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Abstract. A vertex of a simple graph is called large if its degree is at least 3.
It was shown recently that in the class of starlike trees, which have one large
vertex, there are no pairs of cospectral trees. However, already in the classes of
trees with two or three large vertices there exist pairs of cospectral trees. Thus,
one needs to employ additional graph invariant in order to characterize such
trees. Here we show that trees with two or three large vertices are characterized
by their eigenvalues and angles.

1. Introduction

Let G = (V,E) be a connected simple graph with n = |V | � 2 vertices and
E ⊆ (

V
2

)
. Let A be an adjacency matrix of G and let λ1 � λ2 � · · · � λn be

the eigenvalues of A. Let di, i ∈ V , denote the degree of a vertex i. Vertex
i ∈ V is called a large vertex if di � 3. A tree having one, two or three large
vertices is called starlike, double starlike or triple starlike tree, respectively. For
other undefined notions, we refer the reader to [1, 4].

The question ‘Which graphs are characterized by eigenvalues?’ goes back for
about half a century, and originates from chemistry, where the theory of graph
spectra is related to Hückel’s theory (see an excellent recent survey [5]). Concerning
trees, Schwenk [7] showed that almost every tree has a nonisomorphic cospectral
mate. It was shown by Gutman and Lepović [6] that in the class of starlike trees
there are no pairs of cospectral trees. However, already in the classes of double
starlike and triple starlike trees there exist pairs of cospectral trees: by a computer
search among trees with up to 18 vertices, we have found a pair of cospectral double
starlike trees, shown in Fig. 1, and a pair of cospectral triple starlike trees, shown
in Fig. 2.
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Figure 1. A pair of cospectral double starlike trees.

Figure 2. A pair of cospectral triple starlike trees.

Thus, in order to characterize double starlike and triple starlike trees we need to
employ additional (spectral) invariant. One possible choice is to use graph angles,
defined in the following way.

Let µ1 > µ2 > · · · > µm be all distinct values among the eigenvalues λ1 � λ2 �
· · · � λn of A. Further, let {e1, e2, . . . , en} constitute the standard orthonormal
basis for Rn. The adjacency matrix A has the spectral decomposition A = µ1P1 +
µ2P2 + · · · + µmPm, where Pi represents the orthogonal projection of Rn onto
the eigenspace E(µi) associated with the eigenvalue µi (moreover P 2

i = Pi = PT
i ,

i = 1, . . . , m; and PiPj = 0, i �= j). The nonnegative quantities αij = cos βij , where
βij is the angle between E(µi) and ej , are called angles of G. Since Pi represents
orthogonal projection of Rn onto E(µi) we have αij = ‖Piej‖. The sequence αij ,
j = 1, 2, . . . , n, is the ith eigenvalue angle sequence, while αij , i = 1, 2, . . . ,m, is
the jth vertex angle sequence. The angle matrix A of G is defined to be the matrix
A = ‖αij‖m,n provided its columns (i.e., the vertex angles sequences) are ordered
lexicographically. The angle matrix is a graph invariant. For further properties of
angles see [4, Chapters 4, 5].

Eigenvalues and angles still cannot characterize all trees: following Schwenk’s
approach, Cvetković [2] showed that for almost every tree there is a nonisomorphic
cospectral mate with the same angles. The smallest pair of cospectral trees with
the same angles, shown in Fig. 3, has four large vertices.

Thus, the question remains whether double and triple starlike trees are char-
acterized by eigenvalues and angles. We answer this question affirmatively: in
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Figure 3. A pair of cospectral trees with the same angles and
four large vertices.

Section 2 we prove this for double starlike trees, while in Section 3 we consider
triple starlike trees. Some other classes of graphs, characterized by eigenvalues and
angles, may be found in [3].

2. Double starlike trees

Following [2], we call a graph or a vertex invariant EA-reconstructible, if it can
be determined from the eigenvalues and angles of graph. Denote by ws(j,G) the
number of closed walks of length s in graph G starting and terminating at vertex
j. The basic property of angles is given in the following lemma.

Lemma 2.1. [4] For j ∈ v(G) and s ∈ N , the value ws(j,G) is EA-recon-
structible.

Proof. Recall that ws(j,G) is equal to the (j, j)-entry of As. Since α2
ij =

‖Piej‖2 = eT
j Piej , the numbers α2

i1, α
2
i2, . . . , α

2
in appear on the diagonal of Pi.

From the spectral decomposition of A we have As =
∑m

i=1 µs
i Pi, whence

�(2.1) ws(j,G) =
m∑

i=1

α2
ijµ

s
i .

