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Abstract. The Open Coloring Axiom, OCA, (see [6]) is used to prove that RN
equipped with a natural uniform structure is complete, answering a question from

[3].

1. Cauchy nets

The Open Coloring Axiom, OCA, was introduced by Todorcevic in [6] in the
course of studying the Hausdorff completeness (i.e., gap spectrum) of the struc-
ture NV of all integer-valued sequences (see [6, Theorem 8.6], also [2, Chapter IV].
In this note we use the same axiom to deduce another, rather different, complete-
ness property of N¥. To express the new kind of completeness, we need to define
an abstract distance on the set RY of all sequences of real numbers. First let

NN ={g: N> N: 'l_i)mg(i)zoo}.

For g € NN let
U, ={{z,y) in RY : |z —y| < g + M for some fixed M € N}.
The symbol |z — y| < g + M is interpreted as pointwise inequality, namely as
|z(n) —y(n)| < g(n) + M for all n.
If 2,y are such that |z — y| is uniformly bounded by some fixed M € N, we write

x ~ y, and say that in this case z and y are equivalent. The following simple fact
explains this terminology.

LEMMA 1.1. (z,y) € U, for all g € N™N if and only if z ~y. O
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Therefore, Y = {A C (RN)? : A D U, for some g € NN} is a pseudouni-
formity on RY (see [Kel]), which can naturally be identified with a uniformity on
the quotient RY/ ~. Let us note that NV intersects every ~-equivalence class, and
therefore U can be consider as a pseudouniformity on this space. One can think of
the elements of index-set N™ as different orders of the infinity: Note that the set
U, gets finer (i.e. smaller) as the growth rate of g gets slower, and therefore only
the slow-growing functions from N™ matter in the study of ¢. Since this is exactly
the opposite from the way the structure (N, <*) is usually considered (see e.g.
[6]), let us define a transformation ®: NN — N™ by

®(f)(n) = max{k : f(k) <n}.

Recall that for z,y € RY and m € N we write
1. z <™y if 2(n) < y(n) for all n > m.
2.z <*yif z <™y for some m € N.
Then f <* g implies that ®(f) >* ®(g) and for every h € N™N there is some
g € N'™ such that ®(g) <* h. This fact shows that the slow-growing functions

behave the same way as the well-studied fast growing functions, and it will be used
later (see Claim 2.3.)

A Cauchy net in (RY,U) is a sequence of the form (z, : a € D) for some
directed set (D, <) such that for every g € N™ there is d(g) € D such that

(@0, zp) € U,

for all a,b > d(g) in D. This net converges to some z,, € RN if for every g € NN
there is @ € D such that (z,z) € U, for all b > a (see [Kel]). We say that a
uniform space (RY,U) is complete if every Cauchy net in this space converges.

The natural question whether the space (RY,%) is complete was raised by
Kaufhold in [3], and Watson [8] proved that under the Continuum Hypothesis
the answer is negative by constructing an {wi,w;)-gap one of whose sides is a
(necessarily divergent) Cauchy net. Then Steprans [5] proved that Proper Forcing
Axiom, PFA, implies that every Cauchy net in (RY,{) converges. The purpose
of this note is to prove that the Open Coloring Axiom, OCA, gives the same
conclusion. Since OCA is a consequence of PFA, this strengthens Steprans’ result
and also shows that the statement “Every Cauchy net in (RY,%) converges” does
not have any large cardinal strength.

I would like to thank Stevo Todorcevié for several remarks which have con-
siderably improved this note.

2. Cauchy nets under OCA
Let us first recall the statement of OCA (see [6, §8].

OCA: If X is a separable metric space and [X]? = Ko U K} is a partition
such that Ky is an open subset of [X]? = {{z,y} : # # y, z,y € X} then one of
the following applies:



148 Farah

(a) There is an uncountable Y C X which is Ko-homogeneous, i.e., [Y]? C K,
(b) X can be covered by countably many sets, each of which is K7-homogeneous
(X is o-K1-homogeneous).
Our proof of the following theorem should be compared with the proof of [6,
Theorem 8.7].
THEOREM 2.1. OCA implies that the uniform space (RN, U) is complete.

Proof. We need to prove that every Cauchy net in (RY,2/) converges. Let us
start by giving an alternative definition of the pseudouniformity ¢{. For g € NN
define a subset of RN x RY as follows:

U; = {<$7y) : |$ - yl < g}a
and consider the pseudouniformity U* = {A C (RY)? : A D Uy for some g € NN}
LEMMA 2.2. The uniformities U and U* coincide.

