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CLASSICAL INTEGRABLE MECHANICAL SYSTEMS
AND THEIR INTEGRABLE PERTURBATIONS

Vladimir Dragovicé

Communicated by Stevan Pilipovié

Abstract. Perturbation technic for constructing new integrable systems
which are close to the most celebrated integrable systems in classical mechanics
are developed. Analytical conditions for the periodicity of billiard trajectories with
the ellipsoid are given, generalizing the Cayley condition for the Poncelet Theorem.

1. Introduction

Several mathematical formalisms are used to describe the motion of mechani-
cal systems. The Lagrangian and the Hamiltonian approaches are among the most
important ones. In the theory of the Hamiltonian systems, the completely inte-
grable cases have a very important position. Their significance is stressed by the
fact that integrable systems occur so rarely both in reality, and in theory. Ac-
cording to their regular behavior, as it is stated by Liouville-Arnold’s theorem (see
Theorem 1, and also [1,2]), completely integrable systems serve in perturbation
theory, as the first step in investigation of close nonintegrable problems.

This paper is devoted to the perturbation technics of constructing new in-
tegrable systems as perturbations of the most celebrated integrable systems in
classical mechanics. It presents a part of the scientific activity in the Mathemati-
cal Institute SANU in the Seminar on Mathematical Methods in Mechanics from
1995 to 1997. based on the enthusiasm of Nikola Burié, Borislav Gaji¢, Bozidar
Jovanovi¢, Milena Radnovié,...

2. Basic notions of Hamiltonian mechanics

Hamiltonian formalism can be introduced briefly in a frame of the Poisson
geometry. Suppose we have a 2n-dimensional manifold N (in the natural systems
N =T*M) and a Poisson bracket defined on C*°(N):

{,} : C®(N) x C®°(N) - C*(N)
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with the well known properties of linearity, skew-symmetricity, and which satisfies
the Laibnitz and Jacobi rules. The system is described by a Hamiltonian function
H € C°°(N) (in the natural systems H = T + U is a sum of kinetic and potential
energy). The equations of motion are

(1) &= {z,H}

The definition of the first integral will be given in an analytical, geometrical and
algebraical language. Analytically, the first integral is a function F': N — R with
the property:

4 (Pa() = 0.

In a geometric manner F' is such that the vector field which induces the motion is
tangent to the surfaces F'~!(c), for all ¢ € R. Finally, the algebraic definition is: F'
is the first integral of the equations (1) if and only if

{F,H} = 0.

Specially, the Hamiltonian H is a first integral.

Definition; A Hamiltonian system (N27, H) is completely integrable if and
only if it has n functionally independent first integrals Fi,...,,F, which are in
involution:

{F;,F;}=0.

Let My = {z : Fi(z) = f;,i =1,...,m}. The Liouville-Arnold’s theorem (see
[1,2]) is the following;:
THEOREM 1. If (N?", H) is a completely integrable system then:
a) My is invariant under the Hamiltonian flow;
b) every component of My is diffeomorphic to T* x R"~*;

c) there are coordinates @1, . .., pr mod 27, Y1, - -, Yn_k on TF x R"* in which
the Hamilton’s equations on My take the form

Pm = Wm;,Ys = Cs; (w,c = const)

3. The billiard system within an ellipse

A billiard system describes a particle moving freely within some enclosure,
with the billiard low of elastical reflection at the boundary. That means that the
impact and reflection angles are equal.

The billiard system within an ellipse in R?

2 g
A
a+b
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is completely integrable. As it is well known, this system with two degrees of
freedom has, beside the energy integral, an additional integral

@ 9P (dy —ap)®
a b )

Fy=— —
0 + ab

We want to find a potential V' = V(z,y) such that the billiard system with a
perturbated Hamiltonian has the integral

(2) Fy =Fo + fo,
where fy is a function depending on the coordinates only:
fo = fo(z,y,2).

