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Abstract. Let M be a smooth compact manifold of dimension m with
smooth, possibly empty, boundary M. If g is a Riemannian metric on M and
if V is an affine connection, let D = D(g, V) be the trace of the normalized Hessian;
if 8M is empty, then we impose Dirichlet boundary conditions. The structures (g, V)
arise naturally in the context of affine differential geometry and we give geometric
conditions which ensure that D is formally self-adjoint in this setting. We study the
asymptotics of the heat equation trace; we have that am (D) is an affine invariant.
We use the asymptotics of the heat equation to study the affine geometry of affine
hypersurfaces.

§0 Introduction

Let M be a smooth compact manifold of dimension m > 2 with smooth,
possibly empty, boundary M. Let V be a Ricci symmetric, torsion free connection
on the tangent bundle of M. Let g be a Riemannian metric on M. Let D be the
trace of the normalized Hessian defined by g and V; see §1.3 for details. If the
boundary of M is non-empty, we impose Dirichlet boundary conditions; it is also
possible to use suitable modified Neumann boundary conditions. Let a,(D) be the
coefficients in the asymptotic expansion of the heat trace, see §1.4 for details. In
[2], we showed that if two connections V and V are projectively equivalent and if

two metrics g and § are conformally equivalent, then a,,(D(g,V)) = an(D(g, V)).

Here is a brief outline to the paper. In §1, we shall present a brief review
of results from [2] and [3] which we shall need. In §2, we review affine differential
geometry. We define the metric g and the two torsion free Ricci symmetric tensors
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1V and 2V which are associated to a relative normalization {z,X,y} of a non-
degenerate hypersurface. The operators D(g,V) for V =1V or for V = 2V need
not be self-adjoint. In §3, we study conditions on the hypersurface being studied
to ensure that these operators are self-adjoint. In §4, we use the invariants of the
heat equation to define invariants of affine differential geometry. In §5, we study
the spectral geometry of the Gauss map.

§1 Heat equation asymptotics

1.1 Notational conventions. We adopt the following notational conventions.
Let Greek indices v and p range from 1 through m and index local coordinate
frames for the tangent and cotangent bundles of M; let Greek indices o and g
range from 1 through m — 1 and index local coordinate frames for the tangent
and cotangent bundles of the boundary. Let Roman indices ¢ and j range from
1 through m and index local orthonormal frames for the tangent and cotangent
bundles of M; let Roman indices a and b range from 1 through m — 1 and index
local orthonormal frames for the tangent and cotangent bundles of OM. We shall
assume 0, is perpendicular to the boundary; for the moment we do not assume
that it is a unit normal vector field. We adopt the Einstein convention and sum over
repeated indices. We shall assume the coordinates are chosen near the boundary so
that gom = 0; this normalization is preserved by conformal rescaling. Let I'y and
I'y be the Christoffel symbols of the connection V and of the Levi-Civita connection
determined by g;

Vo,0u =Tv,,°0, and 9V, 0, =Ty ,,°0,.

The difference © of these two connections is tensorial. Since the two connections
are torsion free we have

0,,° :=Iv,,” —Ty,,,7 satisfies ©,,” = 0,,°.
Let L be the second fundamental form along the boundary of the metric g;
Laog = (°V5,08,0m) = —30mZagp-
We impose Dirichlet boundary conditions on all operators henceforth;
domain(D) = {f € C°*(M) : flonr = 0}.

1.2 Projective equivalence. Let TM, TM* and S?2M C T*M ® T*M be the
tangent, cotangent and symmetric 2 cotensor bundles over M. We say that two
metrics § and g are conformally equivalent if there exists a smooth function ¢ on M
so that § = e2¥g. We say that two connections V and V are projectively equivalent
if there exists a smooth closed 1-form
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6 =6(V,V) so that:
(Vu — Vau)v = 0(u)v + 0(v)u.

We note that two connections are projectively equivalent if and only if their un-
parametrized geodesics coincide. If V is a torsion free connection on T'M, let

Ry (u,v) : w = (V4 Vy = Vo Vy — Vi p)w, and
pv (U, w) := —tr(v = Ry ((u,v)w)

be the full curvature tensor and the Ricci tensor of the connection V. A connection
is said to be Ricci symmetric if py (u,w) = py(w,u) for all tangent vectors u and
w; we restrict to torsion free Ricci symmetric connections henceforth.