Proof. It suffices to note that

U,

9/2 g U; g Ug'

To see the left-hand side inequality, note that |z —y| < g/2+ M implies |z —y| <* g,
where k is large enough so that g(k) > 2M. For the right-hand side inequality,
observe that |z — y| <¥ g implies |z — y| < g + max{g(i) : i < k}. O

Fix a Cauchy net (z, : a € D). For g € NN pick d(g) € D such that

|Ta — | <* g
for a,b > d(g). For z € RY and g € N™N et
By(z) ={y: |z -yl <g}
Define a partition [N'N]?2 = Ky U K by letting {f, g} € K, if
Zq(f)(m) — Ta(g)(m) > 2f(m) + 2g(m) + 2

for some m € N. (OI' equiva]ently, {f,g} S Kl if Td(g) S B2f+2g+2($d(f))-) If
we consider N™ as a subspace of N™ x RN by identifying g € N™ with the pair
(9,%4(g)), then Ko becomes an open subset of [NTN]2.

Assume first that N™ can be covered by countably many K;-homogeneous
subsets. Since the poset (NN, >*) is g-directed, one of these subsets, call it #, is
cofinal in this poset (namely, for every g € NN there is g’ € H such that g >* ¢').
Consider the intersection

[ Bag+2(za(y))-

gEH
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We claim that this set is nonempty. To see this, it will suffice to prove that for
every m the intersection of family of intervals

Igm = [Ba(g)(m) — 29(m) — 2,245 (m) +29(m) +2] (g € H),
is nonempty. But by the K;j-homogeneity we have
[Za(r)(m) — za(g) (m)| < 2f(m) + 2g(m) + 4,

and therefore every two intervals from the family intersect, and by Helly’s theorem
every finite subfamily of this family has the nonempty intersection. By compact-
ness, the intersection of the whole family, (1, Ig,m, is nonempty for every m, and
therefore we can pick

Too € H ﬂ Ig,m = m B2g+2($d(g))‘

m=1geH geh

g€Eh

Towards proving that our Cauchy net converges to z.,, fix g € NN and find
g9' <* g/2—2in H. Then for every a > d(g') we have

|Too — Za| < [Too = Ta(gr)| + |Tagg) — Ta| < 29 +2<*g.

Now assume N™ can not be covered by countably many K;-homogeneous
sets. Since K is open, OCA implies that NN includes an uncountable Ky-homo-
geneous set, g¢ (€ < wy).

CLAIM 2.3. There is a g, in N'™N such that g, <* ge for all €.

Proof. Let ®:N™ — N™ be the function defined in the introduction. Pick
fe such that ®(fe) <* g¢. Recall that OCA implies that there is an f,, >* f¢ for
all £ (see [6, Theorem 8.7]. Then g, = ®(f,,) is as required. O

Consider functions z¢ = z4(5) (§ < w1). Since D is directed, for every &
there is ag > d(9¢),d(9w,), and by the definition of d(-) we have

|;L'§ - 'r“)l' < |$§ - mae| + |.'L'a5 - mwl' < 9ge + 9o, < 29&'

Let ng € N be such that |z — z,,| <™ 2g;. By going to an uncountable subset,
we can assume that ng = 72 and that [z¢(¢)] = [2,(¢)] = 5¢(4) for all i < 7. for all
¢ and some fixed i € N and 5:{1,...,2} = N. Therefore if m > i we have

|g(m) — zy(m)| < 2g¢(m) + 29, ()

for all £, < wi. Moreover, for m < @ we have |z¢(m) —x,(m)| < 2for all §,n < w1,
and therefore |z¢ — z,| < 2g¢ + 29, + 2, or equivalently, {g¢, 9,} € K1. But this is
a contradiction, and it completes the proof. O



150 Farah

3. OCA,

Our first proof of Theorem 2.1 used a strengthening of OCA which was ex-
tracted from Steprans’ proof [5]. Although it turned out that Theorem 2.1 already
follows from Todoréevic’s OCA, this axiom may turn out to be interesting in its
own right.

If X is a topological space, then
[X?=KJUK}?, neN

is a decreasing sequence of open partitions if every K§ is an open subset of [X]? (in
a natural topology induced by the topology on X) and K§ D Kg“ for all n.