From Lemma 2.1 the degree dj of the vertex j is given by

dj =
m∑

i=1

α2
ijµ

2
i

and, thus, degree sequence of a graph is EA-reconstructible. In [2] it is proven
that the knowledge of the characteristic polynomials of vertex deleted subgraphs is
equivalent to the knowledge of angles, since we have

PG−j(λ) = PG(λ)
m∑

i=1

α2
ij

λ − µi
,

where PG(λ), PG−j(λ) are the characteristic polynomials of G and G − j, respec-
tively. Vertices belonging to components having the same largest eigenvalue as the
graph are EA-reconstructible, since by the Perron–Frobenius theory of nonnega-
tive matrices angles belonging to µ1 are nonzero precisely for these vertices. As a
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corollary, the property of a graph of being connected is EA-reconstructible. Since
the numbers of vertices and edges are clearly EA-reconstructible, the property of
a graph of being a tree is also EA-reconstructible. Further, the number of large
vertices is known from the degree sequence. Thus, we have the following

Lemma 2.2. The property of being a double starlike tree is EA-reconstructible.
The property of being a triple starlike tree is EA-reconstructible.

A branch of a tree at the vertex u is a maximal subtree containing u as a leaf.
The union of one or more branches of u is called a limb at u.

Reconstruction Lemma. [2] Given a limb R of a tree T at a vertex u which
is adjacent to a unique vertex of T not in R, that vertex is among those vertices j
such that PT−j(λ) = gR

u (λ), where

(2.2) gR
u (λ) =

PR(λ)
[PR−u(λ)]2

[
PR(λ)PT−u(λ) − PR−u(λ)PT (λ)

]
.

Lemma 2.3. For every leaf of a tree T , its distance from the nearest vertex v
with dv �= 2 and the angles of v are EA-reconstructible.

� � � � �
�

�

�

�
. . .

u j1 j2 js−1

v=js

Figure 4. Leaf u of a tree with the nearest vertex v with dv �= 2.

Proof. Let u = j0, j1, j2, . . . , js−1, js = v be the unique path in T between a
leaf u and the nearest vertex v with dv �= 2 (see Fig. 4). From the Reconstruction
Lemma we get:

PT−j1(λ) = gP1
j0

(λ) = gP1
u (λ),

PT−j2(λ) = gP2
j1

(λ),
. . .

PT−v(λ) = PT−js
(λ) = gPs

js−1
(λ).

Hence, we know the angles of jk for k = 0, 1, . . . , s. The vertex v = js is recognized
from the condition djs

=
∑m

i=1 α2
ijs

µ2
i �= 2. �

Theorem 2.1. A double starlike tree is characterized by eigenvalues and angles.

Proof. Let T ′ be a double starlike tree and let T be a graph having the same
eigenvalues and angles as T ′. From Lemma 2.2 we can see that T is also a double
starlike tree.

Let c1 and c2 be large vertices of T , and let Tm be a subtree of T induced by
c1, c2, path P connecting c1 and c2, and vertices at distance at most m from either
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c1 or c2. For i = 1, 2 let Si denote the set of vertices of T that do not belong to P
and for which ci is a closer large vertex.

We show by induction that Tm is EA-reconstructible for all m � 0. Let T have
e edges and let L be a set of leaves of T . For each leaf l ∈ L Lemma 2.3 gives its
distance fl from a closer large vertex. Length of path P is then equal to e−∑

l∈L fl,
because every edge belongs either to P or to a path connecting a large vertex to a
leaf, and it belongs to exactly one such path. Hence, T0 is EA-reconstructible.

Suppose Tm is constructed for some m � 0. Then Tm+1 will be determined if
we know the number of vertices in Si at distance m + 1 from ci for i = 1, 2. All
vertices of T at distance at most m from ci belong to Tm. Tree Tm also contains
all vertices not in Si that are at distance exactly m + 1 from ci. Namely, these
vertices either belong to P or they are at distance at most m from the other large
vertex. Therefore, the only closed walks of length 2m + 2 starting from ci that are
not contained in Tm are those between ci and the vertices in Si at distance m + 1
from ci. The number of these closed walks is equal to w2m+2(ci, T )−w2m+2(ci, Tm),
which is also equal to the number of vertices in Si at distance m + 1 from ci. This
proves that Tm+1 is EA-reconstructible.

Now T is also EA-reconstructible, since T = Tm0 for some m0 � 1. This means
that T is a unique graph with the eigenvalues and angles of T ′, and thus it must
hold that T ∼= T ′. �

3. Triple starlike trees

Theorem 3.1. A triple starlike tree is characterized by eigenvalues and angles.

