# ON MOORE-PENROSE INVERSE OF BLOCK MATRICES AND FULL-RANK FACTORIZATION

#### G. V. Milovanović and P. S. Stanimirović

Dedicated to Professor Petar Madić on the occasion of his 75th birthday

Communicated by Mileva Prvanović

Abstract. We develop a few methods for computing the Moore-Penrose inverse, based on full-rank factorizations which arise from different block decompositions of rectangular matrices. In this way, the paper is a continuation of the previous works given by Noble [5] and Tewarson [10]. We compare the obtained results with the known block representations of the Moore-Penrose inverse. Moreover, efficient block representations of the weighted Moore-Penrose inverse are introduced using the same principles.

#### 1. Introduction

Let  $\mathbb{C}^{m\times n}$  be the set of  $m\times n$  complex matrices, and  $\mathbb{C}^{m\times n}_r=\{X\in\mathbb{C}^{m\times n}: \mathrm{rank}(X)=r\}$ . With  $A^{|_r}$  and  $A_{|_r}$  we denote the submatrix of A which contains the first r columns of A and the first r rows of A, respectively. Similarly,  $A^{r|}$  and  $A_{r|}$  denote the last r columns and the last r rows of A, respectively. Finally,  $A^{r|}_r$  denotes the submatrix of A generated by the first r columns and the last r rows of A. The identity matrix of the order k is denoted by  $I_k$ , and  $\mathbb O$  denotes the zero matrix of a convenient size.

Penrose [6], [7] has shown the existence and uniqueness of a solution  $X \in \mathbb{C}^{n \times m}$  of the following four equations:

(1) 
$$AXA = A$$
, (2)  $XAX = X$ , (3)  $(AX)^* = AX$ , (4)  $(XA)^* = XA$ ,

for any  $A \in \mathbb{C}^{m \times n}$ . For a sequence  $\mathcal{S}$  of elements from the set  $\{1, 2, 3, 4\}$ , the set of matrices which satisfy the equations represented in  $\mathcal{S}$  is denoted by  $A\{\mathcal{S}\}$ . A matrix from  $A\{\mathcal{S}\}$  is called an  $\mathcal{S}$ -inverse of A and denoted by  $A^{(\mathcal{S})}$ .

AMS Subject Classification (1991): Primary 15A09, 15A24

Partially supported by Ministry of Science and Technology of Serbia, grant number 04M03/C

We use the following useful expansion for the Moore-Penrose generalized inverse  $A^{\dagger}$  of A, based on the full-rank factorization A = PQ of A [1], [2]:

$$A^{\dagger} = Q^{\dagger}P^{\dagger} = Q^{*}(QQ^{*})^{-1}(P^{*}P)^{-1}P^{*} = Q^{*}(P^{*}AQ^{*})^{-1}P^{*}.$$

The weighted Moore-Penrose inverse is investigated in [3] and [8]. The main results of these papers are:

Proposition 1.1. [8] Let given positive-definite matrices  $M \in \mathbb{C}^{m \times m}$  and  $N \in \mathbb{C}^{n \times n}$ . For any matrix  $A \in \mathbb{C}^{m \times n}$  there exists the unique solution  $X = A_{M \circ, \circ N}^{\dagger} \in A\{1, 2\}$  satisfying

(5) 
$$(MAX)^* = MAX$$
 (6)  $(XAN)^* = XAN$ .

Similarly, we use the following notations:

 $A_{M \circ N \circ}^{\dagger}$  denotes the unique solution of the equations (1), (2), and

(7) 
$$(MAX)^* = MAX,$$
 (8)  $(NXA)^* = NXA;$ 

 $A_{\circ M,N_{\circ}}^{\dagger}$  is the unique solution of the equations (1), (2) and

(9) 
$$(AXM)^* = AXM,$$
 (10)  $(NXA)^* = NXA;$ 

 $A_{\circ M,\circ N}^{\dagger}$  denotes the unique solution of the equations (1), (2) and

$$(11) (AXM)^* = AXM, (12) (XAN)^* = XAN.$$

PROPOSITION 1.2 [8] The equation (5) is equivalent to  $(AXM^{-1})^* = AXM^{-1}$ , and (6) can be expressed in the form  $(N^{-1}XA)^* = N^{-1}XA$ .

Proposition 1.3 [8] If A = PQ is a full rank factorization of A, then:

$$A_{M \circ, \circ N}^{\dagger} = (QN)^* (Q(QN)^*)^{-1} ((MP)^*P)^{-1} (MP)^*$$
$$= NQ^* (P^*MANQ^*)^{-1} P^*M.$$

Using these notations, the following fact can be easily verified.

$$\text{Proposition 1.4 (a)} \quad A_{M \circ, \circ N}^\dagger = A_{\circ M^{-1}, \circ N}^\dagger = A_{M \circ, N^{-1} \circ}^\dagger = A_{\circ M^{-1}, N^{-1} \circ}^\dagger,$$

$$\text{(b)} \quad A_{M \circ, N \circ}^{\dagger} = (QN^{-1})^* (Q(QN^{-1})^*)^{-1} ((MP)^*P)^{-1} (MP)^* = A_{M \circ, \circ N^{-1}},$$

(c) 
$$A_{\circ MN\circ}^{\dagger} = (QN^{-1})^*(Q(QN^{-1})^*)^{-1}((M^{-1}P)^*P)^{-1}(M^{-1}P)^* = A_{M^{-1}\circ,\circ N^{-1}},$$

(d) 
$$A_{\circ M,\circ N}^{\dagger} = (QN)^* (Q(QN)^*)^{-1} ((M^{-1}P)^*P)^{-1} (M^{-1}P)^*.$$

From the part (a) of Proposition 1.4 and Proposition 1.2, it is easy to conclude that each of the indices, used in notation of the weighted Moore-Penrose inverse, can be written in one of the following form:

$$\circ M, \circ N$$
  $M \circ, \circ N$   $\circ M, N \circ$   $M \circ, N \circ$ 

