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MICROLOCAL PROPERTIES OF ULTRADISTRIBUTIONS.
COMPOSITION AND KERNEL TYPE OPERATORS
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Abstract. The composition of an ultradistribution and a real analytic func-
tion as well as kernel type operators are analyzed. The suppleness of various spaces
of microfunctions is given.

0. Introduction

The microlocal analysis of various classes of functions, generalized functions
and hyperfunctions has a long history. Essentially it is related to the qualitative
analysis of solutions of linear and non-linear equations and because of that it is a
wast and reach theory.

Hormander has studied in [9, Section 8] the wave front set of distributions
and Roumieu type ultradistributions while Komatsu has investigated in [12] the mi-
crolocal properties of sheaves C* and C, which correspond to Beurling and Roumieu
ultradistribution spaces and the spaces of corresponding ultradifferentiable func-
tions. We refer to Sato, Kawai, Kashiwara [21] for the hyperfunction theory and
the theory of microfunctions.

Note that Matsuzawa has developed in [14] the hyperfunction theory and the
microlocal analysis by mean of the Gauss kernel. In this context we refer also to
papers [4], [5]. The analysis of ultradistribution spaces is given in many papers
(among others are [2], [11-13], [15], [18], [20] and [22]).

In this paper we continue our investigations of [18] and give the assertions
which are known for distributions but need to be carefully examined for ultradis-
tributions (see also [11] and [19]). In order to make clear our contribution to the
theory, we note that uniform estimations related to all the derivatives of a function
are the main problems in our proofs.
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In Sections 1 and 2 we recall the definitions of ultradistributional singular
spectrums SS,, SS* ([12], [6]) and the definition and the properties of tempered
ultradistribution spaces S’ ([3], [13], [16]). The composition of a u € D'* with a
real analytic function with the singular spectrum disjoint of the set of normals of f is
given in Section 3. Note that this composition can not be made by using stationary
phase arguments as in the distribution theory [9]. The microlocal analysis of a
linear operator with a kernel K € D'*(X x Y) is given in Section 4. For the
decomposition of a microlocal support we refer to [1], [6], and [7]. In Section 5 we
recall our definitions of various spaces of microfunctions and the results related to
the suppleness of corresponding sheaves.

1. Notation and notions

As usual, M, p € Ny, denotes a sequence of positive numbers with My = 1.

We refer to [11] for the meaning of conditions (M.1), (M.2)’, (M.2), (M.3)’
and (M.3). Also we use the following one [15]:

M.1)* My My, <My, peN, where My =1, My = M,/p!,p€eN.
Let M, satisfy (M.1) and (M.3)’. The associated function M(p) and the
growth function M (p) related to M, are defined by

P P’
M(p)=supln—, M(p)=supln—, p>0.
( ) JAS) M:D ( ) JAS) M;:

An open set in R" will be always denoted by Q; K CC  means that K is a
compact subset of Q2. Recall,

| ¢ () |
= sup 1 ue ™).
”(p”K,h,MP zEK,apeNg h|a‘M|a‘ L4 ( )

We use the symbol * for both (M,) and {Mp}. For the definitions of £*(2),
D3 (), D*(Q) and their strong duals we refer to [11]. Throughout the paper we
will assume that (M.1), (M.2)’ and (M.3)’ hold.

Presheaves U — £*(U), U — D'*(U), U C R, are sheaves. These sheaves
are known to be soft, that is, if f is a section on a closed set it can be extended on
the whole space.

There exist injections
E* < B, D*<B.
Let N, be a sequence of positive numbers which satisfies (M.1), (M.2)’, (M.3)’ and

Ny = 1. Then [11]
(Np) < (Mp) (resp., {Np} < {Mp})
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if there are constants L > 0 and C > 0 (resp., for every € > 0 there is C. > 0) such
that
N, < CLPM, (resp., N, < C.e’M,), pe N,.

Let f € D't, where T = N, < M,. Then (z,w) € S*Q = Q x S*~! (the
cosphere bundle) is not in SS, f (resp., not in SS* f) iff there exist a neighborhood
U C Q of z and a conic neighborhood T of w of the form

F={{#0; |&/[&]-wl<n}

such that for every ¢ € D*(U) the following holds:
In the (M))-case, for every e > 0 there is C. > 0 such that

| 67(§) 1< Cee™™ID, ¢ e
(resp., there are a k > 0 and a C' > 0 such that
| 65(6) |< CMMED, g eT)
In the {Mp}-case, there exist a k > 0 and a C > 0 such that

| $F () |< Ce M*ED - ceT

(resp., for every € > 0, there is a C, > 0 such that

| $F(€) |< CeeMeleh ¢ eT.