1.3 The Hessian. The Hessian Hy is a second order operator from the space of
smooth functions on M to the space of smooth symmetric 2 tensors on M which is
defined by the equation:

(Hv f)(u,v) := u(v(f)) = Vuo(f).

If w =w,,dz” odz" is a symmetric 2 tensor, let try w := g"*w,, be the contraction
of w. We contract the Hessian and normalize by adding a suitable multiple of the
Ricci tensor to define a second order operator D = D(g,V) of Laplace type on
C™®(M):

Df := —tr,{Hv(f) + (m—1)"'fpv}.

Although D need not be self-adjoint in general, it satisfies an important transfor-
mation rule. Let § = e2¥g be a metric which is conformally equivalent to g and let
V be a connection which is projectively equivalent to V. Choose a local primitive ¢
so d¢p = 6(V, V). We refer to [2, Lemma 2.1] for the proof of the following identity:

D(3,V) = e ?¥t?D(g,V)e °.

1.4 Heat equation. The fundamental solution u(z;t) = e *P¢(x) of the heat
equation satisfies the equations:

(01 + D)u(z;t) =0, u(z;0) = ¢(z), and u(y;t) =0 for y € OM.

The operator et for t > 01is trace class on L2(M). Ast | 0, there is an asymptotic
series of the form:
trpz(e ) ~ Z an(D)t=m)/2,
n>0

The coefficients a,, (D) are locally computable invariants which will comprise the
focal point of our discussion. Let dz = dz(g) and dy = dy(g) be the Riemannian
measures on the interior of M and on the boundary of M. We refer to [2, 6] for
the proof of the following result:
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1.5 Theorem.

(1) Let D be an operator of Laplace type. There exist local invariants a,(x, D)
defined for x € M and a’¥(y, D) defined for y € M so that we have
an(D) = [y, an(x,D)dz + [,,, a’*(y, D)dy. If n is odd, then the interior
invariants an(z, D) vanish.

(2) Let g and g be conformally equivalent metrics. Let V and V be projectively
equivalent torsion free Ricci symmetric connections. Then we have that

am(D(ga V)) = am(D(g7v))

To describe the local formulae for the invariants of Theorem 1.5, it is conve-
nient at this point to express the operator D invariantly. We refer to [2], [6] for
the proof of the following assertion.

1.6 Lemma. Let D = D(g,V). Let © =V —9V.

(1) There exists a unique connection Vp on C*®(M) and a unique function
E € C*(M) so that D = —(try(V%) + E).

(2) The connection 1 form wp of Vp is given by wp 5 :== —1g,59"70,,".

(3) We have E := (ml,l)!]””l)v,uu — ¢"*(Ouwp,y + WDWwwp,y — WD,eLg0u”)-

Let e,, be the inward unit normal vector field on the boundary of M. Let
Rijki, pij := Rirkj, and 7 := p;; be the curvature tensor, the Ricci tensor, and
the scalar curvature of the Levi-Civita connection. Let PQ be the curvature tensor
of the connection PV. We refer to [3, Theorems 1.1 and 1.2] for the proof of the
following Theorem:

1.7 Theorem. Let M be a manifold with smooth boundary. Adopt the notation
of Lemma 1.6.

ao(D) = (4m)=™/2 [, da.

() (D) = —;(@dm)=(m=0/2 [ dy.

(3) ax(D) = §(4m) ™/ 2{[,,(6E + 7)dx + [5,,;2Laady}.

(4) a3(D) = — g4, (4m)~(m=V/2 [ (96E + 167 — 8pmm + 7LaaLus
—10LqpLas)dy.