Proof. Let T ′ be a triple starlike tree and let T be a graph having the same
eigenvalues and angles as T ′. From Lemma 2.2 we can see that T is also a triple
starlike tree. Let c1, c2 and c3 be large vertices of T , and let P be the shortest path
containing all large vertices. We call the large vertices at ends of P the peripheral
vertices, the large vertex inside P the central vertex, while P itself is called the
central path of T . There are three cases to consider now:

a) Large vertices c1, c2 and c3 all have distinct vertex angle sequences. Then for
each leaf u of T we can determine from Lemma 2.3 the nearest large vertex ci and
its distance from ci. Thus for each large vertex ci we can determine the maximal
limb Mi at ci not containing other large vertices. Such limb at a peripheral large
vertex contains one branch less than its degree, while at the central large vertex it
contains two branches less than its degree. Thus, for each large vertex we can also
determine whether it is peripheral or central. To determine T completely, it only
remains to determine the distances from peripheral vertices to the central vertex,
for which we use the following modification of Lemma 2.3.

Lemma 3.1. Let R be a limb of a tree T at a vertex u containing du − 1
branches, and let v be the nearest vertex from u, with dv �= 2, which does not belong
to R. The distance between u and v, as well as the vertex angle sequence of v, are
EA-reconstructible.
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Proof. Let u = j0, j1, j2, . . . , js−1, js = v be the unique path in T between u
and v. From the Reconstruction Lemma we get:

PT−j1(λ) = gR1
j0

(λ) = gR
u (λ),

PT−j2(λ) = gR2
j1

(λ),
. . .

PT−v(λ) = PT−js
(λ) = gRs

js−1
(λ),

where Ri is the limb R with the path Pi attached at u. Hence, we know the
angles of jk for k = 0, 1, . . . , s. The vertex v = js is recognized from the condition
djs

=
∑m

i=1 α2
ijs

µ2
i �= 2. �

Applying Lemma 4 with u being a peripheral and v being the central vertex
of T gives us distances between each peripheral and central vertex, and the tree T
is now completely determined. This means that T is a unique graph with the
eigenvalues and angles of T ′, and thus it must hold that T ∼= T ′.

b) Two of the large vertices c1, c2, c3 have the same vertex angle sequences,
while the third one has a different vertex angle sequence. Without loss of generality,
we may suppose that c1 and c2 have equal, while c3 has a distinct vertex angle
sequence. By Lemma 3 we can determine all leaves for which c3 is the nearest large
vertex and the distance from c3. Thus, we can determine the maximal limb M3 at
c3 not containing other large vertices. If c3 is a peripheral vertex, then M3 contains
dc3 − 1 branches, otherwise, if c3 is the central vertex, it contains dc3 − 2 branches.
Thus, we can also determine whether c3 is a peripheral or the central vertex.

In case c3 is a peripheral vertex, by Lemma 4 we can determine the distance d
from c3 to the central vertex. Then we can also determine the distance D between
c1 and c2, as it is equal to the difference between the number of edges in T and
the total numbers of edges in limb M3, path between c3 and the central vertex and
branches from leaves for which either c1 or c2 is the nearest large vertex. Now, we
have that the following part of T is reconstructed (see Fig. 5).

Figure 5. Partial reconstruction of T when c3 is a peripheral vertex.

Denote it by T0 and let Tm be a supertree of T0 obtained by adding vertices of T
at distance at most m from either c1 or c2. Similar as in the proof of Theorem 1,
we can inductively prove that Tm is EA-reconstructible for all m � 0. Now T is
also EA-reconstructible as T = Tm0 for some m0 � 1, so that T is a unique graph
with the eigenvalues and angles of T ′, and thus it must hold that T ∼= T ′.
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In case c3 is the central vertex, we can determine the distance d between c3

and the closer peripheral vertex using the following

Lemma 3.2. Let R be a limb of a tree T at a vertex u containing du − m
branches, and let v be the nearest vertex to u, with dv �= 2, which does not belong
to R. The distance between u and v is EA-reconstructible.

Proof. Let l be the distance between u and v, and let Rk be the limb R with
m copies of a path Pk+1 attached at u, for 0 � k � l + 1. Then

w2k(u, T ) = w2k(u,Rk), for 0 � k � l,

while
w2l+2(u, T ) �= w2l+2(u,Rk).

Thus, we can determine l from R and the vertex angle sequence of v in T . �

We can also determine the distance D between c3 and the farther peripheral
vertex, as it is equal to the difference between the number of edges in T and the
total numbers of edges in limb M3, path between c3 and the nearer peripheral vertex
and branches from leaves for which either c1 or c2 is the nearest large vertex. Thus,
we have the following part of T , denote it by T0, reconstructed (see Fig. 6).

Figure 6. Partial reconstruction of T when c3 is a central vertex.

