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EXISTENCE RESULT FOR THE DISPLACEMENT
FIELD OF ELASTIC BODY.
THE CASE OF A LOCKING SUPPORT

Ivan Sestak and Bosko Jovanovoé

Commaunicated by Gradimir Milovanovié

Abstract. The problem of existence result for displacement field of elastic
body in contact with locking support is considered in this paper. Mathematically
the problem is refered to, so called, hemivariational inequalities [4]. The existence
result is obtained by making use of the theory of pseudo-monotone operators as in
(4] or [1].

1. Introduction

Many inequality problems in mechanics are formulated not only as variational
inequalities, but also in terms of, so called, hemivariational inequalities [5], [4].
Hemivariational inequalities are derived from nonconvex nondifferentiable super-
potentials by making use of the generalized gradient introduced by Clarke [2].

This paper deals with the existence of solutions of problem related to hemi-
variational inequalities which correspond to superpotential on the boundary of the
body having their nonconvex and nondifferentiable part with infinite branches on
closed and convex subsets. The theory of pseudo—monotone set—valued mappings
introduced by Browder and Hess [1] is the main tool of the problem under consid-
eration.

For the reader’s convenience let us recall some definitions (all of them can be
found in [4]).

We denote by V a reflexive Banach space with dual V*. The pairing over

V* x V and a norm on V will be denoted by (-, -)y and || - ||y respectively.
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Let the convex function f:V — R = RU{+oc} be not everywhere differen-
tiable. A vector u* € V* for which f(v)— f(u) > (u*, v—u)y for all v € V hold,
where f(v) is finite, is called a subgradient of f at u and the set of such vectors is
denoted by 9f(u).

The directional derivative f°(u, v) of Clarke at u in the direction v is given
for f Lipschitzian near u by the expression

1
f%(u, v) =limsup = [f(u+ h+ pv) — f(u+ h)]

h—0

p—0+
and the generalized gradient 0f(u) of f at u € V, f(u) finite, is defined as 0f(u) =
{u* eV : fOlur,v—u) > (u,v—u)y forall v € V}. If fis convex, then
of(-)=09f(-)-

Let T be a mapping from a real reflexive Banach space V into 2" . Then T

is said to be pseudo—monotone if the following conditions hold:

a) The set T'u is nonempty, bounded, closed and convex for all u € V.

b) T is upper semicontinuous for each finite dimensional subset F' of V' to the
weak topology of V*.

c) If {u;} is a sequence in V' converging weakly to u, and if u} € Tu; is such
that limsup (u}, u;—u)y < 0, then to each element v € V there exists u*(v) € Tu
with the property that liminf (u}, u; — u)y > (u*(v), u —v)y .

Let T be a mapping from V into V*. Then T is said to be quasi-bounded
if for each M > 0 there exists K (M) > 0 such that, whenever (u, u*) lies in the
graph G(T) = {(v,v*) € V. x V* : v* € Tv} of T and (u*, u)y < M [|ullv,
lully < M, then [lu*|ly. < K(M).

Let T be a mapping from V into V*. Then T is said to be strongly quasi—
bounded if for each M > 0 there exists K (M) > 0 such that for all (u, u*) € G(T)
with (u*, u)y < M, ||ully < M we have [|[u*||y~ < K(M).

2. Classical Formulation

Let Q be an open, bounded and connected subset of R”, n = 2 or 3, occupied by a
linear elastic body in its undeformed state. The body is refered to an orthogonal
Cartesian coordinate system. The boundary I' of €2 is assumed to be Lipschitzian.

In the framework of linear elasticity and small deformations, the following
relations hold

(1) ~o+f=0 in
(2) 2e(u) = Vu + (Vu)T in Q
3) o= Ce(u) in
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where o0 = {0;;} (resp. € = {e;}), i,j = 1,..., n, is the stress (resp. strain)
tensor and C is Hooke’s elasticity tensor fulfilling the well known ellipticity and
symmetry properties [4]. Moreover, let v = {u;} and f = {fi}, i=1,...,n be

the displacement and volume force respectively. Further, let ' = Ty UT'r U g
with properties: Ty NTr N s =@ and meas (T'y) > 0.

We assume that

(4) u=20 on FU ,
(5) on=F on I'p,
where n = {n;},i=1, ..., n, is the outward unit normal vector to I'p.

Let K be a given convex and closed subset of displacement vector field of
points on I's, and let Ix(-) be indicator function for the displacement vectors on
Ig,ie, Ix(v)=01if v€ K and Ix(v) =400 if v ¢ K.

Here the nonmonotone multivalued reaction—displacement law with infinite
branches on K will be defined by a nonmonotone superpotential j(z, u); then the
boundary conditions on I'g is given by [4]:

(6) -S €0j(-, u)+ 0Ik(u) on I'g.
The relation (6) describes the adhesive contact with a locking support, e.g. a rubber

support with limited compressibility [4].

Now we can formulate the classical problem (P) for displacement field as:
For given f, C, F, j and K find the displacement field u(z), x € Q, such that the
relations (1)—(6) will be satisfied.

3. Variational Formulation

To give the variational, i.e. hemivariational formulation of the classical problem
(P) we introduce the kinematically admisible space

(7 V={ve (H®)": v=0o0nTy}.

From (1) and (2) we obtain the variational equality (by application of the
Green—Gauss theorem):

/a-(e(v)—s(u))dﬂz/f-(v—u)dQ—i— F.-(v—wu)dl
(8) Q Q Tr

+ S-(v—wu)dl forall ve V.
s
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The relation (6) is equivalent to the following one:
9)
EeR, %, &n—8 +Ixm) —Ix(©) > (=S)(n—€)  forall neR".