(5) as(D) = 555 (4m)~™/2{ [,,(607E + 180E> + 3002 + 572 — 2p* + 2R?)dx

+ [0y (—180€(E) = 30, (7) + 120E Ly + 207 Lag — 4pmm Ly
_12Rambm ab + 4Rabchac + 21 LaaLbchc - LabLachc
+ 21 LabLbcha)dy}-

We note that information concerning the invariants as is available; see [4] for
details.
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82 Operators defined by Affine Differential Geometry

2.1 Affine differential geometry of nondegenerate hypersurfaces. We refer

o [1], [5], [8], [9], [11], and [13] for further details concerning this material. Let A
be a real affine space which is modeled on a vector space V' of dimension m +1, and
let V* be the dual space. The tangent space and cotangent space at a point a € A
are modeled on the vector space V and the dual vector space V*, i.e. ToA =V
and T) A =V™*. Let (-,-) : V* x V — R be the natural pairing between V* and V.
Let = be a smooth immersion of M into A. Let

C(M)p = {X € V* : (X, dz(v)) = 0,Yv € TpM™)}

be the conormal space at a point P € M; let C(M) be the conormal line bundle
over M. We assume that C' (M) is trivial and choose a non-vanishing conormal field
X on M. We say that the hypersurface (M) is regular if and only if there exists
a conormal field X such that rank(X,dX) = m + 1; if this condition is satisfied for
one non-vanishing conormal field, it is satisfied for every non-vanishing conormal
field so this notion is affinely invariant. We assume (M) is regular henceforth;
this implies that X is an immersion from M to V* such that the position field X is
transversal to X (M). Define y = y(X) : M — V by the conditions (X,y) = 1 and
(dX,y) = 0. The triple (z, X, y) is called a hypersurface with relative normalization.
Note that y need not be an immersion.

The relative structure equations given below contain the fundamental geo-
metric quantities of relative hypersurface theory; two connections !V and 2V, the
relative shape (Weingarten) operator B, and two symmetric forms g and B. Let
AV be the flat affine connection on .A. We have:

dy(v) = —dz(B(v)), (Weingarten equation)
AV dz(v) = dz(*Vv) + g(v, w)y, (Gauss equation)
AV dX (v) = dX (2V,v) — B(v,w)X. (Gauss equation)

We shall assume that the metric g is positive definite henceforth; this means that
the immersed hypersurface z(M) is locally strongly convex. We will also assume M
to be compact; if the boundary of M is empty and if M is simply connected, then
M is a hyperovaloid. The relative shape operator B is self-adjoint with respect to
g and is related to the Weingarten form B by the identity:

N

B(v,w) = g(B(v),w) = g(v, B(w)).

We define a (1,2) difference tensor A, a totally symmetric relative cubic form A,
and the Tchebychev form T as follows:

A=1v-2?V), A(v,w, 2) := g(A(v,w), 2), and T'(2) := L try(A(z,-)).

Let ¢’ denote multiple covariant dlfferentlatlon with respect to the Levi- Clv1ta
connectlon 9V. The Tchebychev tensor T has the symmetry property T;. G = TJ i
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see [12] for further details. Both the induced connection !V and the conormal
connection 2V are torsion free Ricci symmetric connections on TM. They are
conjugate relative to g, i.e.
LV +2V) =9V.

We call the triple {1V, g,2V} a conjugate triple. Let A be the difference tensor
defined above. We then have !V =9V + A and 2V =9V — A. Let H := m™'B;;
be the normalized mean curvature and recall the notation for the Ricci tensor from
section §1.2. We have:

pmy =mHg — B, poy = (m —1)B, and
trg(pry) = try(pey) = m(m — 1)H.
2.2 Definition.

(1) The relative support function ¢ with respect to zy € V is given by g =
—(X,x — zp). If b € V, define a generalized spherical function F := (X, b).

(2) A relative normalization is said to be equiaffine if the Tchebychev form
T vanishes. A nondegenerate hypersurface with equiaffine normalization
is called a Blaschke hypersurface. We denote the support function of this
geometry by o(e).

(3) Consider a non degenerate hypersurface x : M — V such that its position
vector is transversal. Then y(c) := —z is called the centroaffine normal.
Following Nomizu we call such a hypersurface together with its centroaffine
normalization {X (c),y(c)} a centroaffine hypersurface. The associated ge-
ometry of {z, X (c),y(c)} is invariant under the group GL(n + 1,R). Then

R N I m + 2
B:=B(c) = g(c) = g, mH(c) =m, and T(c) = ———dlg|e(e)].