The function Fj remains unchanged under reflections since the perturbation is
chosen to depend only on the coordinates.

The equations of motion are
(3) ==V, ==V,
From the condition that Fy from (2) is an integral of equations (3) we have:

] 2yx
vy i

. z
F = -2V, -2 —
0& aVz Vv (xVy —yVo)+
20
+ =2 @V, —yVa) + foi+ fyy = 0
Comparing the terms with & and y we have:
2 2y
fo= aVz + E(’Z’Vy - sz)
2 2z

The compatibility condition f;, = fy, gives us the equation for V:

(4) AVay +3(yVe — aVy) + (y° — 2*)Voy + 2y(Vao — Vi) =0
where A = a — b. We look for solutions in the form of Laurent polynomials:
(5) V(z,9,0) =) ama(N)z™y"

Substituting (5) in (4) we get

(6) AMNG = (N + M) (Map—_2,m — NAp,m—2).
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We give a complete description of solutions in this class. For details see [7]. Similar
results for the cases of constant positive and negative curvature are given in [8].

Ezample 1. The simplest new potential is

A—22

‘/2(1-7y7 )‘) = )\y4

Ezxample 2. The example of the polynomial potential is

a-p

3 (z* +yh).

2
Wa(o,0,X) = f2° +ay® + 5 (@ — B)a*y* +

The extension of this method for the systems with more than two degrees of
freedom was given in [9]. The billiard system within an ellipsoid in R3

2 2 2
ar_+y_+z_:17 a<b<ec
a b c

is completely integrable. Starting from the following integrals

(xy —yz)? 12— 2i)?

Flzlt'2+
a—>b a—c
. -2 . -2
7 B =2 @9 —yE)” (2~ 2y)
(7) y =g
-_ -2 -_ n2
by @) (i 2)
c—a c—b

we are looking for a potential V' = V(z,y, z) such that the perturbated system has
integrals of the form

(8) Fi=F,+ f;

where f; = fi(z,y,2) depend only on coordinates.

The system we consider has more than two degrees of freedom. So, it is not
obvious that new perturbated integrals are still in involution. But we have the
following

LEMMA 1. If F; are given by (7) and F; from (8) are the integrals of the
perturbated system, then F; and F; are in involution.

Proof. Using the linearity of the Poisson bracket, it follows

{FL+ fi, o+ fo} = {1, B} + {F1, fo2} = {F2, fi} + {1, f2}-

We have {Fy, F>} = 0 and {f1, fo} = 0, by the assumptions. So, we need to prove

{F1, f2} = {F2, f}
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As fy depends on the coordinates only, it follows that

{F1, f2} = —((Fia, Fry, Fiz) , (2, £2, £2)).

Using the explicit formulae for F;, Fyy, Fi; from (7) and

. 2y
2 _
2x 2z
2
fy —2Vy+m(sz_wa)"‘m(zvy_sz)
2
2= 5 V-2V
f :2V$+—2y (yVy — 2Vy) + 22 (2Vy — 2V3)
e a—"b YVia—ec " i
2x
fy= m(mVy—sz)
2
fl=—"2 (aV. - 2V,)
a—c

after some computation we get the proof of the Lemma.

4. Potential perturbations of the Jacobi problem

One of the celebrated classical integrable system is the system of a particle
moving under inertia on the ellipsoid

It has an additional integral of motion, found by Ioahimstal

2 2 2 RS RS
z Y z z ¥ Z
I= +5+ —+—+=).
(F+55) (T+5+%)
Kozlov’s idea was to analyse whether the equations of motion under the influence
of a force with potential V:

i=2E - V,i=A v, z=22 -V,
a b c
have an integral F' of the form

F=I+],

where f is a function depending on the coordinates. From the condition F' = 0 we
can get the system:

2 2

z2  y? 22 a—>b y Ve z Vy T Y
(§+ﬁ+§y%:r %r“”77+($—ﬁy%+

Y (Voy _ Vea) 22y 2y
+ ( a b +ca2sz b2vz_0
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9) a2 b 2 be 2 b b ¢ b3 3
yz (Vo Vi ry B2y
be \ b c p2 *F 27"

22 (Vee Vi 2y yx _
+ ( c a )+bc2sz baQVyZ_O

Solutions of (9) in the form of Laurent polynomials
Vg, g,2) = D amnpa"y" 2
TZTL,”’MPZS

are given in the next theorem.
We will assume a # b # c.