Note, the notion SS(u,} is equivalent to Hérmander’s notion W F..

By using the above definitions of singular spectrums we can formulate defini-
tions (and we will do this) according to which (z,£) € Q x (R" \ {0}) is an element
of a singular spectrum defined above if (z,£/|¢|) is an element of the same singular
spectrum.

We denote by B(U) the space of Sato’s hyperfunctions on an open set U in
R™. Tt is known that U — B(U) forms a sheaf and that this sheaf is flabby, that
is, the restriction mappings S : B(U) — B(Uy) (Uy C U) are always surjective (cf.
[21]).

For an open set U in a real analytic manifold M, let S*U be the cosphere
bundle of U and V' be the complexification of U. Then S;;V can be identified with
vV/—1S5*U. In the last paragraph we will use the notation accomodated to Kaneko
[8]. Recall, a hyperfunction f on U can be written as a formal sum of boundary
values of holomorphic functions Fj(z) defined on infinitesimal wedges U ++/—1T;0,
where T'; are open cones in R", f(z) = Ejvzl Fj(z ++/—1T;0). It is said that f is
microanalytic at the point (z,v/—1£o0) € v/—1S5*U if, for a suitable representation
of f (given above) on a neighbourhood of z,T'; N {y € R*;({,y) > 0} = 0 holds
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for all j € {1,...,N}. So, in the last paragraph we will use the identification of
V/—18*U and S*U and say that (z,v/—1£00) € SSu if and only if (z,£) € SSu. The
same will be used for other types of singular supports. Thus, for an f € D'*(Q2),
(z,w) € S*Q is not in SSf if (z,v/—lwoo) € S*Q is not in SS{f}, where {f}
denotes the corresponding hyperfunction. This notion is equal to Hérmander’s
W F4 f— the analytic wave front set of f [9, Definition 9.3.2., Theorem 9.6.3].

2. Tempered ultradistributions

Tempered ultradistribution spaces are introduced and studied in [13] and
[16].
Let m > 0. The space of smooth functions ¢ on R" which satisfy

et =( 2 [l

a,BENG

m‘a“l‘ﬂl

5 \1/2
(1 + |2[?)B1/2p() (m)‘ da:) < 00,
M|a\M|m

equipped with the topology induced by the norm o, 2, is denoted by S, M ™ The
strong duals of S(Mp) = projlim,, e S, Mp:m and SIMp} = indlim,, o S, Mpsm are
called spaces of tempered ultradistributions of Beurling and Roumieu type. For
every fixed p € [1,00], the family of norms {o,,2; m > 0} is equivalent to the
family of norms {o., p; m > 0} where instead of L? norm we put L? norm.

SMp) and S{Me} are (F'S)- and (LS)-spaces, respectively. If (M.2) holds,
they are (F'N)- and (LN)- spaces, respectively (for these types of spaces, see [8])
and

D 5 S* & S S,

where we have also that injections are continuous.

An f € D' isin 8" if and only if there exists a family F, g5 € L2(R"), o, 3 €
N§, such that

f= 3 (A4 Fap)® in 8™,

a,BENg

M"), (resp., in the case S'{M”}, for every k > 0) such that

( > /n M‘lcjﬁ\ﬁlFa, (z )|2)1/2 < 0.

a,BENG

and in case S'(

The corresponding structural theorems may be obtained by using the families
of norms {mam p; m > 0}, p € [1, cc].

If (M.1), (M.2) and (M.3) are assumed, then we have more precise structural
characterisations [16].

The Fourier transformation is an isomorphism of $* onto itself.
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In the next theorem we use the notation IV, for the sequence of positive
numbers and N(p), N(p) for the corresponding associated and growth function.

THEOREM 1. [17] Assume that (M.1)*,(M.2) and (M.3)" hold for N, (No =
1). Let T be an open convex cone in R™ and F' be an analytic function in

Z={2€C" ImzeTl, |Imz| <a}.

for some a > 0. Moreover, assume

|F(@ + vV=1y)| < CapeM N mD 4y Ty e 7,

for some a >0, b >0 and Cyp > 0, in the (Np)-case and for every a >0, b > 0
there exists a Cop > 0, in the {Np}-case. Then

1t
Fz+vV—1y) S F(z ++/=10), y—0, yeT.