Recall that z is a proper affine sphere with center at O € V if and only
if T(c) = 0. For a locally strongly convex hypersurface we choose the
orientation such that p(e) > 0.

2.3 Operators of Laplace type defined by relative normalizations. The
connections 1V and 2V determined by a relative normalization (z, X, y) are torsion
free Ricci symmetric connections. We assume the associated metric g is positive
definite and use the construction described in §1.3 to define operators of Laplace
type 'D and 2D. These operators and their spectra are not affine invariants of
the embedding z since they depend on the relative normalization chosen. How-
ever, Theorem 1.5 shows that the coefficients a,, where m := dim(M) are affine
invariants. To study these invariants, we recall some notations and results from [2].

2.4 Lemma. Let ¢; = 1 and let e = —1. We adopt the notation of Lemma 1.6.
(1) We have Q("D) = 0, ©("'D) := V — 9V = €, 4, w("D) = —ie,mT, and
E("D) =mH — %m2|T|3 + %ermﬁ;z-; herer=1,2andi=1,...,m.
(2) Let 9D be determined by the Levi-Civita connection associated to the metric
g. Then Q(*D) =0, ©(YD) =0, w(YD) =0, and E(¥D) = —L+7,.

m—
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We use Lemma 2.4 and Theorem 1.7 to determine the heat equation asymp-
totics in this setting:

2.5 Theorem. Let M be a manifold with smooth boundary. Let {z,X,y} be a
relative normalization of a regular embedding x. Assume the associated quadratic
form g is positive definite so M is strictly convex.

(1) ao("D) = (4r)~™/2vol(M).

(2) a1("D) = —i(w)%m*l)/?vo](aM).

(3) az("D) = (4m)~™/2 [ {L7y + mH — tm?|T|2 + Le,mTy;}da
+1(4m)=™/2 [, 2Lqqdy.

(4) a3("D) = —50 (4m)~(m=V/2 [ {96(mH — tm?|T|2 + Le,mTy;)

+167; + 8Ry amam + TLao Lty — IOLGbLab}dy.

(5) as("D) = (4m) "™/ ks [, {607, (mH — m?|T2 + Lem ;)
+180(mH — 1m?|T|2 + Le;mTi;)?
+60(mH - %m2|T|§ + %ermfi;,-);jj
+127g 51 + 5Tg2 - 2|P9|§ + 2|Rg|§}dz’
+ a5 (4m) ™2 [0 {=120(mH — m?|T|2 + SeymTyi)im
—1874;m + 120(mH — m?|T2 + Le,mTyi) Lag
+2OTgLaa + 4Rg,amameb - 12Rg,ammeab + 4Rg,abchac + 24Laa:bb

+%LaaLbchc - %LabLachc + %LabLbchady}-

§3 Affine geometries where the operators !D and 2D are self-adjoint
We begin our study with the following result:

3.1 Theorem. Let M be a manifold with smooth boundary. Let {z,X,y} be a
relative normalization of a regular embedding x. Assume the associated quadratic
form g is positive definite so M is locally strictly convex.

(1) The operator ' D + 2D is self adjoint.

(2) Let = be a hyperovaloid and let {z, X,y} be a relative normalization. The
following assertions are equivalent:

2-a) The operator ' D is self-adjoint.

2-b) The operator 2D is self-adjoint.

2-¢c) We have'D =2D.

2-d) The Tchebychev tensor T' vanishes identically.

(3) The Tchebychev tensor T vanishes identically if and only if the relative
normalization {z, X, y} is equiaffine.

(4) We have the identity: [,,(f -*Df — f-*Df) = [,,(f -2Df — f-2Df).
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Proof. Let A, be the scalar Laplacian defined by the metric g. Since 1V =9V + 4,
since 2V =9V — A, and since T = tr, A, we see that

'Df=Ayf —mT"f, +mHf and °Df = A, f + mT" f., + mH .

