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ABSTRACT. In Section 1 we state the known theory of reproductive equations in gen-
eral. The key result is that every equation, having at least one solution, is equivalent
to some reproductive equation. In Section 2 we extend the notion of reproductive
equations to the class of equations E¢(z) which are solved by means of some given
equation, denoted by Eqi(g). In that case we also prove that such an Eg(z), having
at least one solution, is equivalent to some reproductive equation.

1. Reproductivity of an equation z = f(z)

Let A be a set (or a class) and Eq(z) an equation in z € A. Eq can be
understood as a unary relation over A. Let S be the set (class) of all solutions of
Eq(z). Then we have:

(1) (Vo € A)(Eq(z) & z € 9)

Let us assume that P is another set (class) and ¢ : P — S a surjection. Using such
P and a function ¢ formula (1) can be reformulated thus

(2) (Ve € A)(Eq(z) & (3p € P)z = 4(p))

In this case the formula z = ¢(p), where p is any element of P, gives all the solutions
of Eq(z), and accordingly we have the following definition:

DEFINITION 1. If (2) holds, then the formula
z = ¢(p), pis any element of P

is called a formula of the general solution of the equation Eq(z).
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Let us concentrate on the =-part of the formula (2), i.e., (Vz € A)(Eq(z) =
(3p € P)x = ¢(p)) which is equivalent to (Vx € A)(Ip € P)(Eq(z) = = = ¢(p)),
since p does not appear in the first part of the implication, i.e., in Eq(z). Using
the axiom of choice, we can introduce a new function ) : A — P such that:

3) (Vz € A)(Eq(z) = = = ¢(4(2)))
Let f: A — A be defined by f(x) = ¢(¢(x)). Then (3) transforms into:
(4) (Vz € A)(Eq(z) = = = f(z))

It is easy to see that (Vz € A)(Eq(z) & (3p € P)x = f(p)) is also true. So, the
formula:

(5) z=f(p), peA

is the formula of the general solution of Eq(z). But, since (4) is true, we say that
(5) is a formula of the general reproductive solution. The notion of a reproductive
solution appeared in 1919 in Léwenheim paper on Boolean equations [1]. In Presié
[1] we gave the following definition of a reproductive equation.

DEFINITION 2. Equation z = f(z) in © € A is reproductive iff the equality

(Vz € A) f(f(z)) = f(x) holds.

It is easy to see that:

LEMMA 1. Ifz = f(z) is a reproductive equation, then all of its solutions are
given by the formula (5).

ExXAMPLE 1. Consider the system of equations
(1) z=zUy, y=zNy
in 2,y € B, where B is a Boolean algebra. Let f : B2 — B2 be defined by:
If X = (z,y), then f(X)=(zUy,zNy)

Then (x1) transforms into X = f(X), (X € B?), which is easily seen to be repro-
ductive.

ExAMPLE 2. Consider the functional equation

(*2) d(z,y) = ¢(y,x)

in ¢ : R?> —» R. Let Func be the set of all functions ¢ : R?> - R and f : Func — Func
be defined by:

If X is ¢ then f(X) is the function (¢(z§;:§jrz>2yz))
$lzpltelye)
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Equation (*2) becomes X = f(X), which is easily seen to be reproductive. Indeed,
let X = ¢; then f(X) = ¢, where ¥(x,y) = (¢(x,y) + $(y,))/2. Moreover,

(z,y) (z,y)
FFX) =1(®) = (w(z,w;w(y,z)) = (¢>(z,y>+¢(y,w)1¢(w,y>+¢(y,w>)

(i) - () -

so f2=f.
The next important fact (see Presi¢ [1]) is the following theorem:

THEOREM 1. If Eq(z) has at least one solution in z € A, then it has an
equivalent reproductive equation.

Proof. Let S C A be the set (class) of all the solutions for Eq(z). It is sufficient
to define f : A — A thus:

If X € S, then f(X)=X;if X € AN S, then f(X) is any element in S

Tt is easy to see that the equality X = f(X) is reproductive and equivalent to
Eq(z).

We would like to point out that Theorem 1 was often a leading idea used in
solving many classes of equations (functional, Boolean, on finite sets, etc.). We
mention one such result concerning the so called linear homogeneous functional
equations on groups (see Presié [2], [3]):

a1(2)$(01(x)) + - - + an(2)$(0n(2)) = 0

where z € S (S given set); §; : S — S forms a group of order n, and a; are given
mappings from S into a given field F. The function ¢ : § — F' is unknown.