In paricular
SS; c R xI'°\ {0}

3. Composition with a real analytic function

We still assume that (M.1)*, (M.2) and (M.3)" hold for M,,.
Let f be a real analytic mapping X — Y, where X and Y are open sets in

R™ and R™, respectively. We are going to define the pullback f*u of a u € D’ ! with
suitable properties of its singular spectrums. Denote

Ny = {(f(=),n); "f'(z)n =0}

If -y is a closed conic subset of Y x (R™ \ {0}) (conic in the second variable),
denote

DY) ={ueD"(Y); SSucCn~},
Fy=A{@f'(@)m); (f(x),n) €}

For the composition of an ultradistribution with an analytic function we can not use
the asymptotic expansion based on the stationary phase arguments as for distribu-
tions. Because of that the first part of the proof of the next theorem is completely
different from the corresponding one for distributions [9].

THEOREM 2. The pullback f*u can be defined in one and only one way for
allu € D'*(Y) with NyNSSu =0 such that f*u =wuo f if u € C*°(Y) and for any
closed conic subset vy of Y x (R™ \ {0}) with y N Ny =0, u € D'2(Y) implies

1) SS(f*u) C f5(SSu) and SS.(f*u) C f*(SS.u).
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Proof. Let T be an open convex cone in R” such that (Y x I°) NNy = . Let
u € D'L(Y). We define f*u as an element from D'*(X) as follows.

For every 2o € X choose hg € R™ such that f'(zg)ho € I'. There exist an
open set Oy, ¢ € Oy, C X, an open convex cone I'p, and €y > 0 such that

f(@++V-1h) €Y + V—IT, h € Ty, || < €.

Theorem 3.9. in [12] and Theorem 1, imply that the following limit exists in
D" (Oxy)

2) frulo., = lim &(f(-+V-1h)),

h€ln,

where ®(z) € O*(Y ++/—1I') and u = ®(- + +/—1I'0).

The family of ultradistributions {f*uo,,; zo € X} has the property:

If0,,NO4 #0, zo,21 € X then f*u|om0 and f*ulo,, coincide on Oy NOy, .
Let us prove that for every @ € Oy, N O, there is an O, C Oy, N Oy, and an h
such that f*ulo,, and f*ulo,, coincide with f*u|o, on O,. Since f'(z)he and
f'(z)hq belong to T, this holds for f'(z)((1 —t)ho +th1), for every t € [0,1]. By the
compactness of [0,1], there exist O, and h such that the quoted assertion holds.

Thus, there exists an element in D'*(X), denoted by f*u, which coincides
with f*ulo,  for every zo.

More generally, let v € D'*(Y) be such that SSun Ny = 0. There exist open
convex cones I';, 7 =1,...,s, such that

SSuc [JY xT9 and | J(Y xT9) NNy =0.
i=1 j=1

Theorem 3.9. in [12] implies that there are holomorphic functions ®; € O*(Y +
V—1T;), j =1,...,s, such that

uj = ®;(- +V/=1T;0), SSu; CY xT;, j=1,....s,

(in the sense of convergence in D'*(Y)) and u = 2;21 uj.
We define
s
3) Fru=Y" fru;
j=1

In order to prove that this definition does not depend on the decomposition
of u, assume that G;, i = 1,...,p, are convex open cones such that

p p
Uy xa)nNy =0, |JY x G} D SSu, v; = Fi(- + V=1G,0)

i=1 i=1
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and u = )7 | v;. We have to prove

(4) S frui=> frui
j=1 i=1

In the identity

s p

(5) D@+ V=IT;0) = Y Fi(- + V=1G;0)
j=1 i=1
we may assume that I';, j = 1,..., s, are pairwise disjoint sets because if for some

J1 and ja, Tj, NTj, # 0, then the left hand side sum is reduced by
®j, (- + V—1L};,0) + @5, (- + V—1I5,0) = (®5, + ®5,)(- + V-1(T;;, N T5,)0).

In the same way we may assume that G;, ¢ = 1,...,p, are pairwise disjoint
sets.