Thus 'D + 2D = 2A, + 2mHf. Since 2mH is a term of order zero and 2A,
is self-adjoint, the first assertion follows. Let Vf := T"f,,; this operator is self-
adjoint if and only if the tensor T' vanishes. Assertion (2) now follows. We refer to
Proposition 4.13 in [8] for the proof of assertion (3). Assertion (4) follows since the
operator ' D + 2D is self-adjoint. O

We use similar techniques to prove the next result

3.2 Theorem.
(1) Let {z,X,y} be the Euclidean normalization. Then the following assertions
are equivalent:
1-a) The Gauss-Kronecker curvature K = K,, is constant.
1-b) We have !D =2D.
1-¢) The operator ! D or the operator 2D is self-adjoint.

(2) Let z be a compact centroaffine hypersurface with nonempty boundary.
The following assertions are equivalent:

2-a) We have'D =2D.
2-b) We have that 'D or 2D are self-adjoint.
2-c) We have that x is a proper affine sphere.
(3) Let x be a compact centroaffine hypersurface without boundary. Then the
following assertions are equivalent:
3-a) We have'D =2D.
3-b) We have that 1D or 2D is self-adjoint.
3-c) We have that x is a hyperellipsoid.

Proof. For ahypersurface with Euclidean normalization non-degeneracy means that

K=K,#0and T = —5-dlIg|K|;
see [13], (6.1.2.1) for details. Thus if K is constant and non-zero, we have T
vanishes identically, ' D = 2D, and these operators are self-adjoint. On the other
hand, if K # 0 and if one of the other conditions is satisfied, then necessarily K is
constant. This proves the first assertion.

If the hypothesis of (2) are satisfied, one can see that T(c) = 0 so that
therefore x is a proper affine sphere.

If z is compact without boundary a proof like that in case (2) together with the
well known result of Blaschke and Deicke [8, p. 121] imply the third assertion. O
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§4 Spectral invariants of affine geometry

In this section we use the heat equation asymptotics of the operators "D
(r =1,2) and 9D on hypersurfaces M with non-empty boundary immersed in an
affine space A to study their geometry.

Recall that if z is a compact, locally strongly convex Blaschke hypersurface,
then 'D = 2D. We use Theorem 2.5 to establish the following Lemma:

4.1 Lemma. Let x be a compact, locally strongly convex Blaschke hypersurface
with boundary. Then we have

(1) ao(D) = (47)~™/?vol(M).

(2) a1(D) = —1(4m)~(m=D/2yol(OM).

(3) az(D) = %(47r )=/ [3 (14 + 6mH)dz + 2[5, Laady}.

(4) a3(D) = — 547 (4m)=(m=0/2 [ {96mH + 1675 + 8Rg,amam + 7LaaLsb
—IOLabLab}dy.

(5) asa(D) = (360)~*(4m)~™/2{ [,,(60mHT, + 180m>H? + 60mH,;; + 127k
+5Tg2—2|pg|§+2|Rg|§)d:v+faM(—120mH;m—18Tg;m+120mHL,w
+207y Lo, + 4Rg,amamL —12R ambmLiap + 4Rg qpcv Lac
+ 2 LaaLopLeec — B LapLapLee + 32 Lap LycLea)dy } -

We can use this Lemma to draw the following conclusion:
4.2 Theorem. Let x be a compact, locally strongly convex Blaschke hypersurface
with boundary. Then:

(1) Let (x,X,y) be a relative normalization. Let ¢(m) := 384(4x)(m—1)/2,

-a) If m < 5, then ¢(m){a3(D) — az(?D)} < [5,,96mJ.
1-b) If m =5, then ¢(m){a3(D) —a3(!D)} = [;,,96mJ.
-¢) If m > 5, then c¢(m){a3(D) — az(? D)} > [,,,96mJ.

(2) Equality in assertions (1-a) and (1-c) holds if and only if the normalization

is equiaffine.

(3) If the normalization is equiaffine, then a3z(D) —a3(9D) > 0. Equality holds

if and only if [, J =0.