For the sake of clarity, we use the notation  $\varphi(M, N)$  for an arbitrary of these indices. Following Proposition 1.3 and Proposition 1.4, we conclude the following:

1. 
$$\varphi(M,N) = \circ M, \circ N \Rightarrow A^{\dagger}_{\varphi(M,N)} = (QN)^*(Q(QN)^*)^{-1}((M^{-1}P)^*P)^{-1}(M^{-1}P)^*;$$

2. 
$$\varphi(M,N) = M \circ, \circ N \Rightarrow A^{\dagger}_{\omega(M,N)} = (QN)^* (Q(QN)^*)^{-1} ((MP)^*P)^{-1} (MP)^*;$$

$$3. \ \varphi(M,N) = \circ M, N \circ \Rightarrow A_{\varphi(M,N)}^{\dagger} = (QN^{-1})^*(Q(QN^{-1})^*)^{-1}((M^{-1}P)^*P)^{-1}(M^{-1}P)^*;$$

$$4. \ \varphi(M,N) = M \circ, N \circ \Rightarrow A_{\varphi(M,N)}^{\dagger} = (QN^{-1})^* (Q(QN^{-1})^*)^{-1} ((MP)^*P)^{-1} (MP)^*.$$

The cases 1–4 can be written in the following way:

$$A_{\varphi(M,N)}^{\dagger} = (QN^{[-1]})^*(Q(QN^{[-1]})^*)^{-1}((M^{[-1]}P)^*P)^{-1}(M^{[-1]}P)^*$$

where  $M^{[-1]}$  stands for one of the matrices M or  $M^{-1}$ , and  $N^{[-1]}$  denotes N or  $N^{-1}$ , in view of one of the rules 1–4.

We restate the main block decompositions [4], [11–13]. For a given matrix  $A \in \mathbb{C}_r^{m \times n}$  there exist the regular matrices R, G, the permutation matrices E, F and the unitary matrices U, V, such that:

$$(T_1) \quad RAG = \begin{bmatrix} I_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_1; \qquad \quad (T_2) \quad RAG = \begin{bmatrix} B & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_2;$$

$$(T_3) \quad RAF = \begin{bmatrix} I_r & K \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_3; \qquad \quad (T_4) \quad EAG = \begin{bmatrix} I_r & \mathbb{O} \\ K & \mathbb{O} \end{bmatrix} = N_4;$$

$$(T_5) \quad UAG = \begin{bmatrix} I_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_1; \qquad \quad (T_6) \quad RAV = \begin{bmatrix} I_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_1;$$

$$(T_7) \quad UAV = \begin{bmatrix} B & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_2; \qquad (T_8) \quad UAF = \begin{bmatrix} B & K \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_5;$$

$$(T_9)$$
  $EAV = \begin{bmatrix} B & \mathbb{O} \\ K & \mathbb{O} \end{bmatrix} = N_6;$ 

$$(T_{10a}) \quad EAF = \begin{bmatrix} A_{11} & A_{11}T \\ SA_{11} & SA_{11}T \end{bmatrix} = N_7;$$

where the multipliers S, T satisfy  $T = A_{11}^{-1} A_{12}, S = A_{21} A_{11}^{-1};$ 

$$(T_{10b}) \quad EAF = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}A_{11}^{-1}A_{12} \end{bmatrix} = N_7.$$

 $(T_{11})$  Transformation of similarity for square matrices:

$$RAR^{-1} = RAFF^*R^{-1} = \begin{bmatrix} I_r & K \\ \mathbb{O} & \mathbb{O} \end{bmatrix} F^*R^{-1} = \begin{bmatrix} T_1 & T_2 \\ \mathbb{O} & \mathbb{O} \end{bmatrix}.$$

For the sake of completeness and comparison with our results, we describe known block representations of the Moore-Penrose inverse.

In the begining, we restate the block representations of the Moore-Penrose inverse from [11], [13]. For  $A \in \mathbb{C}_r^{m \times n}$ , let

$$R = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}, \quad G = \begin{bmatrix} G_1, & G_2 \end{bmatrix}, \quad U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}, \quad V = \begin{bmatrix} V_1, & V_2 \end{bmatrix},$$

where  $R_1$ ,  $U_1$  are the first r rows of R and U, respectively, and  $G_1$ ,  $V_1$  denote the first r columns of G and V, respectively. Then the Moore-Penrose inverse can be represented in the following way, where the block representations  $(M_i)$  correspond to the block decompositions  $(T_i)$ ,  $i \in \{1, \ldots, 9\}$ .

$$(M_1) \quad A^{\dagger} = G \begin{bmatrix} I_r & -R_1 R_2^{\dagger} \\ -G_2^{\dagger} G_1 & G_2^{\dagger} G_1 R_1 R_2^{\dagger} \end{bmatrix} R = G \begin{bmatrix} I_r \\ -G_2^{\dagger} G_1 \end{bmatrix} \begin{bmatrix} I_r, & -R_1 R_2^{\dagger} \end{bmatrix} R$$

$$= (G_1 - G_2 G_2^{\dagger} G_1)(R_1 - R_1 R_2^{\dagger} R_2),$$

$$\begin{split} (M_2) \quad A^\dagger &= G \begin{bmatrix} B^{-1} & -B^{-1}R_1R_2^\dagger \\ -G_2^\dagger G_1B^{-1} & G_2^\dagger G_1B^{-1}R_1R_2^\dagger \end{bmatrix} R \\ &= G \begin{bmatrix} I_r \\ -G_2^\dagger G_1 \end{bmatrix} B^{-1} \begin{bmatrix} I_r, & -R_1R_2^\dagger \end{bmatrix} R \\ &= (G_1 - G_2G_2^\dagger G_1)B^{-1}(R_1 - R_1R_2^\dagger R_2), \end{split}$$