Denote by A; a subset of {1,...,p} which consists of ¢ for which I'; NG; # 0,
j=1,...,s. By using “Edge of the Wedge theorem” (see [12]) we have:

Aj =0 = ®;(- + V/—1T;0) is real analytic on Y.
Put d; = Kj. For every i € {1,...,p} decompose F;(- + v/—1G;0)

Fi(- +V=1G;0) = Y F;(- + V=1(G; N T;)0),

JEV:

where V; is the subset of {1,...,s} which consists of j for which T'; N G; # 0,
i=1,...,p. Again,

Vi = 0 = F;(- + V/—1G;0) is real analytic on Y.

So, we rewrite (5) as
s
1

> di(T®;(- + V=IT;0) 9= Y F(-+vV=1(GiNT;)0) + ¢

j=1 J JEVi#£D
where ¢ and ¢ are real analytic and both sums have the same number of terms.
Note, if j € V;, NV;,, then (Gi;, NT;,) N (Gi, NTy,) =0 and
1
7, 2i( + V=1L50) = Fiyi (- + V=1 N Gi,)0)
j

is real analytic.
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Thus, the change of variable defined by (3) on both side of (4) gives the same
element in D'*(X).

For the proof of (1) we use the notation from the beginning of this proof.
From (2) it follows that

SS(f*u)lao C {(0,8); (h,€) >0, h € Ty},
where SS(f*u)|q, is a subset of SS(f*u) with the first projection z¢. From
L (o)T0 = {& < h,§ >>0 if f'(m)h €T} ([9, p- 296]),

and f'(zo)Th, C T it follows
SS(f*u)lse C {(wo, *f'(wo)m);n € T°\ {0}}.

By using the decomposition u = Yu; in the neighborhood of f(zo) given in
[18], with cones T; such that T'} are small enough, and Theorem 1, the proof of (1)
follows.

4. The analysis of some operators

The six theorems which are to follow are well-known for distributions [9].
Their proofs are the same as for distributions.

THEOREM 3. Ifu € D'*(X) and v € D'*(Y), then
i) SS(u®v) C SScuxSSwU(suppux {0}) x SS,wUSS.u X (suppv x {0}).
it) SS(u®wv) C SSu x SSvU (suppu x {0}) x SSvUSSu x (suppv x {0}).

THEOREM 4. If u,v € D'*(X) and there are no points (x,£) such that
(z,€) € SS.u and (z,—&) € SS,v,
then by the pullback of the mapping
§: X > X xX, dz)=(z,1)

is defined the product
wv = 6" (u(z) ® v(y))

D' and
SSuv C {(z,£+1); (z,€) € SSeu or& =0,

(x,n) € SSwv or n=0}.
The same holds for SSuv.
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1

THEOREM 5. Letu € & (R"), ' = (z1,...,3,), =" = (Tpy1,..-,2n) and

let
uy(z') = /u(w',w”)dw”
be defined by
<U1,¢> = (u(m',x”), ¢(xl) ® 1E”>7 ¢ € D*(Rn)

Then
SS.ur C {(«',€); ((z',2"),(€,0)) € SSiu, for somez"}.

The same holds for SSu;.

Proof. Since the proof of the theorem is slightly different from the proof of
Theorem 8.4.5 in [9], we give details which are important in our assertion. Let
lw| =1, suppu = Q, ¢ € D*(R?). Put

Ys(z") = k(62"), 6 > 0,2" € R* P,

where k € D*(R"P) is equal to 1 in the unit ball B(0,1). Take R such that
Q@ C B(0, R), and n € D*(R™) such that n =1 in B(0,2R).
Note that

(u(t), K(- + V=1w — 1))

is analytic and exponentially decreasing if |z''| > 2R, and w belongs to a suitable
neighbourhood of {w; |w| < 1}. By letting § — 0 in

Uz + V=1w),¢(z")s(z")) = {(u(t), K (z + V=1w = 1)), n(2)$(a" )95 (z"))
+ {(u(t), K(z + vV=1w = 1)), (1 = n(2))¢' (z')¢5 (")),

it follows

(w1, 6) = /| (U + V), $(a') © Ly)dew =

‘:1
= [ @ v e

where

:/U(ZI,JU”)dIL’”: /U(Z’,IL'”-'—@I:I/”)(ZSJU”, |Imzl|2+|yll|2 < 1

is an analytic function when |Im 2’| < 1 which is bounded by CeM=hn) for some
k > 0and C > 0 in (M,)-case (respectively, for every k > 0 there is C in {M,}-
case). Now, by similar arguments as in the proof of Theorem 8.5.4 in [9], we finish
the proof by using a corresponding result of [17].