Proof. For the operator 9D, we have © = w =Q =0 and Ep = ﬁrg. Thus we
may use the formulas given previously to see that

a3( faM{ 16(5+m) Tg + SRg amam T 7LaaLbb 1OLabLab}
c(m)(as(D) —as(? faM —96(mH — 1m?|T?)}

We use the Theorema egregium in relative geometry (see [13], 4.12.2.2) to see that

k=J+H~- 2T ie. 7, =m(m —1)(J + H) —m? T
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We combine these two displays to see that

c(m)(as(D) — a3(? D)) = 96m [, {J + FE=PT2}.
As the metric g is positive definite, we have that J > 0 and |T|2 > 0; the first

assertion holds. Recall that T' = 0 characterizes an equiaffine normalization. The
second assertion now follows as J > 0. O

4.3 Corollary. Let x be a compact, locally strongly convex Blaschke hypersurface
with boundary. Assume that m > 3, that the affine mean curvature H is constant
on M, and that a3(D) = a3(?D). We may then conclude that z(M) lies on a
quadric.

Proof. The previous result shows that faM J = 0. The result now follows from
Theorem 3.1.6.5 in [8]. O

4.4 Remark. One can prove an analogous result assuming H; := H # 0 and
the quotient g—f is a non-zero constant on M where H, is the r-th (r = 1,...,m)

normed elementary symmetric function of the affine principal curvatures (apply
3.1.6.8 in [8]).

4.5 Volumes of convex bodies. Let M be a compact Blaschke hyperovaloid
without boundary. If f, f# are smooth functions on M, then Theorem 3.1 implies
the following integral formula for the operator D = 'D = 2D:

(1) [ D(ff#) = [{fDf# + (gradf,gradf#)} = [{f#Df + (gradf,gradf#)}.

Let ¢ and F be as defined in §2.2. We then have Do = 2Dp = m and DF = 2DF =
0 on M. We refer to [13, §4.13] for details. Recall that, for a hyperovaloid and for
any choice of basepoint zg € V, the volume of the convex body K enclosed by M
is given by

vol(K) = 45 [y 0

4.6 Theorem. Let x : M — A be a Blaschke hyperovaloid. Then

(1) We have m [ Hg* = m(m + 1)vol(K) + [ ||gradpl|*.
(2) We have [ Hg* > (m + 1)vol(K). Furthermore, equality holds if and only
if ¢ is a hyperellipsoid.

Proof. Let 1 € C*°(M) denote the constant function. Then D1 = mH. Note
D is self-adjoint and the boundary of M is empty. We use equation (1) and the
observations made in §4.5 to see that

m [y 0*°H = [,,0°D1 = [, D(¢*) = [,,(¢eDo + ||gradol|?)
= [ (mo + |lgrade||?) = m(m + 1)vol(K) + [,, [lgradol|*.
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Assume that equality holds in the second assertion. Then ¢ = const. We apply
Lemma 7.2.4 of [13] to see that z is an affine sphere. We use a Theorem of Blaschke
and Deicke (see Theorem 2.4.7 [7]) to see z is a hyperellipsoid. O

Recall the affine isoperimetric inequality for Blaschke hyperovaloids ([8], p.
237). Denote by 6,41 the volume of the unit ball in Euclidean (m + 1)-space. Let
Area:= [1 be the affine area of the hyperovaloid. We then have the inequality

(Area)™? < {(m + 1)omi1}2 - {(m + D)vol(K)}™.

Equality holds exactly for hyperellipsoids. We can now establish the result:

4.7 Corollary. Let x be a Blaschke hyperovaloid.

(1) We have (Area)™*? < {(m + 1)opm41}? - {[ Ho*}™; equality holds if and
only if x is a hyperellipsoid.

(2) We have {[ Ho}™2? < {(m+ 1)opmy1}? - {J Ho*}™; equality holds if and
only if x is a hyperellipsoid.

(3) Assume that the affine Weingarten operator has maximal rank. This implies
that the m-th curvature function, the affine Gauss-Kronecker curvature, is
nonzero. Then [ HI}"—: < [ Hg? ; equality holds exactly for hyperellipsoids.

Proof. The first assertion is obvious from the previous discussion; the second as-
sertion follows from the affine Minkowski formula [1 = [ Hp ([8, p. 165]) and
the third from a related formula HI}”—: = [ o (l.c., p.169). For the discussion of

equality compare the proof of Theorem 4.6. [

We now turn our attention to centroaffine normalizations. The following
formula are immediate from our previous calculations.