Then, by (9), the equality (8) becomes an hemivariational inequality of the form:

a(u, v —u) + Ix(v) — Ik (u) +/1“ 3%z, u(z); v(z) —u(z))dl > I(v —u)

(10)
forall veV,

where, by definition
(1) a(u, v) = / Ce(u) - £(v) d92,
Q

(12) z(v)=/9f-vdn+ [ Fovar.

If we introduce the linear operator A : V — V* as (Au, v)y = a(u, v),
and the linear functional g : V. — R by (g,v)y = I(v) then we can for-
mulate the following hemivariational problem (V): For given f € (LZ(Q))n,
C € (Loo(@)™™ ™", F € (L2(Tr))", j and K C (Ls(Ts))™, N > 1, find
the displacement field u(z), z € , such that

(Au—g, v —u)y + Ix(v) — Ix(u) +/ 7%z, u(z); v(z)—u(z))dl >0

(13) I's
forall veV.
The functional Jg : Ly(I's; RVY) = R, N > 1, indicated in (13), defined by
(14) Isw) = [ it v dr,
Ts

to be locally Lipschitz on Ly(I's; RY), for the function j : I's x RY — R, the
following conditions are introduced [2]:

(i) for all ¢ € RN the function z — j(z, ) is measurable on I's;

(ii) for almost all z € I's the function £ — j(x, £) is locally Lipschitz on
RV,
(iii) the function j(-, 0) is finitely integrable on I'g, i.e., j(-,0) € L1(T's);
(iv) for almost all z € I's and each £ € RV : —S € Jj(z, &) = || <
c(1+ |€])P~1 for some constant ¢ > 0 not depending on z € I's. (In our example
p=2).

Moreover, we suppose that
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(v) for almost all z € I's and each £ € RY : j%(z, & —¢€) < B(z) (1 + |¢]*),
where 0 < s < 2 and f3(-) is a nonnegative function from L,(I's) with ¢ =
p/(p—s). (In our example p = 2).

Then the hemivariational inequality (13) can be presented in the form:
(15) (Au—g, v —uyy + Ix(v) — Ix(u) + Jo(iu; iv—1iu) >0 forall veV,

where i is the compact injection from Y (I's) = (H'/?(T's))" into Ly(T's; RY).
The dual of YV'(T's) is denoted by Y*(T's), i.e. Y*(T's) = (H~1/2(T's))".

4. Existence

The hemivariational inequality (15) is equivalent to the inclusion [4]:
(16) g€ Au + 0Tk (u) + 8" Js(u),
where

(17)  0'Js(u) = {x € Y*(T's) : J3(iu, iv) > (X, v)yrs) forall ve€Y(Ts)}.

The theorem below provides conditions which guarantee the existence of so-
lution to the problem (V). This theorem is a slight modification of theorems 4.28
and 4.26 in [4].

Theorem 1. Let A be a pseudo—monotone operator from the reflexive Banach
space V into V*. Let us suppose that the injection Y (Tg) C L,(Tg; RV), N > 1,
I'g C T, is compact for some 2 < p < oo, and that j : ['g X RY = R fulfills
the requirements (i)—(v). Further, assume that the functional ¢ o Y(Tg) - R=

RU{+o00} is conver, lower semicontinuous and proper. Suppose that the following
hypotheses hold:

(H1) ug € Dom (&pQ) ;
(H2) either Ay, (Au,v = A(v + ug)) is quasibounded or ¢y, 15 strongly
quasibounded;
(H3) there exists a function c¢: Rt — R with c(r) = r as r — 0o, such that
forall veV and x € 0'Fg(v):
(Av, v = uo)v + (X, v = uo)y (rg) = c(llvllv) llvllv,

where the functional Fg : L,(Tg; RY) - R, N > 1, is defined by Fg(v) =
fFQ j(z, v)dl, and 'Fg(v) as 0'Js(u) by (17).
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Then the hemivariational inequality
18) (Au—g,v—u)y + ¢ () — ¢ (u) + FQ(iu; iv—iu) >0 forall veV
Q Q Q

has at least one solution.

Proof: Hemivariational inequality (18) can be written equivalently as g €
Au + &,oQ(u) + 0Fg(u). Thus the problem is reduced to the question whether g
belongs to the range of A+ dp o™t 0'Fg . The operator O¢ o is maximal monotone
by properties of the functional ¢, [3]. Similarly as in theorem 4.23 in [4] we can
prove that the operator 0'Fg is pseudo-monotone. Since A + 8'Fq is coercive,
A+ 0 Fg+ 0p o is coercive too, because of the existence of an affine minorant of
¢ Then theorem 2.12 in [4] implies that the range of A+ 0'Fg + O¢ o coincides
with the whole V*. This establishes the existence of solution of (18). O

All conditions of Theorem 1 for the problem (V) are fulfilled. Obviously
I'g=Ts, po =Ik, p=2 and Fg = Jg, and it remains to verify the hypotheses
(H2) and (H3). The operator Ay = A is quasi-bounded (u¢ = 0, for example)
because the bilinear form a(u, v) is bounded. By the ellipticity, Korn’s inequality
and the estimate

06 vyes) < lxlly=rs) lvllyrs) < cllvllv,

the hypothesis (H3) is fulfiled.

Then the problem (V) has at least one solution.
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