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ABSTRACT. If u(z) > 0 (|z| < 1) is a subharmonic function of class C? such
that Aw is subharmonic and if [ u(re®)dt (g > 1) is bounded when 0 <7 < 1,
then

/ (1 12)% 1 (Au(z))? dedy < oo.

In the case u = h? and ¢ = p/2 < 1, where h is harmonic, this reduces to the
Littlewood—Paley theorem. In the case 0 < ¢ < 1 we prove a theorem in the
oposite direction.

1. Introduction

Let D denote the open unit disk in the complex plane. For a function u defined
on D we write

1 27 .
I(r,u) = / u(re') dt
0

or
provided the integral is defined for all » < 1, and

I(u) = sup I(r,u),
o<r<1

where the value oo is permitted. In this paper we prove the following theorem.

THEOREM 1.1. Let u > 0 be a subharmonic function of class C?(D) such that
its Laplacian, Au, is subharmonic as well. If ¢ > 1 and I(u?) < oo, then

(1) [ a1 (Au@) dm(e) < €4 (1) = u(0)).

where Cy is a constant depending only on q.
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Here dm denotes the area measure in the plane.
An important special case of (1.1) is the Littlewood—Paley inequality [3]; name-
ly, if p > 2 and I(|h|P) < oo, where h is a real-valued function harmonic in D, then

(1.2) /D (1= |2))? 2 [Vul? dm < C, (I(|h[? - [R(0)]?)).

To obtain (1.2) from (1.1) we take u = h? and ¢ = p/2. The function u satisfies
the hypotheses of Theorem 1.1 because Au = 2|Vh|?.
Inequality (1.2) is usually stated in the weaker form

(13) /D (1= 2y~ VAP dm < G, I(BP) (p> 2).

The usual method of proving (1.3) is to use the Riesz—Thorin theorem. A quick
elementary proof is given in [6]; it is based on the Hardy—Stein identity and the
inequality |Vh(z)| < 2h(2)/(1—|z|) which holds when h > 0. An earlier proof based
on the Hardy—Stein inequality and some local estimates is due to Luecking [5]. Our
proof of Theorem 1.1 is similar to Luecking’s proof of (1.3) (see Lemma 2.2 and
3.1). However, some simplifications are made so that we can treat the case ¢ < 1
as well (see Theorem 4.1). This provides, in particular, a new proof of the reverse
Littlewood—Paley inequality which holds for harmonic functions when 1 < p < 2
and for analytic functions when 0 < p < 2. Moreover, a special case of Theorems
1.1 and 4.1 is the Littlewood—-Paley inequality for vector valued functions. More
precisely, inequality (1.3) remains true for p > 2 if we assume that h is a harmonic
function with values in €2, |h(2)|2 = Y hn(2)? and |VhA(2)]2 = 3 |Vh,(2)%. The
reverse inequality holds for 1 < p < 2.

2. Local estimates for Riesz’ measure

From now on we shall assume that « is an arbitrary nonnegative subharmonic
function defined on D. Then there exists a positive measure du on D, called the
Riesz measure of u, such that Au = dy in the sense of distribution theory. (If u is
of class C2, then du(z) = Au(z)dm(z).) There holds the formula

(2.1) I(r,u) — u(0) = % /D log % du(z) (0<r<1),

which can be deduced, for example, from the Riesz representation formula (see [4],
Theorem 3.3.6.)

LEMMA 2.1. We have
1 1
I(w) ~ u(0) = o /D log 7 ).

ProOOF. Write (2.1) in the form

(r,u) — u(0) = o- /D K () log 17 ),
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where K, (z) is the characteristic function of the disk rD. Since K, (z)log(r/|z|)

increases with r we have
1
lim (r,u) — u(0) = —/ lim K, (z)log T du(z).
r—1 27 D r—1 |Z|

And since I(r,u) increases with 7 we have I (u) = lirri I(r,u). The result follows. O
r—

LEMMA 2.2. Let ¢ > 1 and let p and p, be the Riesz measures of u and u?
respectively. Then
(2:2) HW(E)" < Cq pg(5E)
for any disk E such that 6E C D. The constant Cy depends only on q.

If E is a disk of radius R, then rE denotes the concetric disk of radius Rr.

