all three
conditions (4.5), (4.6) and (4.7) will reduce to

∫ ∞

1

M(t)
t

dt <∞.
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Observe that in this example one can get a more precise asymptotic formula
for xi(t) in the case when r = 1/2 and k = 1 (i.e., when (4.3) is the Airy equation).
Then

u(t) = t−1/4 exp
(
− 2

3
t3/2

)(
1 +O(t−3/2)

)
(4.9)

v(t) = t−1/4 exp
(2

3
t3/2

)(
1 +O(t−3/2)

)

using (4.8) one can estimate the integral in (3.3) by

O(t−
1
2 (m+1)+ρ+1 exp

( −Bt3/2)
)
, where B =

2
3
(m− 1) −A.

Hence, from (3.3), due to (4.9) one obtains for t→ ∞:

a) For B > 0

y1(t) = t−1/2 exp
(
− 4

3
t3/2

)
(1 +O(t−3/2)).

b) For B = 0 the same formula holds when 1
2m− ρ � 2 and

y1(t) = t−1/2 exp
(
− 4

3
t3/2

)(
1 +O

(
t−

1
2 (m+1)+ρ+1

))

when 1
2m− ρ > 2.

By using the same reasoning one obtains analogous formulae for y3(t) and y2(t).
The cases to be distinguished in the later case are A < 0 and A = 0, because of
(4.6).

Remark. The importance of the equation of the form (A) is apparent in the
study of a ladder-like electrical network with both nonlinear inductor and capacitor
(see [13]). In particular, if the line possesses nonhomogeneous features and possible
losses, one arrives to the equation

ut + aupux + buxxx + g(x)ux + du = 0.

Here x and t are space and time variables, respectively, u is dimesionless voltage,
g(x) is a function reflecting nonhomogeneity, p, a, b and d are real constants.

If the nonlinearity of the line is absent (i.e., p = 0), g(x) is linear (as often
happens in applications), e.g., g(x) = 2dx, and the voltage is of travelling wave
form u = u(x−mt), the above equation is reduced to the form (A0) with P (x) =
1
b (dx + a − m). If in addition an external force F (u, x) is present satisfying the
conditions of this paper, then our results are applicable.
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