THEOREM 2. [6] The general formula for the elements of the basic Laurent
polynomial solutions with Gmy0,—me—2 = & 18:

Amo+2k,2s,—mo—2—2(k+s) =

— (-1)° (3 +k- 1) o e—a)*c=b)* [T (mo + 2i)
= k bkas (b — a)k+s H:ZI % H;.::l(mo n 2])

where k < s, and mg + 2(k + s) < 0.

Proof. By putting the form of V into (9) we get a system of difference equa-
tions.

The proof follows from the next five lemmas.

LEMMA 2. The system with variables am—2 n.p, @mn—2,p ANd G n,p—2 15 SiN-
gular for arbitrary m,n,p,a,b,c.

Let us call the level of an element a, » , the sum m +n + p, and the degree
of an element a, » p of a fixed level the sum m + n.

LEMMA 3. Among the nonzero elements of a fized level if am pnp has minimal
degree then m =0 or n = 0.

LEMMA 4. If mg,p are such that mg # 0 and amq,,0,p 45 @ nonzero element of
minimal degree and of level k = mg + p for arbitrary a,b,c, then k = —2.

If mg # 0 then according to lemma 4 the nonzero elements are of level —2.
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LEMMA 5. (a) The coefficients with the first index equal mo are:

k .
k(e = a)* TTi_y (mo + 2i)
% Qmg,0,—mo—2

bk (b — a)* [T, 2i

Ao 2k, —mo—2—2k = (—1)

(b) The index mq is iven negative integer: mg = —2k, k € N.

We introduce the following function:
K(mg,2n)=1 K(mo+2,2n)=n n>2

and by induction

K(mo+2k,2n) = Y K(mo +2(k — 1),2s).
=k—

s 1

Some elementary combinatorics gives us
LEMMA 6. The function K defined above has the following expression:

n+k—1>

O
k

K(mo + 2k,2n) = (
Example 3. One of the obtained potentials obtained above is
_ a2 clc—a) ,
Va(z,y,2) =x (z + b(b—a)y ) :

By using the Levi-Civita criterion one can prove

Theorem 3. [16] The systems are integrable by the method of separation of
variables in the elliptic coordinate system.

5. Periodical trajectories of the billiard system

Analitical conditions of Cayley’s type for periodical trajectories have been
derived by Radnovié and the author ([17], [18]).

Suppose we have two conics given in the plane, and a polygon inscribed in one
and circumscribed about the other conic. Poncelet’s theorem [20] states that then
exists infinitely many such polygons. Cayley established an analytical condition for
determining whether there existed a polygon inscribed in one and circumscribed
about the other conic [20]. Griffiths and Harris derived Cayley’s theorem using
the analytical condition on a point to be of finite order in an elliptic curve group
structure [21].

One can consider the billiard system inside an ellipsoid in space of any dimen-
sion. The trajectory of that mechanical system in R? is tangent to d — 1 quadrics
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confocal with the outer hyper-surface [22]. Generalization of Poncelet’s theorem is
valid in d-dimensional case also: there exists a closed trajectory with d — 1 given
confocal caustics if and only if infinitely many such trajectories exist, and all of
them have the same period [22].