For this equation, an equivalent reproductive equation is effectively described
(see also Kuczma [1, p. 268]).

2. Reproductivity of an equation Eq(z) given by a formula
of the form (3¢ € B)(Eq,(0),z = f(z,0))

In mathematics there are many cases when a given equation Eq(x) is solved up
to some other equation, say Eq; (¢). In other words, Eq(z) is solved by means of
the equation Eq, (0).

ExAMPLE 3. Equation (z — 1)2 = 7 in z real can be solved by means of the
following equation Eq, (0) : ¢2 = 7. Namely, we have the equivalence

(x—1)>=7% (Jo € R)(Eq,(0), =1+ p)
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Similarly, equation (z — y)? = 7 in z,y € R can be solved using the same
equation Eq, (9). We have:

(z—y)*=7e (Fpe R)Fe€ R)(Eq,(0), y=p, z=p+0)
There is a ‘parameter’ p in the previous formula and a quantifier (Ip € R),
since equation x — y = p does not have a unique solution in z,y.

Bearing in mind this simple example we shall in general define the meaning of
these sentences:

z is an Eq, (o)-solution of the equation Eq(z).
Equation Eq(z) is solved by means of the equation Eq, (g).

Assume that B is some other set (class) with a unary relation Eq;. Further,
let P be another set (class).

DEFINITION 3. (i) Let 2 € A be determined by an equality of the form z =
u(o), where p: B — A is a certain function. We say that z is an Eq, (p)-solution
of the equation Eq(z) iff the following implication is true

(z = p(0),Eqy (0)) = Eq(=)

(ii) Equation Eq(z) in = € A is solved by means of the equation Eq, () iff the
following equivalence is true!

(6) Eq(z) < (3p € P)(3e € B)(Eq, (), = = ¢(p,0))
where ¢ : P x B — A is a given function.

We can see how natural is the previous definition if we consider the following
fact:

If (6) is true, then all the Eq, (p)-solutions of Eq(x) are determined by © =

¢(p, 0), where p € P is an arbitrary element and ¢ € B is any solution of

Eq, (0)-
According to this we introduce the following definition.

DEFINITION 4. If the equivalence (6) holds, then the formula z = ¢(p, 0),
where p € P is an arbitrary element and ¢ € B is any solution of the equation
Eq, (o), is called a formula of the general solution of the equation Eq(z) by means
of the equation Eq; (0)-

Notice that if Eq(z) has a unique solution, then P is superfluous and (6) be-
comes

Eq(z) & (3¢ € B)(Eq, (o), = ¢(0))
where ¢ : B — A is some function.

Concerning Definition 3 more examples follow. First, we notice that Example
3 can be extended to the case in Galois theory when one considers the question
whether a given algebraic equation is solvable by radicals.

1We can put (Vx € A) before the formula (6)
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ExaMPLE 4. In the class of all groupoids take equation gr(X) with the mean-
ing: X is a group. We do not know a general solution to gr(X). But various
representation theorems solve this equation up to some simpler equation. One such
theorem, the so called Cayley representation theorem, can be stated thus:

gr(X) & (3G)(G is a permutation group, X = G)
assuming that in some sense = (isomorphism) is an equality of algebras.

Similarly, the same is true for various representation theorems in many fields
of mathematics.

ExaMPLE 5. Consider the Pexider functional equation (for more on Pexider
equation see Krapez and Taylor [1])

(7) fl@+y) =g(x) + h(y)
where f,g,h : R — R are unknown functions. As is well known this equation
reduces to the Cauchy equation ¢(z +y) = ¢(x) + ¢(y). Indeed, from (7) we get:

(x1) 9(z) = f(z) — h(0), h(z) = f(z) — 9(0)
Equation (7) then becomes f(z + y) = f(z) — h(0) + f(y) — 9(0), i.e.
(x2)  f(@z+y)—g(0) — h(0) = (f(z) — 9(0) — ~(0)) + (f(y) — 9(0) — h(0))
Defining function ¢ by ¢(z) = f(x) — g(0) — h(0) equation (%2) transforms into the
Cauchy functional equation. If we introduce two constants by C; = ¢(0), Co = h(0)
then we have the following assertion.
(¥3) Any solution (f, g, h) of (7) satisfies the condition:

f(z) = ¢(z) + C1 + C2, g(z) = ¢(z) + C1, h(z) = ¢(z) + C2
where C7, Cy are some constants and ¢ is a solution to the Cauchy functional

equation.
This can be written down as

(x4) (Vz,y € R)f(z +y) = g(z) + h(y) =
(3C1, C2)(39)(Vz,y € R)[(z +y) = ¢(z) + 8(y), f(z) = ¢(z) + C1 + Co,
9(z) = ¢(z) + C1, h(z) = ¢(z) + C]
As is usual when we prove some implication like (x4), then we check whether

the functions in the consequence part of the formula do make a solution. In this
example this means whether the following equivalence is true:

®) flz+y)=g()+h(y)
(3C1, C2)(39)[o(z +y) = d(z) + ¢(y), f(2) = ¢(x) + C1 + Co,
9(x) = ¢(z) + C1, h(z) = ¢(z) + 3]
It can be easily checked that equivalence (8) is indeed true.

Next, we prove that this equivalence is of the form (6). First, equation f(z+y)
= g(z) + h(y) is Eq(X) in X € A where A is the set of all triples (f,g,h) of
real functions R — R. Further, let B be a set of all real functions and Eq, (o)
be the Cauchy equation? (Vz,y € R)¢(z + y) = ¢(x) + #(y). Let P be R? and

2¢ stands instead of p
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® : P x B — A be defined in the following way:
If p, denoted by (Ci,C5), is any element of P and ¢ € B, then ®(p, ¢) is the
triple (f,g,h) where f(z) = ¢(z) + C1 + C2, g(z) = ¢(z) + C1, h(z) = ¢(z) + C>

Using this notation (8) becomes

Eq(X) & (3p)(3¢)(Eq,(4), X = 2(p,¢))

which is of the form (6). Therefore (f,g,h) as given above is a solution of the
Pexider equation by means of the equation Eq; (o), i.e., the Cauchy equation.

Let us return to the general case i.e., to the equation Eq(x) for which is sup-
posed that (6) is true, i.e.:

(9) (Vz € A)(Eq(z) & (3p € P)(3e € B)(Eq, (), = = ¢(p,0)))
The =--part of (9) is equivalent to
(Vz € A)(3p € P)(Eq(z) = (3o € B)(Eq,(0), = = ¢(p,0)))

Using the axiom of choice we can define a mapping 1 : A — P such that

(+5) (Vz € A)(Eq(z) = (Je € B)(Eq,(0), = = ¢(¢(2),0)))

A new function f: A x B — A is defined by: f(z,0) = ¢(¢)(z),0). Then (*5)
transforms into:

(x6) (Ve € A)(Eq(z) = (Je € B)(Eq,(0), = = f(x,0)))

On the other hand, concerning <=-part of (9) we have the following implication
chain

(Vz € A)((3p € P)(3¢ € B)(Eqy(0), = = ¢(p,0)) = Eq(z))
= (Vz € A)(Yp € P)((3e € B)(Eq(0),z = ¢(p, 0)) = Eq(z))

The variable p is not free in Eq(z) (using a logical law for the quantifier (3Ip € P)).

= (Vz € A)((Je € B)(Eq,(0),z = ¢(¥(x),0)) = Eq(z)).

“Replacing p by ¥(z)” (using a logical law for the quantifier (Vp € P)).
Thus we have the following implication

(Vz € A)((3e € B)(Eqy(0), = = f(=,0) = Eq(z)).

Combining this implication and (x6) we obtain the following equivalence

(Vz € A)(Eq(z) & (3Ip € P)(Jo € B)(Eq,(0);z = f(p,0)))
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which states that the formula:
x = f(p,0), p € A, o € B {while g is a solution of Eq;(0)}

gives all the solutions of Eq(z) by means of the solutions of the equation Eq; (9).
Furthermore, since (x6) is true, we can say that this formula is reproductive.

Now we concentrate on the formula

(10) (o € B)(Eq,(0), = f(z,0)

the right-hand part of the implication (x6), which is understood as an equation in
z € A. In the sequel, whenever we give an z-solution, for instance zq, we shall also
specify a value go, as a corresponding ‘witness’ for the quantifier (3o € B). That
means that the pair < g, g9 > shall satisfy the conditions Eq, (g0),zo = f (20, 00)-
Now we define when formula (10) is reproductive:

DEFINITION 5. The formula (o € B)(Eq,(0),z = f(z,0)) is reproductive iff
the following condition

(Ve € A)(Ve € B)(Eq,(e) = f(x,0) = f(f(x,0),0)))

holds.
The reason for this definition is that like Lemma 1 we have the following fact:

LEMMA 2. If the formula (10) is reproductive, then all of its solutions by means
of the equation Eq, () are given by the following formula

(11) z = f(p,0)

p € A, o € B are any elements provided Eq, (o)

Indeed, if po € A, and g9 € B with property Eq, (o) are any elements, then z
defined by = f(po, 00) satisfies the formula (¢ € B)(Eq, (0),z = f(z,0)), since
we can take go as a witness for quantifier (3¢ € B) and the equality z = f(z, o)
reduces to the true equality f(xo,00) = f(f(%o,00),00)- Conversely, if z; is a
solution of (¢ € B)(Eq, (), = f(z,0)), then a certain g, is a witness for (Jp €
B), consequently the equality z1 = f(z1, ¢1) holds. This equality is an instance of
(11) when p = 21,0 = 01

It is important that we have a theorem similar to Theorem 1:

THEOREM 2. Let Eq(z) be an equation in x € A whish is solvable by means
of® Eq, (o), and which has at least one Eq, (g)-solution. Then there is a formula

(o € B)(Eqy(0),z = f(z,0)) (f:Ax B — A is some function)

3i.e., the equivalence of type (6) is valid
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which is equivalent to Eq(z) and reproductive in the sense of Definition 5.

Proof. Denote by S the set of all the Eq, ()-solutions of Eq(z). We define the
function f as follows:
If ¢ € S, then for all p € B such that Eq, (0), we define f(x,0) = x; for other ¢'s
f(z, o) is arbitrary. If x ¢ S, then for all p € B such that Eq, (o), we define f(z, o)
as some z' € S; for the remaining ¢'s f(x, p) is arbitrary.

First, we prove the equivalence:

Eq(z) & (3¢ € B)(Eq,(0), = = f(z,0))

The =-part. Let Eq(zo), i.e. 2o € S and go some element in B such that
Eq; (00). Further, by the definition of f, the value of f(zo, go) is zg. So: Eq;(00), %o
= f(®o, 00), which yields (3¢ € B)(Eq, (o), z0 = f(z0, 0))-

The <-part. Let for some go and z¢ be Eq;(00), 0 = f(z0,00)- According to
the definition of f we conclude that zy € S, i.e. Eq(zg)-

Second, we prove that f satisfies

(*7) f(f(z,0),0) = f(xz,0) whenever Eq, (o)

for all z € A, p € B. Indeed, let Eq; (0). Then:

1° If z € S, then f(x,0) =z and (x7) follows.

2° If x ¢ S, then f(x,p) =z, where z' € S so:
(i) f(f(z,0),0) = f(a',0) = 2" (since 2’ € §);  (ii) f(z,0) =o'
From (i) and (ii) (x7) follows.

Now, we can use Definition 5 and Theorem 2 to guide us in solving a given
equation Eq(z) by means of another given equation Eq, (g). Briefly, we follow the
following plan. We attempt to find a formula For with these properties:

For is a logical consequence of Eq(z)
For is equivalent to Eq(x)
For is reproductive in the sense of Definition 5.

However, comparing this idea with the idea from Example 5 used in solving
Pexider equation, it might seem that it is rather artificial. Returning to Pexider
equation we disprove this view.

The main step was the conclusion (¥3), stated as the implication (x4). But
was it necessary to introduce constants Cy, Cs2, which are just denotations for g(0),
h(0) respectively? We might say that this introduction was merely for psychological
reasons—therefore unnecessary. Without Cy, Cs formula (x4) would read:

(Vz,y € R)f(z +y) = g(x) + h(y)
= (38)(Vz,y € R)[¢(z +y) = ¢(x) + ¢(y), f(z) = ¢(x) + 9(0) + h(0)
9(z) = ¢(z) + 9(0), h(z) = ¢(z) + h(0)]
Denote this implication by P = () temporarily. The converse of this im-

plication is also true and moreover the part @) is easily seen to be reproductive.
Therefore, all the solutions (f, g, h) are given by:

f(@) = ¢(z) + G(0) + H(0), g(x) = ¢(x) + G(0), h(z) = ¢(z) + H(0)
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where ¢ is any solution of the Cauchy functional equation and G, H arbitrary
functions. Therefore, whether we prefer Cy, Cy to G(0), H(0) is just a matter of
taste.

I wish to express my thanks to S. Rudeanu who read this paper and made
many helpful suggestions.
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