THEOREM 6. Assume K € D'(X xY), where X C R*, Y C R™ are open,
and 71 : supp K — X is proper (w1 is the first projection). If u € £E*(Y'), then

SSKu C {(z,€); (z,9,£,0) € SS.K for somey € suppu},
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where K is the linear operator with the kernel K. The same holds for SSKu.

THEOREM 7. If u € £ and SS.un SSL(K)y =0, then

SS.Ku C SS.(K)x U (SSL(K) o SS.u),
where
SSL(K) = {(xayagan); (way;£7 _77) € SS*K};
SS(K)x ={(,8); (z,9,£,0) € SS.K for some y €Y},
SSL(K)y = {(y,n); (2,4,0,—1) € SS.K for some z € X}.

The same holds for SSKu.

Now, one can easily prove the following assertion.

THEOREM 8. Ifu € D'* and v € £, then
SSu(uxv) C{(z+y,8); (z,€) € SSuu, (y,€) € SSwv}.

The same holds for SS(u*v).

Remark. Theorem 8 has applications in the theory of pseudo-differential
operators. For example, for a pseudo-differential operator P it follows that
SS.Pu C SS,u, u € D'™.

If P(D) is an ultradifferential operator with constant coefficients of *-class
[12], then Theorem 8 implies SS,P(D)u C SS.u, u € D'. The same theorem
implies that the Poisson transform of a u € D', if it exists, does not enlarge the
SS,u because SSP is empty (cf. [18]).

5. Quotient sheaves of microfunctions and flabbiness

The results of this paragraph are from [6] and [7].

Let 7 : /=S*R™ — R” be the canonical projection. The sheaf of microfunc-
tions on v/—1S*R" is the associated sheaf of the presheaf

V=15*R" D Q = I'(n(Q); B) /{u € T'(w(2); B)|SSun 2 = 0}.
This sheaf is denoted by C. It enjoys the exact sequence
0+A—=B—=nC—=0, [21]

where A denotes the sheaf of real analytic functions on R™. Moreover, there exists
a canonical surjective spectrum map

Sp:n7'B = C.
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Then, for u € B, SS(u) = supp(Sp(u)). The injection
D'* < B (respectively, £* < B)
induces a sheaf homomorphism
7 1D'* - C (vespectively 7 'E* — C).

We define a subsheaf C* (respectively, C%*) of C as the image of the above morphism
and call it the sheaf of microfunctions of class * (respectively d, *). Furthermore,
we have a canonical exact sequence

05 A—-D* 51 —0

(resp. 0 = A = £* = m,C%* = 0).

We have given in Section 1 an order to the set of sequences satisfying condi-
tions (M.1), (M.2) and (M.3)’. If < %, we have canonical injections

Cht 0l 5 0 ot (.

From now on we use the notation C! = C and 1 <  for any *.

We define sheaves C*,C1/* C%1* on /=1S*R" by the following exact se-
quences:

i) 0—C%* —Ct - ChH* -0, when f < x,
i) 0—C*—=Ct—C/* -0, whent<x,
iii) 0—C%* — 4t — 4t — 0, when * < 1.

The canonical surjective spectrum map Sp induces the following surjective
spectrum maps:

Spb* 7B — Cb,
Sp'/* . x71B = CV/*.

Let u € B. We can also define the singular spectrum of class *, SS.(u), and
that of class 1/x,5S*(u), in the following way:

SS,u = supp(Sp**u),
SS*u = supp(Spl/*u).

Let F be a sheaf of Abelian groups on a topological space X. Recall [1], F is
supple if for any open set Q2 of X, any closed Z, Z;, Z5 of Q2 such that Z = Z; U Zs,
and any section u € T'z(Q,F), there exists u; € 'z, (Q,F) (i = 1,2) such that
u = u1 + ug. Clearly, if a sheaf is flabby, then it is supple.
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THEOREM 9. [6] a) The quotient sheaf D'*/E* is supple.
b) The sheaves C'* and C'/* are flabby and the following sequences are exact
0= & = B—mlh* =0,
05 D* 5 B—ml/* >0.
c) Let 1 < § < x. The sheaves Cct* and C/* are supple and the sequences
0-& Dt s rch o,
0-D*=>Dt 5 et/ 5o,
are ezract.
d) Let 1 < x < {. The sheaf C*1* is supple and the sequence
0D =& 5 mett -0
is ezact.
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