4.8 Lemma. Let x have centroaffine normalization. We have

(1) ao(* D) = (47)=™/?vol(M).

(2) a1(*D) = -1 (4m)=(m=D/2y0l(0M).
(3) a2(*D) = (4”)_m/2{fM(%Ty - %mz|T|2 + %mfi;i)d’” +2 four Laady}
ao(lD).
(4) a3(*D) = — 5k (4m)=(m=1/2 [ L —24m?2|T 2 + 167, + 8Ry,amam + 7LaaLss
—].OLabLab}dy + al(lD).

§5 The geometry of affine Gauss maps

In this section we consider a Blaschke hypersurface {z, X,y} and its two
affine Gauss maps X : M — V* and y : M — V, see [13, §4.6]. Then X is
an immersion with transversal position vector (also denoted by X), while y is an
immersion if and only if the equiaffine Weingarten operator B satisfies rank(B) =
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m. In the latter case, both Gauss maps define centroaffine hypersurfaces in the
sense of §2.2 above, i.e. X := —X and § := —y are their centroaffine normals,
respectively.

If rank(B) = m the Gauss structure equations take the form
V.dX (w) = dX (*V,w) + h(X)(v,w) X
Vydy(w) = dy(*Vyw) + h() (v, w)g.

The centroaffine metrics of both hypersurfaces X and y coincide. This means that
h(X) = B = h(j) and we have

5.1 Lemma.

(1) We have that {*V,B,2V} is a conjugate triple. The connection 'V is
torsion-free and Ricci symmetric and satisfies the relation given in [10,
section 5]: 'V,v = B~1(1V,(Bv)).

(2) We have that 'V is the induced connection of the Gauss map y, and that
2V is the associated conormal connection.

(3) We have that 2V is the induced connection of the conormal Gauss map X,
and that 'V is the associated conormal connection.

5.2 Lemma. Let {z,X,y} be a Blaschke hypersurface with rank(B) = m. Then
we have the following statements are equivalent:

(1) The equiaffine Gauss-Kronecker curvature H,, = Hp(e) = det(B) is a
nonzero constant.

(2) The map y defines a proper affine sphere.

(3) The map X defines a proper affine sphere.

(4) The Tchebychev field T = T (y) vanishes.

Proof. Lemma, 5.2 follows from the relation 2mT = dlg|H,,(e)|. This follows from
Lemma 5.1 and the result T'(e) = 0; see [7, p. 182] for further details. O

For a Blaschke hypersurface with rank(B) = m and associated conjugate

triple {1V, B,2V} we have associated operators 1D, 2D and BD according to the
definitions in section 1.3 above. The following result is proved analogously with
previously established results:

5.3 Theorem. Let x be a Blaschke hyperovaloid with rank(B) = m. Then

(1) We have that the operators ' D and 2D = 2D satisfy the global conjugacy
relation: fM(f ADf—f- IDf) = fM(f 2Df—f- 2Df).
(2) The following assertions are equivalent:
2-a) The operator ' D is self-adjoint.
2-b) The operator >D = 2D is self-adjoint.
2-c) The immersion x defines a hyperellipsoid.
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Proof. Since the centroaffine normalization is a relative normalization we apply
Theorem 3.1 to establish the first assertion. We have that the operator "D is self-
adjoint if and only if the map y defines a hyperellipsoid. We use Lemma 5.2 to see
that this implies Hy,(e) = const. We use [8, Theorem 3.1.26] to conclude z is a
hyperellipsoid and show 2-a) or 2-b) implies 2-c); the converse is immediate. O

5.4 Theorem. Let x : M — A be a locally strongly convex Blaschke hypersur-
face with boundary. Then the following assertions are equivalent.

(1) We have H,,(e) = const # 0.  (3) We have the operator ' D is self-adjoint.
(2) We have'D =2D. (4) We have the operator 2D is self-adjoint.

Proof. Use the relationship 2mT = dlg|H,,(e)| given above; the proof then is
analogous to the proof of Theorem 3.2 (1). O
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