$$(M_3) \quad A^{\dagger} = F \begin{bmatrix} (I_r + KK^*)^{-1} & -(I_r + KK^*)^{-1}R_1R_2^{\dagger} \\ K^*(I_r + KK^*)^{-1} & -K^*(I_r + KK^*)^{-1}R_1R_2^{\dagger} \end{bmatrix} R$$

$$= F \begin{bmatrix} I_r \\ K^* \end{bmatrix} (I_r + KK^*)^{-1} \begin{bmatrix} I_r, & -R_1R_2^{\dagger} \end{bmatrix} R,$$

$$(M_4) \quad A^{\dagger} = G \begin{bmatrix} (I_r + K^*K)^{-1} & (I_r + K^*K)^{-1}K^* \\ -G_2^{\dagger}G_1(I_r + K^*K)^{-1} & -G_2^{\dagger}G_1(I_r + K^*K)^{-1}K^* \end{bmatrix} R$$

$$= G \begin{bmatrix} I_r \\ -G_2^{\dagger}G_1 \end{bmatrix} (I_r + K^*K)^{-1} [I_r, K^*] E,$$

$$(M_5) \quad A^{\dagger} = G \begin{bmatrix} I_r & \mathbb{O} \\ -G_2^{\dagger} G_1 & \mathbb{O} \end{bmatrix} U = G \begin{bmatrix} I_r \\ -G_2^{\dagger} G_1 \end{bmatrix} [I_r, \mathbb{O}] U$$
$$= (G_1 - G_2 G_2^{\dagger} G_1) U_1,$$

$$(M_6) \quad A^{\dagger} = V \begin{bmatrix} I_r & -R_1 R_2^{\dagger} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} R = V \begin{bmatrix} I_r \\ \mathbb{O} \end{bmatrix} [I_r, -R_1 R_2^{\dagger}] R$$
$$= V_1 (R_1 - R_1 R_2^{\dagger} R_2),$$

$$(M_7) \quad A^{\dagger} = V \begin{bmatrix} B^{-1} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} U = V \begin{bmatrix} I_r \\ \mathbb{O} \end{bmatrix} [B^{-1}, \quad \mathbb{O}] U = V_1 B^{-1} U_1,$$

$$(M_8) \quad A^{\dagger} = F \begin{bmatrix} B^* (BB^* + KK^*)^{-1} & \mathbb{O} \\ K^* (BB^* + KK^*)^{-1} & \mathbb{O} \end{bmatrix} U$$
$$= F \begin{bmatrix} B^* \\ K^* \end{bmatrix} (BB^* + KK^*)^{-1} [I_r, \mathbb{O}] U,$$

$$(M_9) \quad A^{\dagger} = V \begin{bmatrix} (B^*B + K^*K)^{-1}B^* & (B^*B + K^*K)^{-1}K^* \\ \mathbb{O} & \mathbb{O} \end{bmatrix} E$$
$$= V \begin{bmatrix} I_r \\ \mathbb{O} \end{bmatrix} (B^*B + K^*K)^{-1} [B^*, K^*] E.$$

These results are obtained by solving the equations (1)–(4).

Block decomposition  $(T_{10a})$  is investigated in [5], [13], but in two different ways. In [13], the Moore-Penrose inverse is represented by solving the corresponding set of matrix equations. The results in [5] are obtained using a full-rank factorization, implied by the block decomposition  $(T_{10a})$ . The corresponding representation of the Moore-Penrose inverse is:

$$\begin{split} (M_{10a}) \quad A^{\dagger} &= \begin{bmatrix} I_r \\ T^* \end{bmatrix} \left( A_{11}^* \left[ I_r, \quad S^* \right] EAF \begin{bmatrix} I_r \\ T^* \end{bmatrix} \right)^{-1} A_{11}^* \left[ I_r, \quad S^* \right] \\ &= F \begin{bmatrix} I_r \\ T^* \end{bmatrix} \left( I_r + TT^* \right)^{-1} A_{11}^{-1} \left( I_r + S^* S \right)^{-1} \left[ I_r, \quad S^* \right]. \end{split}$$

The following block representation of the Moore-Penrose inverse was obtained in [10] and [13] for the block decomposition  $(T_{10b})$ :

$$(M_{10b}) \quad A^{\dagger} = \begin{bmatrix} I_r \\ (A_{11}^{-1} A_{12})^* \end{bmatrix} (I_r + A_{11}^{-1} A_{12} (A_{11}^{-1} A_{12})^*)^{-1}$$

$$\times A_{11}^{-1} (I_r + (A_{21} A_{11}^{-1})^* A_{21} A_{11}^{-1})^{-1} [I_r, (A_{21} A_{11}^{-1})^*].$$

Also, in [14] is given the following block representation of the Moore-Penrose inverse, based on the formula  $A^\dagger = A^*TA^*$ ,  $T \in A^*AA^*\{1\}$ : If  $A \in \mathbb{C}_r^{m \times n}$  has the form  $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ ,  $A_{11} \in \mathbb{C}_r^{r \times r}$ , then

$$(M'_{10b})$$
  $A^{\dagger} = [A_{11}, A_{12}]^* K_{11}^* \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}^*,$ 
where  $K_{11} = ([A_{11}, A_{12}] A^* \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix})^{-1}.$ 

Block decomposition  $(T_{11})$  is investigated in [9], but only for square matrices and the group inverse.

The main idea of this paper is to continue the papers [5] and [10]. In other words, we use the following algorithm: from the presented block decompositions of matrices find the corresponding full-rank factorizations A = PQ, and then apply described general representations for  $A^{\dagger}$  and  $A^{\dagger}_{\varphi(M,N)}$ . Main advantages of the introduced block representations are their simply derivation, computation and possibility of natural generalization.

#### 2. The Moore-Penrose inverse.

In the following theorem we derive a few representations of the Moore-Penrose inverse, using described block decompositions and full-rank factorizations.