OCA..: If X is a separable metric space and [X]? = K} UK, n €N, is a
decreasing sequence of open partitions then one of the following applies:

(a) X = U,en Fn, where each F, is K{'-homogeneous (in this case we say that

X is o-K7 -homogeneous).

(b) There is an uncountable Y C X which is covered by countably many KJ-

homogeneous sets (Y is o-KJ'-homogeneous) for every n.

Note that the requirement that sequence K§ is decreasing is, in some sense,
necessary, for if (;., K§ = 0 for some finite set s then clearly no uncountable set
can be simultaneously Kj-homogeneous for all i € F.

We do not know whether OCA,, (or its stronger version, see (b') below)
follows from OCA. We can consider a strengthening of OCA,, obtained when (b)
is replaced by:

(b') There is an uncountable Z C {0,1} and y, € X (a € Z) such that (recall

that A(a, () is the minimal n such that a(n) # B(n)):

Ala,
{ya;y,@} € KO ()

forall a,8 € Z.

If (b') is satisfied, then set Y = {y, : @ € Z} satisfies a strong form of (b),
because for every s € {0,1}™ the set

Yy ={ya:a€[s]}

is K§-homogeneous, and therefore Y is covered by 2" many K§-homogeneous sets
for every n.

The consistency of OCA,, or its stronger version defined above, can be
proved in the same way as the consistency of OCA (see [6]), by using the following
lemma instead of [6, Theorem 4.4].

LEMMA 3.1. Assume CH, let X be a separable metric space and let [X]*> =
KJUKT be o decreasing sequence of open partitions. If X is not o-K{ -homogeneous,
then there is a ccc poset P = P(X, K§) which forces (V')
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Proof. By using a diagonalization argument of [6, Theorem 4.4], we can find
an uncountable subset Y of X such that poset of finite Kj-homogeneous subsets
of Y is powerfully ccc (i.e. every its finite power is ccc) for every n. Define poset
P so that its typical condition is p = (F?, gP) = (F, s), where

1. F is a finite subtree of {0, 1}<N,
2. g is an injection of top-nodes of F' into Y

3. {g9(s),9(t)} € KOA(S’t) for every pair s,t of distinct top-nodes of F'.
The ordering on P is defined by letting (F?, gP) < (F'9,g?) if
4. FP D F? and ¢gP(t) = g?(s) whenever s C t.
To see that P is ccc, fix (F¢, ¢¢) (€ <wi) in P. We can assume that F¢ = F
for some fixed tree F' and all £&. Let 7 be the height of F' and let t1,...,t; be
its top-nodes. Finite sets {g%(t1),...,9%(t;)} can be considered as conditions in

k-th power of a poset of finite KJ-homogeneous subsets of Y. Since this poset is
powerfully ccc, we can find £ < 7 such that

{9°(ta), 9" (t:)} € K¢

for alli = 1,...,k. Now define an extension (F, g) of {F, g*) and (F, g") as follows:
Let F' be the end-extension of F obtained by adding nodes #$ and ¢? above each t;,
so that ¢} (i <k,j =¢&,n) are the top-nodes of F. Define g by letting

g(t5) = g°(t:), for(=¢mandi=1,...k.

The choice of 7 assures that A(tf,t;’) > n and therefore condition 3. is satisfied.

Therefore (F, g) extends both (F¢,¢%) and (F", g"), and poset P is ccc.
If G is a P-generic filter, let Yo = {gP(t) : p € G}, and for y € Y let

ag(y) = U{t € {0,1}<N: g?(t) = y for some p € G}.

Note that, by 4., the set on the right-hand side will be a branch (infinite, by
genericity) of {0,1}<N, and therefore Zg = {ag(y) : y € Y} is a subset of a
Cantor space. If p is a condition in P which forces Y to be uncountable; then p
forces that Zg and Yg satisty (b'). O

Remark 3.2. One of the reasons why can OCA be considered as a natural
axiom is the fact that it has a definable version (see [TF], [Fe]). Let us note that a
definable version of OCA, is also true. Namely, if A is an analytic subset of some
Polish space and {KJ} is a decreasing sequence of open partitions of [A]?, then
either A is o-Kf-homogeneous or there is a continuous embedding g of a Cantor

space into A such that {g(a),g(8)} € K()A(a’ﬁ) for all distinct a, §.
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