ProOOF. By translation the proof is reduced to the case where E is centered
at 0. Then since p(E) = v((1/r)E), where v is the Riesz measure of the function
u(rz), we can assume that the radius of E is fixed. e.g., E = D with ¢ = 1/6.
Assuming this we use the simple inequalities

(I(r, u) — u(O))q < (I(r, u))q —u(0)?

and (I(r,u))” < I(r,u?), which hold because ¢ > 1, to deduce from (2.1) (applied
to u and u?) that

(2.3) i/ lo id(z)q<i/ log - dyuy (2)
' 21 S el M) T 2w fip BT
Putting r = 4¢ we get
(2.4) u(e=D) < C [ | d(o),

4eD

where we have used the estimates log(4e/|z|) > log2 for |z| < 2e and log(4e/|z|) <
1/|z|. Thus to prove (2.2) we have to eliminate |2|~! in the integral. To do this we
change the ‘center’ of (2.4) and we get

@D <C [ e —al ™ duy(2)
4eD,
for a € eD, where D, = {z: |z — a| < 1}. Since eD C 2¢D, and 4eD, C 5¢D we
have
WD)y <C [ |z—al " dpy(2).
4eD,

Now we integrate this inequality over eD with respect to dm(a) and use Fubini’s
theorem. This concludes the proof because

sup/ |z —a|™! dm(a) < occ.
zeD JeD
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3. Proof of Theorem 1.1
Theorem 1.1 is a consequence of the following.

THEOREM 3.1. Let u > 0 be a subharmonic function in D and let u be the
Riesz measure of u. If ¢ > 1 and I(u?) < oo, then there holds the inequality

(3.1) /D (1= [2) ™ (u(B= ()" dm < C,(I(u?) — u(0)7),

where e = 1/6 and
E.(z)={w: |lw—2z <e(l—|z|)}

If in addition v is C? and Aw is subharmonic, then
wWE.(2)) = / Audm > 1e?(1 — |2])*Au(z)
E.(z)

because of the sub-mean-value property of Au, and this shows that (3.1) implies
(1.2).

Proovr. It follows from (2.2) that
(3.2) /D (1 = o) " (u(Ex(2)))* dmC /D (1= )™ g (Fse (2)) dim(2).
Next we write
q(Ese = dpiq
1q(Bse(2)) /E @

and use Fubini’s theorem to conclude that the right hand side of (3.2) is equal to

[ duatw) | D ),

where G(w) = {z : |z —w| < 5¢(1 — |2|)}. Since z € G(w) implies |z| — |w| <
5¢(1 — |z|), whence 12| < (14 5¢)(1 — |z|), we have

/ (1= lz) " dm(2) < (1 + 5¢) m(G(w)) (1 — Jw])~*.
G(w)

And since (1+5¢)(1—|z]) < 1—|w| for 2z € G(w), we have m(G(w)) < C'(1—|w]|)?,
where C' = 7(5¢/(1 — 5¢))2. Combining the previous results we see that

[ =1 (B @) < €, [ (1= ) g ).
D D

This finishes the proof of (3.1) because of Lemma 2.1 and the inequality 1 — |w| <
log(1/[w]). .
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4. The case ¢ < 1

THEOREM 4.1. Let 0 < g < 1 and let u > 0 be a C?>—function such that ud
and Au are subharmonic. If [, D(1 —|z[)*?~!(Au)?dm < oo, then I(u?) < oo and
there holds the inequality

(4.1) T(u?) —u(0)? < Cq/ (1 = [2])* (Au)? dm.
D
Observe that, in contrast to the case ¢ > 1, the function u? need not be smooth.

ProOF. Fix ¢ < 1/6. Applying Lemma 2.2 to the pair u?, (u9)Y/9 we get,
because 1/q > 1,

pq(B:(2)) < Cy (N(EFJE(Z)))qa
where p, and p are the Riesz measure of u? and u. On the other hand

g B ( [ dm)
< C'(1 —|2])* sup{(Au(w))? : w € Es.(2)}.

The function (Au)? need not be subharmonic. Nevertheless, by a result of Hardy
and Littlewood [2] and Fefferman and Stein [1], it possesses a weak form of the
sub-mean-value property, namely

q C q
(4.3) (Bu(@) < /E (Aw)? dm,

where E C D is any disk centered at z, and C' depends only on ¢. Using (4.3) one
shows that

sup (Au)? < C7(1— |2])? / (Auw)? dm.
Eﬁs(z)

E5.(z)
It follows that

[ a1 (B dmz) < ¢ [
D

D

(1= 2[)?73 dm(z) / (Aw)? dm,

EGE (Z)

where C' depends only on ¢q. Hence, as in the proof of Theorem 3.1,
(4.4) [ 0= lehdi) <€, [ (1=l Auytdm.
D D

This implies that I'(u?) < oo because of Lemma 2.1 applied to u?.
In order to prove (4.1) additional work is needed. We rewrite (2.3) as

1 r a 1 r
= [ log L < — [ log L du(z).
(% /TD BT d"q(")> < 2 /m %8 17 9K(2)

/ loge|z| dpq(z) < Csup(Au)? < C'/ (Au)? dm,
eD eD

2eD

Hence
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where we have used (4.3). Now it is easy to show that (4.4) remains true if we
replace the left integral by

1 1 q q
3= | o8 Ty dig(2) = Tu®) —u(0)"
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