THEOREM 2.1 The Moore-Penrose inverse of a given matrix  $A \in \mathbb{C}_r^{m \times n}$  can be represented as follows, where each block representation  $(G_i)$  is derived from the block decomposition  $(T_i)$ ,  $i \in \{1, \ldots, 9, 10a, 10b, 11\}$ :

$$(G_{1}) \quad A^{\dagger} = (G^{-1}|_{r})^{*} \left( \left( R^{-1}|_{r} \right)^{*} A \left( G^{-1}|_{r} \right)^{*} \right)^{-1} \left( R^{-1}|_{r} \right)^{*}$$
$$= (G^{-1}|_{r})^{*} \left( (RR^{*})^{-1}|_{r}^{r} (G^{*}G)^{-1}|_{r}^{r} \right)^{-1} \left( R^{-1}|_{r} \right)^{*},$$

$$(G_{2}) \quad A^{\dagger} = (G^{-1}_{|r})^{*} \left( \left( R^{-1^{|r}} B \right)^{*} A \left( G^{-1}_{|r} \right)^{*} \right)^{-1} \left( R^{-1^{|r}} B \right)^{*}$$
$$= (G^{-1}_{|r})^{*} \left( B^{*} (RR^{*})^{-1}_{|r}^{|r} B (G^{*}G)^{-1}_{|r}^{|r} \right)^{-1} B^{*} \left( R^{-1^{|r}} \right)^{*},$$

$$(G_{3}) \quad A^{\dagger} = F \begin{bmatrix} I_{r} \\ K^{*} \end{bmatrix} \left( \left( R^{-1^{|r|}} \right)^{*} A F \begin{bmatrix} I_{r} \\ K^{*} \end{bmatrix} \right)^{-1} \left( R^{-1^{|r|}} \right)^{*}$$

$$= \left( F^{|r|} + F^{n-r|} K^{*} \right) \left( (RR^{*})^{-1} \frac{|r|}{|r|} (I_{r} + KK^{*}) \right)^{-1} \left( R^{-1^{|r|}} \right)^{*},$$

$$(G_4) \quad A^{\dagger} = (G^{-1}_{|r})^* \left( [I_r, K^*] E A (G^{-1}_{|r})^* \right)^{-1} [I_r, K^*] E$$
$$= (G^{-1}_{|r})^* \left( (I_r + K^* K) (G^* G)^{-1}_{|r}^{|r} \right)^{-1} \left( E_{|r} + K^* E_{n-r|} \right),$$

$$(G_5) \quad A^{\dagger} = \left(G^{-1}_{|r}\right)^* \left(U_{|r} A \left(G^{-1}_{|r}\right)^*\right)^{-1} U_{|r} = \left(G^{-1}_{|r}\right)^* \left(\left(G^* G\right)^{-1}_{|r}\right)^{-1} U_{|r},$$

$$(G_6) \quad A^{\dagger} = V^{|r|} \left( \left( R^{-1^{|r|}} \right)^* A V^{|r|} \right)^{-1} \left( R^{-1^{|r|}} \right)^* = V^{|r|} \left( (RR^*)^{-1} |_r^r \right)^{-1} \left( R^{-1^{|r|}} \right)^*,$$

$$(G_7) \quad A^{\dagger} = V^{|r|} \left( B^* U_{|r} A V^{|r|} \right)^{-1} B^* U_{|r|} = V^{|r|} B^{-1} U_{|r|},$$

$$(G_8) \quad A^\dagger = F \begin{bmatrix} B^* \\ K^* \end{bmatrix} \left( U_{|r} A F \begin{bmatrix} B^* \\ K^* \end{bmatrix} \right)^{-1} U_{|r} = F \begin{bmatrix} B^* \\ K^* \end{bmatrix} (B B^* + K K^*)^{-1} U_{|r},$$

$$(G_9) \quad A^{\dagger} = V^{|r|} \left( [B^*, K^*] E A V^{|r|} \right)^{-1} [B^*, K^*] E$$
$$= V^{|r|} (B^* B + K^* K)^{-1} [B^*, K^*] E,$$

$$(G_{10a}) A^{\dagger} = F \begin{bmatrix} I_r \\ T^* \end{bmatrix} \left( A_{11}^* \begin{bmatrix} I_r, & S^* \end{bmatrix} E A F \begin{bmatrix} I_r \\ T^* \end{bmatrix} \right)^{-1} A_{11}^* \begin{bmatrix} I_r, & S^* \end{bmatrix} E$$

$$= \left( F^{|r} + F^{n-r|} T^* \right) \left( (I_r + S^* S) A_{11} (I_r + T T^*) \right)^{-1} \left( E_{|r} + S^* E_{n-r|} \right),$$

$$(G_{10b}) A^{\dagger} = F \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix} ((A_{11}^*)^{-1} [A_{11}^*, A_{21}^*] E A F \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix})^{-1} (A_{11}^*)^{-1} [A_{11}^*, A_{21}^*] E$$

$$= F \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix} (A_{11} A_{11}^* + A_{12} A_{12}^*)^{-1} A_{11} (A_{11}^* A_{11} + A_{21}^* A_{21})^{-1} [A_{11}^*, A_{21}^*] E,$$

$$(G_{11}) A^{\dagger} = R^{*} \begin{bmatrix} I_{r} \\ (T_{1}^{-1}T_{2})^{*} \end{bmatrix} \left( \left( R^{-1} T_{1} \right)^{*} A R^{*} \begin{bmatrix} I_{r} \\ (T_{1}^{-1}T_{2})^{*} \end{bmatrix} \right)^{-1} \left( R^{-1} T_{1} \right)^{*}$$

$$= R^{*} \begin{bmatrix} I_{r} \\ (T_{1}^{-1}T_{2})^{*} \end{bmatrix} \left( T_{1}^{*} (RR^{*})^{-1} \Big|_{r}^{r} [T_{1}, T_{2}] RR^{*} \begin{bmatrix} I_{r} \\ (T_{1}^{-1}T_{2})^{*} \end{bmatrix} \right)^{-1} \left( R^{-1} T_{1} \right)^{*}.$$