We found a generalization of Cayley’s theorem, i.e. the analytical condition on
a billiard trajectory within an ellipsoid in R? to be periodic, by modifying Griffiths’
and Harris’ ideas and applying them to isospectral curves of Veselov and Moser.
(The case d = 3 was treated in [17] and d > 3 in [18].) One of the consequences
of the result we obtained can be restated in a simple manner — there is no periodic
billiard trajectories within an ellipsoid in d-dimensional space with non-degenerate
caustics, with period less than d. If a trajectory is closed after & bounces, k < d,
then it is placed in one of the coordinate k-planes and can be examined as in the k-
dimensional case. Let us note that in the planar case, the condition above obtained
is not identical to the classical Cayley formula, although they are similar by their
form.

Veselov and Moser in [23] considered the ellipsoidal billiard as a system with
discrete time. They used the connection of the billiard within the ellipsoid (Az, z) =
1, in R? with the discrete Heisenberg XY Z model.

The isospectral curve, the basic tool of algebro-geometric integration, related
to the Heisenberg system is found in [9]. It can be shown that this curve is of the
form

d-1 d
I: 1/2—H —aZHu J?),
i=1 j=1
where J = diag(J1,...,Jq), J = A=z and ay,...,aq 1 are such that every segment

of the given billiard trajectory is tangent to the same d — 1 quadrics.

The sequence g can be uniquely recovered from the divisor sequence Dy, =
Dy + Py, — Py on the Jacobian variety on the curve I', where P,, corresponds to
the value p = oo and Py to pp = 0, A = (g, J ' qry1) *-

The connection between periodical billiard trajectories and periodic sequences
of divisors is described in the following lemma.

LEMMA 7. [17] If the billiard is periodic with the period n, then the divisor
sequence Dy, joined to the corresponding Heisenberg XY Z system is also periodic,
with period 2n.

By this lemma, by investigating when 2n(P,, — Fy) = 0 holds on the Jacobian
variety of the spectral curve I' we obtain the following

THEOREM 4. [18] The condition on billiard trajectory inside the ellipsoid
(J72z,z) = 1 in R?, with non-degenerate caustics (5), to be periodic with period
n>dis

Bt B, ... Bit1

Bni2 Bpy1 ... Bago <n—d+1,
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where \/(z — a1)...(x —ag_1)(x — JE)...(x — J2) = Bo+Biz+Boz®+. ... There
are no such trajectories with period less than d.

This is a sort of a generalization of Cayley’s condition. It is very similar, but
even in the case d = 2, not exactly the same as Cayley’s formula. The theorem 4
does not give a complete description of periodical billiard trajectories. For example,
it is obvious that there always exists a trajectory with period 2 — with both bounces
on the same coordinate axis.

THEOREM 5. [18)] If the billiard trajectory inside the ellipsoid (J2z,z) = 1
is periodic with period n < d, then all the bounces are placed in one of the coordinate
n-dimensional planes.

All periodic trajectories of the billiard system either satisfy the condition
from theorem 4 and have at least d bounces, or they are placed in a coordinate
k-plane. The analytic condition in the latter case can be obtained by appropriate
application of theorem 4.

6. Perturbations of the Chaplygin problem

The method of integrable potential perturbations can successfully be applied
to nonholonomic systems. The Suslov, Chaplygin and Veselov-Veselova problems
(see [2—5]) have been considered by Gaji¢, Jovanovié¢ and the author.

Nonholonomic systems are not Hamiltonian. In general, a nonholonomic
system does not have an invariant measure in an m-dimensional phase space, and
one need m — 1 functionally independent integrals for the complete integrability.

We are interested in integrable potential perturbations of the Chaplygin prob-
lem of a balanced, dynamically asymmetric ball (I; # I # I3) rolling on a rough
surface. The nonholonomic constraint is given by the condition that the velocity
of the point of contact is equal to zero. The equations of the motion in a potential
field with potential V () are [1,13]:

(10) k+ka:7x2—‘;, =7 Xw,

where k = Iw + ma®y x (w x 7) is the angular momentum of the ball relative to
the point of contact, a is the radius, m is the mass and I is the inertia tensor of
the ball relative to its center. The equations (10) have the invariant measure with

the density
1

V(ma?)=t = (v, (I + ma?E)~17)’

where E is the identity matrix. They always possess the following three integrals

M =

F = %(k’w) +V(’y), Fy = (k‘,’Y), F3 = (777)(: 1)
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Chaplygin considered the motion without the potential force. He found the fourth
integral Fy = (k, k), and solved the problem by quadratures [3].