Peripheral vertices c1 and c2 have equal vertex angle sequences, so we may freely
choose how to denote the peripheral vertex closer to c3. Let Tm be a supertree of
T0 obtained by adding vertices of T at distance at most m from either c1 or c2.
Again, similar as in the proof of Theorem 1, we can inductively prove that Tm is
EA-reconstructible for all m � 0. The tree T is also EA-reconstructible, as T = Tm0

for some m0 � 1. Thus, T is a unique graph with the eigenvalues and angles of T ′

and so it must hold that T ∼= T ′.
c) Large vertices c1, c2 and c3 all have equal vertex angle sequences. Without

loss of generality, let c1 and c3 be peripheral vertices, c2 the central vertex, D the
distance between c1 and c2, d the distance between c2 and c3, and let d � D. For
nonnegative integer m and a vertex u of T , let Tm[u] be a subgraph of T induced
by the vertices at distance at most m from u.

We first prove that Tm[c1] ∼= Tm[c2] for each 0 � m � d by induction. For
m = 0 we have T0[c1] ∼= T0[c2] ∼= K1. Suppose that Tm0 [c1] ∼= Tm0 [c2] for some
m0 � d−1. Since m0 < D, we have that Tm0+1[c1] and Tm0+1[c2] are both starlike
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trees. It is easy to see that a starlike tree S is characterized by a sequence (sn)n�0,
where sn is the number of vertices at distance n from the center of S. Now

sm0+1(ci) = w2m0+2(ci, T ) − w2m0+2(ci, Tm0 [ci])

gives the number of vertices of T at distance m0 + 1 from ci for i = 1, 2. Since
Tm0 [c1] ∼= Tm0 [c2], we have that sm0+1(c1) = sm0+1(c2), and thus it follows that
Tm0+1[c1] ∼= Tm0+1[c2]. Continuing inductively, we conclude that Td[c1] ∼= Td[c2].

Let ∆ = dc3 − 1 and let, as in Fig. 7, m1 be the number of vertices at distance
d+1 from c1 and distance D+d+1 from c2, m′

1 the number of vertices at distance
d+2 from c1 and distance D+d+2 from c2, m2 the number of vertices at distance
d+1 from c2, distance 2d+1 from c3 and distance D+d+1 from c1, m′

2 the number
of vertices at distance 2 from c3, distance d+2 from c2 and distance D+d+2 from
c1, and m′′

2 the number of vertices at distance d + 2 from c2, distance 2d + 2 from
c3 and distance D + d + 2 from c1.

Figure 7. Structure of T in case c).

First, consider (2d + 2)-closed walks from c1 and c2, respectively. At c2 it is
equal to w2d+2(c2, Td[c2])+∆+m2, while at c1 it is equal to w2d+2(c1, Td[c1])+m1.
Thus, it must hold that m1 = ∆ + m2.

Now, consider (2d + 4)-closed walks at c1 and c2, respectively. Their numbers
must be equal and they can be divided into the following categories. At c1:

i) those belonging to Td[c1];
ii) those belonging to Td+1[c1], using a vertex from Td+1[c1] � Td[c1];
iii) those belonging to Td+2[c1], using a vertex from Td+2[c1] � Td+1[c1]. There

are m′
1 such walks.

At c2:
i) those belonging to Td[c2];
ii) those belonging to Td+1[c2], using a vertex from Td+1[c2] � Td[c2];
iii) those belonging to Td+2[c2], using a vertex from Td+2[c2] � Td+1[c2]. There

are m′
2 + m′′

2 such walks.
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iv) those belonging to Td+1[c2], using more than one neighbor of c3. There are
∆2 such walks.

Now, the numbers of type i) walks at c1 and c2 are equal, since Td[c1] ∼= Td[c2].
The number of type ii) walks at c1 and c2 are also equal, as we may construct a
bijection between the closed walks at c2 reaching one of ∆ neighbors of c3 and the
closed walks at c1 reaching fixed ∆ out of m1 vertices at distance d + 1 from c1,
and also between the closed walks reaching remaining m2 vertices at distance d+1
from c2 and the closed walks reaching remaining m2 vertices at distance d+1 from
c1. As a consequence we must have that the number of type iii) walks at c1 and
the types iii) and iv) walks at c2 must be equal and thus it holds that

m′
1 = m′

2 + m′′
2 + ∆2.

Therefore we have that

dc1 � m1 + 1 � m′
1 + 1 � ∆2 + 1 > ∆ + 1 = dc3 ,

which is a contradiction to the assumption that c1 and c3 have equal vertex angle
sequences. Thus, this case is impossible. �

Question. We have just proved that it is impossible that all three large vertices
have the same vertex angle sequences. While it is allowed by proof of case b), we
did not come across an example of a triple starlike tree having a peripheral and
the central vertex with the same vertex angle sequences. Does such a triple starlike
tree exist?
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