*Proof.*  $(G_1)$  Starting from  $(T_1)$ , we obtain

$$A = R^{-1} \begin{bmatrix} I_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} G^{-1} = R^{-1} \begin{bmatrix} I_r \\ \mathbb{O} \end{bmatrix} [I_r, \mathbb{O}] G^{-1},$$

which implies

$$P = R^{-1} \begin{bmatrix} I_r \\ \mathbb{O} \end{bmatrix} = R^{-1^{\mid r}}, \qquad Q = \begin{bmatrix} I_r, & \mathbb{O} \end{bmatrix} G^{-1} = G^{-1}_{\mid r}.$$

Now, we get

$$A^{\dagger} = Q^{*} (P^{*}AQ^{*})^{-1} P^{*} = (G^{-1}_{|r})^{*} ((R^{-1}_{|r})^{*} A (G^{-1}_{|r})^{*})^{-1} (R^{-1}_{|r})^{*}$$

$$= (G^{-1}_{|r})^{*} ((R^{*})^{-1}_{|r} R^{-1}_{|r} G^{-1}_{|r} (G^{*})^{-1}_{|r})^{-1} (R^{-1}_{|r})^{*}$$

$$= (G^{-1}_{|r})^{*} ((RR^{*})^{-1}_{|r} (G^{*}G)^{-1}_{|r})^{-1} (R^{-1}_{|r})^{*}.$$

The other block representations of the Moore-Penrose inverse can be developed in a similar way.

 $(G_5)$  The block decomposition  $(T_5)$  implies

$$P = U^* \begin{bmatrix} I_r \\ \mathbb{O} \end{bmatrix} = U^{*^{\mid r}}, \qquad Q = \begin{bmatrix} I_r, & \mathbb{O} \end{bmatrix} G^{-1} = G^{-1}_{\mid r},$$

which means

$$\begin{split} A^{\dagger} &= \left( {G^{-1}}_{\mid r} \right)^* \left( {U_{\mid r} A \left( {G^{-1}}_{\mid r} \right)^*} \right)^{-1} U_{\mid r} \\ &= \left( {G^{-1}}_{\mid r} \right)^* \left( {U_{\mid r} {U^*}^{\mid r} G^{-1}}_{\mid r} (G^*)^{-1}^{\mid r} \right)^{-1} U_{\mid r} = \left( {G^{-1}}_{\mid r} \right)^* \left( (G^*G)^{-1}_{\mid r} \right)^{-1} U_{\mid r}. \end{split}$$

 $(G_7)$  It is easy to see that  $(T_7)$  implies

$$P = U^* \begin{bmatrix} B \\ \mathbb{O} \end{bmatrix} = U^{*|r} B, \qquad Q = \begin{bmatrix} I_r, & \mathbb{O} \end{bmatrix} V^* = V^*_{|r}.$$

Now,

$$A^\dagger = V^{|r} \Big( B^* U_{|r} U^{*|r} B V^*_{|r} V^{|r} \Big)^{-1} B^* U_{|r} = V^{|r} (B^* B)^{-1} B^* U_{|r} = V^{|r} B^{-1} U_{|r}.$$

 $(G_{10a})$  From  $(T_{10a})$  we obtain

$$A=E^* \begin{bmatrix} A_{11} & A_{11}T \\ SA_{11} & SA_{11}T \end{bmatrix} F^*=E^* \begin{bmatrix} I_r \\ S \end{bmatrix} A_{11} \begin{bmatrix} I_r, & T \end{bmatrix} F^*,$$

which implies, for example, the following full rank factorization of A:

$$P = E^* \begin{bmatrix} I_r \\ S \end{bmatrix} A_{11}, \quad Q = \begin{bmatrix} I_r, & T \end{bmatrix} F^*.$$

Consequently, the Moore-Penrose inverse of A is

$$A^{\dagger} = F \begin{bmatrix} I_r, \\ T^* \end{bmatrix} \left( A_{11}^* \begin{bmatrix} I_r, & S^* \end{bmatrix} E A F \begin{bmatrix} I_r, \\ T^* \end{bmatrix} \right)^{-1} A_{11}^* \begin{bmatrix} I_r, & S^* \end{bmatrix} E.$$

This part of the proof can be completed using

$$EAF = \begin{bmatrix} I_r \\ S \end{bmatrix} A_{11} \begin{bmatrix} I_r, & T \end{bmatrix}$$

and

$$F\begin{bmatrix} I_r \\ T^* \end{bmatrix} = F^{|r|} + F^{n-r|}T^*, \quad [I_r, S^*]E = E_{|r|} + S^*E_{n-r|}.$$

 $(G_{10b})$  Follows from

$$P = E^* \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} A_{11}^{-1}, \quad Q = [A_{11}, A_{12}] F^*.$$

Remark 2.1. (i) A convenient method for finding the matrices S, T and  $A_{11}^{-1}$ , required in  $(T_{10a})$ , was introduced in [5], and it was based on the following extended Gauss-Jordan transformation:

$$\begin{bmatrix} A_{11} & A_{12} & I \\ A_{21} & A_{22} & \mathbb{O} \end{bmatrix} \longrightarrow \begin{bmatrix} I & T & A_{11}^{-1} \\ \mathbb{O} & \mathbb{O} & -S \end{bmatrix}.$$

(ii) In [10] it was used the following full-rank factorization of the matrix A, represented in the form  $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{21}A_{11}^{-1}A_{12} \end{bmatrix}$ :

$$P = \begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix}, \qquad Q = \begin{bmatrix} I_r, & A_{11}^{-1} A_{12} \end{bmatrix}.$$

### 3. The weighted Moore-Penrose inverse.

Using the general representation of the weighted Moore-Penropse inverse presented in Proposition 1.3:  $A^{\dagger}_{M\circ,\circ N}=NQ^*(P^*MANQ^*)^{-1}P^*M$ , and the algorithm of Theorem 2.1, we obtain the following block representation of the weighted Moore-Penrose inverse  $A^{\dagger}_{M\circ,\circ N}$ .