We are looking for the fourth integral, in the form
~ 1
Fy = §<k7k) + F(7)-
The condition F;'4 = 0 is equivalent to the following system:

K1<av _6_V> OF  OF

8—7372 37 Y3 = 8—7372 - 8—7273
oV ov OF OF
11 Kol — A9 — — = T .
( ) 2 ( A V3 B3 ’Yl> o 3 B3 §a!
(- 20) =28, OF
3 ) 271 6717 = 87271 a1 V25

where K; = I; + ma?, i = 1,2,3. The first two equations in (11) are same as the
equations in the Suslov problem. We shall derive polynomial solutions. We have
that any polynomial solution should be of even degree in 73. Using the symmetry
in 7y, 72 and 73 of (11), we get that it should be of even degree in v1, ¥2 also.

THEOREM 6. The equations (10) of Chaplygin problem, for I # I, # I3, are
integrable for potentials V =73, arVar,(y|Ar, Br,CrL), where:

n+k m+k m._ o
(12)  Vap= > (( L )Cn+k_< . )dm+k)vf B

m+n+k=L
m, n, k>0

The corresponding fourth integral is Fy = %(k,k) + >, arFor(v|AL, B, CL),
where:

n+k m+k
Fyyp = Z (Kz( k )Cn+k - Kl( k )dm+k) N
m+n+k=L
m, n, k>0

c-s and d-s depend on Ar,Br,Cr by:

coi = (f) (1—i)(I = I;)A + (f__ll) (I - I)B

di = (f) (I — L,)iA + (f__ll) (I, — I;)B + (f) C.

Ezamples. i) For N = 2 the solution is the Klebsh potential

Va(v) = a17i + a2 + azvs, ai(Io —Is) + ax(Is — I) + as(f; — L) = 0.
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ii) For N = 4 the new integrable potentialis Vs(7) = Y asinjoryiiva’ 73,
k=2

agoo =co —dy = (2l — I3 —I1)A+ (I - I,)B - C,
aga0 =2 —do = (I — I3)A - C,

agos =2 —dy = (I + 21, — 3I3)A+ (Is — I,) B — C,
azeo =1 —dy = 2(Iy — I3)A+ (I — I)B — 2C,

azo2 = ¢1 — 2dy = 4(la — I3)A + (I1 — 21> + I3) B — 2C,
agzz = 2co —dy = 2(Iy + I, — 2I3)A + (I3 — I2) B — 2C.

Interesting generalizations of the Suslov’s problem were suggested recently by
Jovanovié [12].

7. L-A pair for the Kowalevskaya gyrostat in a magnetic field

Starting from a Reyman and Semenov-Tian-Shansky L-A pair for the Kowa-
levskaya top, we got an L-A pair for the Kowalevskaya gyrostat in a magnetic field
[19]. The system is given by the Hamiltonian

1
H=3 (M7 + M3 + 2M3 + 2yM3) — p; — 6.
The algebra is generated by M;, p;,d; and relations
{M;, M;} = €5 My, {M;,p;} = €ijkpr, {Mi, 65} = €100

THEOREM 7. The Hamilton’s system is equivalent to

where ) )
— P ;15— M_ *Pa/\+153
P4+ —i04 p3+ids -M
L) =i p - i id ) —py+id "
M+ Pa:\H 3 -T P+)‘ + +2)
p3+ids _ p—+id_
X M_ X T
and

where T = 2M3 + 7.

The resulting matrices have all the symmetries necessary for the procedure
of algebro-geometric integration.
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