THEOREM 3.1 The weighted Moore-Penrose inverse  $A_{M\circ,\circ N}^{\dagger}$  of  $A\in\mathbb{C}_r^{m\times n}$  possesses the following block representations  $(Z_i)$ , which correspond to the block decompositions  $(T_i)$ ,  $i\in\{1,\ldots,9,10a,10b,11\}$ :

$$(Z_1) \quad N\left(G^{-1}_{|r}\right)^* \left(\left(R^{-1^{|r}}\right)^* MAN\left(G^{-1}_{|r}\right)^*\right)^{-1} \left(R^{-1^{|r}}\right)^* M,$$

$$(Z_2)$$
  $N(G^{-1}_{|r})^* \left(\left(R^{-1^{|r}}B\right)^* MAN(G^{-1}_{|r})^*\right)^{-1} \left(R^{-1^{|r}}B\right)^* M,$ 

$$(Z_3)$$
  $NF\begin{bmatrix}I_r\\K^*\end{bmatrix}\left(\left(R^{-1}\right)^*MANF\begin{bmatrix}I_r\\K^*\end{bmatrix}\right)^{-1}\left(R^{-1}\right)^*M,$ 

$$(Z_4) N (G^{-1}_{|r})^* ([I_r, K^*] EMAN (G^{-1}_{|r})^*)^{-1} [I_r, K^*] EM,$$

$$(Z_5) \quad N \left( {G^{-1}}_{\mid r} \right)^* \left( U_{\mid r} MAN \left( {G^{-1}}_{\mid r} \right)^* \right)^{-1} U_{\mid r} M,$$

$$(Z_6) \quad NV^{\mid r} \left(\left(R^{-1^{\mid r}}\right)^* MANV^{\mid r}\right)^{-1} \left(R^{-1^{\mid r}}\right)^* M,$$

$$(Z_7)$$
  $NV^{|r|} \left(B^*U_{|r}MANV^{|r|}\right)^{-1}B^*U_{|r}M,$ 

$$(Z_8) \quad NF \left[egin{array}{c} B^* \ K^* \end{array}
ight] \left(U_{|r} MANF \left[egin{array}{c} B^* \ K^* \end{array}
ight]
ight)^{-1} U_{|r} M,$$

$$(Z_9)$$
  $NV^{|r|} ig( [\,B^*, \quad K^*\,]\, EMANV^{|r|} ig)^{-1} ig[\,B^*, \quad K^*\,]\, EM,$ 

$$(Z_{10a}) \ NF \left[ egin{aligned} I_r \ T^* \end{array} 
ight] \left( A_{11}^* [I_r, \quad S^*] EMANF \left[ egin{aligned} I_r \ T^* \end{array} 
ight] 
ight)^{-1} A_{11}^* [I_r, \quad S^*] EM, \end{aligned}$$

$$(Z_{10b}) NF \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix} (A_{11}^*)^{-1} [A_{11}^*, \quad A_{21}^*] EMANF \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix}^{-1} (A_{11}^*)^{-1} [A_{11}^*, \quad A_{21}^*] EM,$$

$$(Z_{11}) \quad NR^* \left[ \frac{I_r}{(T_1^{-1}T_2)^*} \right] \left( \left( R^{-1} {}^r T_1 \right)^* MANR^* \left[ \frac{I_r}{(T_1^{-1}T_2)^*} \right] \right)^{-1} \left( R^{-1} {}^r T_1 \right)^* M.$$

The following representations can be obtained from the main properties of the weighted Moore-Penrose inverse and Theorem 3.1.

COROLLARY 3.1. The weighted Moore-Penrose inverse  $A^{\dagger}_{\varphi(M,N)}$  of  $A \in \mathbb{C}^{m \times n}_r$  can be represented as follows:

$$(W_1) \ N^{[-1]} \left(G^{-1}_{\ | r}
ight)^* \left(\left(R^{-1^{| r}}
ight)^* M^{[-1]} A N^{[-1]} \left(G^{-1}_{\ | r}
ight)^*
ight)^{-1} \left(R^{-1^{| r}}
ight)^* M^{[-1]},$$

$$(W_2)\ N^{[-1]} \big(G^{-1}_{|r}\big)^* \Big(\! \left(\! R^{-1^{|r}} \! B\! \right)^* \! M^{[-1]} A N^{[-1]} \left(G^{-1}_{|r}\right)^* \! \Big)^{-1} \! \Big(\! R^{-1^{|r}} \! B\! \Big)^* M^{[-1]},$$

$$(W_3)\ N^{[-1]}F\begin{bmatrix}I_r\\K^*\end{bmatrix}\left(\!\left(\!R^{-1}\right)^*M^{[-1]}AN^{[-1]}F\begin{bmatrix}I_r\\K^*\end{bmatrix}\!\right)^{-1}\!\left(\!R^{-1}\right)^*M^{[-1]},$$

$$(W_4)\ N^{[-1]} \big(G^{-1}{}_{|r}\big)^* \left( [I_r, \quad K^*] E M^{[-1]} A N^{[-1]} \left(G^{-1}{}_{|r}\right)^* \right)^{-1} [I_r, \quad K^*] \ E M^{[-1]},$$

$$(W_5) \ N^{[-1]} \left( G^{-1}{}_{|r} \right)^* \left( U_{|r} M^{[-1]} A N^{[-1]} \left( G^{-1}{}_{|r} \right)^* \right)^{-1} U_{|r} M^{[-1]},$$

$$(W_6)\ N^{[-1]}V^{|r}\left(\left(R^{-1^{|r}}\right)^*M^{[-1]}AN^{[-1]}V^{|r}\right)^{-1}\left(R^{-1^{|r}}\right)^*M^{[-1]},$$

$$(W_7)\ N^{[-1]}\!V^{|r|}\left(B^*U_{|r}M^{[-1]}AN^{[-1]}V^{|r|}\right)^{-1}B^*U_{|r}M^{[-1]},$$

$$(W_8) \ N^{[-1]} F \begin{bmatrix} B^* \\ K^* \end{bmatrix} \left( U_{|r} M^{[-1]} A N^{[-1]} F \begin{bmatrix} B^* \\ K^* \end{bmatrix} \right)^{-1} U_{|r} M^{[-1]},$$

$$(W_9) \ N^{[-1]} V^{|r|} \left( [B^*, K^*] E M^{[-1]} A N^{[-1]} V^{|r|} \right)^{-1} [B^*, K^*] E M^{[-1]},$$

$$(W_{10a}) \, N^{[-1]} F \begin{bmatrix} I_r \\ T^* \end{bmatrix} \! \! \left( \! A_{11}^* [I_r, \quad S^*] E M^{[-1]} \! A N^{[-1]} F \begin{bmatrix} I_r \\ T^* \end{bmatrix} \! \right)^{-1} \! \! A_{11}^* [I_r, \quad S^*] E M^{[-1]},$$

$$(W_{10b}) N^{[-1]} F \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix} \Big( (A_{11}^*)^{-1} [A_{11}^*, A_{21}^*] E M^{[-1]} A N^{[-1]} F \begin{bmatrix} A_{11}^* \\ A_{12}^* \end{bmatrix} \Big)^{-1} \\ \times (A_{11}^*)^{-1} [A_{11}^*, A_{21}^*] E M^{[-1]},$$

$$(W_{11}) \ N^{[-1]} R^* \begin{bmatrix} I_r \\ (T_1^{-1}T_2)^* \end{bmatrix} \! \left( \!\! \left( \!\! R^{-1^{\mid r}} T_1 \!\! \right)^* \!\! M^{[-1]} \!\! A \! N^{[-1]} \!\! R^* \! \left[ \!\! \left( \!\! T_1^{-1} T_2 \!\! \right)^* \!\! \right)^{-1} \!\! \left( \!\! R^{-1^{\mid r}} \!\! T_1 \!\! \right)^* \!\! M^{[-1]} \!\! .$$

## 4. Examples.

Example 4.1. Consider 
$$A = \begin{bmatrix} -1 & 0 & 1 & 2 \\ -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & 3 \\ 0 & 1 & -1 & -3 \\ 1 & -1 & 0 & 1 \\ 1 & 0 & -1 & -2 \end{bmatrix}$$
. Using the Gauss-Jordan trans-

formation, we get the following reduced row-echelon form of the matrix A:

The matrix  $R_A$  is obtained using the permutation matrix  $F = I_4$ , and the following regular matrix:

$$R = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 & 0 \\ 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Using the method  $(G_3)$  we obtain

$$R^{-1^{\mid r}} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 0 & -1 \\ 0 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}, \quad F \begin{bmatrix} I_r \\ K^* \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & -1 \\ -2 & -3 \end{bmatrix},$$

and the following Moore-Penrose inverse of A:

$$A^{\dagger} = \begin{bmatrix} -\frac{5}{34} & -\frac{3}{17} & \frac{1}{34} & -\frac{1}{34} & \frac{3}{17} & \frac{5}{34} \\ \\ \frac{4}{51} & \frac{13}{102} & -\frac{5}{102} & \frac{5}{102} & -\frac{13}{102} & -\frac{4}{51} \\ \\ \frac{7}{102} & \frac{5}{102} & \frac{1}{51} & -\frac{1}{51} & -\frac{5}{102} & -\frac{7}{102} \\ \\ \frac{1}{17} & -\frac{1}{34} & \frac{3}{34} & -\frac{3}{34} & \frac{1}{34} & -\frac{1}{17} \end{bmatrix}.$$

Example 4.2. For the matrix A used in Example 3.1 we obtain (see [5])

$$A_{11}^{-1} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}, \quad S = \begin{bmatrix} 1 & -1 \\ -1 & 1 \\ 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad T = \begin{bmatrix} -1 & -2 \\ -1 & -3 \end{bmatrix}.$$

Using  $(G_{10a})$  we obtain the same Moore-Penrose inverse of A.

Example 4.3. For the matrix  $A = \begin{bmatrix} 4 & -1 & 1 & 2 \\ -2 & 2 & 0 & -1 \\ 6 & -3 & 1 & 3 \\ -10 & 4 & -2 & -5 \end{bmatrix}$  we obtain

$$R = egin{bmatrix} 1 & 0 & 0 & 0 \ -1 & 1 & 0 & 0 \ -1 & 1 & 1 & 0 \ 2 & -1 & 0 & 1 \end{bmatrix}, \quad T_1 = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix}, \quad T_2 = egin{bmatrix} -1 & -2 \ -1 & -3 \end{bmatrix}, \quad F = I_4.$$

Then, one can verify the following:

$$\left(R^{-1^{|r|}}T_1\right)^* = \begin{bmatrix} -1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 1 \end{bmatrix}, \quad R^* \begin{bmatrix} I_r \\ (T_1^{-1}T_2)^* \end{bmatrix} = \begin{bmatrix} -4 & -6 \\ 1 & 3 \\ -1 & -1 \\ -2 & -3 \end{bmatrix}.$$

Finally, using  $(G_{11})$ , we get

$$A^{\dagger} = \begin{bmatrix} \frac{8}{81} & \frac{10}{81} & -\frac{2}{81} & -\frac{2}{27} \\ \frac{47}{162} & \frac{79}{162} & -\frac{16}{81} & -\frac{5}{54} \\ \\ \frac{7}{54} & \frac{11}{54} & -\frac{2}{27} & -\frac{1}{18} \\ \\ \frac{4}{81} & \frac{5}{81} & -\frac{1}{81} & -\frac{1}{27} \end{bmatrix}.$$

Example 4.4. Consider  $A = \begin{bmatrix} 1 & -5 & 1 & 4 \\ -2 & 7 & 0 & 1 \\ 0 & -3 & 2 & 9 \end{bmatrix}$  and positive definite matrices

$$M = \begin{bmatrix} 5 & -1 & 3 \\ -1 & 2 & -2 \\ 3 & -2 & 3 \end{bmatrix}, \quad N = \begin{bmatrix} 4 & 0 & -1 & 0 \\ 0 & 3 & 2 & 1 \\ -1 & 2 & 5 & -2 \\ 0 & 1 & -2 & 6 \end{bmatrix}.$$

Block decomposition  $(T_1)$  can be obtained by applying transformation  $(T_3)$  two times:

$$R_1AF_1 = \begin{bmatrix} I_r & K \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_3, \qquad R_2N_3^TF_2 = \begin{bmatrix} I_r & \mathbb{O} \\ \mathbb{O} & \mathbb{O} \end{bmatrix} = N_1.$$

Then, the regular matrices R, G can be computed as follows:

$$N_1 = N_1^T = F_2^T N_3 R_2^T = F_2^T R_1 A F_1 R_2^T \Rightarrow R = F_2^T R_1, \quad G = F_1 R_2^T.$$

For given matrix the following can be obtained:

$$N_3 = \begin{bmatrix} 1 & 0 & -\frac{7}{3} & -11 \\ 0 & 1 & -\frac{2}{3} & -3 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad R_1 = \begin{bmatrix} -\frac{7}{3} & -\frac{5}{3} & 0 \\ -\frac{2}{3} & -\frac{1}{3} & 0 \\ -2 & -1 & 1 \end{bmatrix}, \quad F_1 = I_4,$$

$$N_1 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}, \quad R_2 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ rac{7}{3} & rac{2}{3} & 1 & 0 \ 11 & 3 & 0 & 1 \end{bmatrix}, \quad F_2 = I_3.$$

From  $R = R_1$ ,  $G = R_2^T$ , we get

$$R^{-1^{|2}} = \begin{bmatrix} 1 & -5 \\ -2 & 7 \\ 0 & -3 \end{bmatrix}, \quad G^{-1}_{|2} = \begin{bmatrix} 1 & 0 & -\frac{7}{3} & -11 \\ 0 & 1 & -\frac{2}{3} & -3 \end{bmatrix}.$$

Using formula  $(Z_1)$ , we obtain the following representation for the weighted Moore-Penrose inverse of A:

$$A_{M\circ,\circ N}^{\dagger} = \begin{bmatrix} -\frac{8841}{207506} & -\frac{13865}{207506} & -\frac{13865}{207506} \\ \frac{23355}{207506} & \frac{38035}{207506} & -\frac{14947}{207506} \\ \\ \frac{2149}{103753} & \frac{11585}{103753} & -\frac{7035}{103753} \\ \\ \frac{42301}{207506} & \frac{25265}{207506} & \frac{3465}{207506} \end{bmatrix}.$$

Example 4.5. Similarly, block decomposition  $(T_1)$  of the matrix A, considered in Example 4.1 can be obtained by transformation  $(T_3)$  two times, by means of the following matrices:

$$R_1 = egin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \ -1 & 1 & 0 & 0 & 0 & 0 \ -1 & 1 & 1 & 0 & 0 & 0 \ 1 & -1 & 0 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 1 & 0 \ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad F_1 = I_4,$$
  $R_2 = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 1 & 1 & 1 & 0 \ 2 & 3 & 0 & 1 \end{bmatrix}, \quad F_2 = I_6.$ 

From  $R = R_1$ ,  $G = R_2^T$ , we get

$$R^{-1^{|2}} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \\ 0 & -1 \\ 0 & 1 \\ 1 & -1 \\ 1 & 0 \end{bmatrix}, \quad G^{-1}_{|2} = \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & -1 & -3 \end{bmatrix}.$$

Using formula  $(G_1)$ , we obtain the Moore-Penrose inverse  $A^{\dagger}$ , as in Example 4.1.

### REFERENCES

- A. Ben-Israel and T.N.E. Grevile, Generalized Inverses: Theory and Applications, Wiley-Interscience, New York, 1974.
- [2] R.E. Cline, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968), 182-197
- [3] S.K. Mitra and C.R. Radhakrishna, Extensions of a duality theorem concerning g-inverses of matrices, Indian J. Stat. 37 (1975), 439-445.
- [4] P. Lancaster and M. Tismenetsky, The Theory of Matrices with Applications, Academic Press, 1985.
- [5] P. Noble, A methods for computing the generalized inverse of a matrix, SIAM J. Numer. Anal. 3 (1966), 582–584.
- [6] R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406–413.
- [7] R. Penrose, On best approximate solution of linear matrix equations, Proc. Cambridge Philos. Soc. **52** (1956), 17–19.
- [8] L.D. Pyle, The weighted generalized inverse in nonlinear programming-active set selection using a variable-metric generalization of the simplex algorithm, Internat. Symp. on Extremal Methods and Systems Analysis, Lect. Notes Economics and Mathematical Systems 174, Springer-Verlag, Berlin 1977, pp. 197-231.
- [9] P. Robert, On the Group inverse of a linear transformation, J. Math. Anal. Appl. 22 (1968), 658-669.
- [10] R.P. Tewarson, A direct method for generalized matrix inversion, SIAM J. Numer. Anal. 4 (1967), 499-507.

- [11] G. Zielke, A survey of generalized matrix inverse, Banach Center Publication 13 (1984), 499–526
- [12] G. Zielke, Die Auflösung beliebiger linearer algebraisher Gleichungssysteme durch Blockzerlegung, Beiträge zur Numer. Math.  $\bf 8$  (1980), 181–199.
- [13] G. Zielke, Motivation und Darstellung von verallgemeinerten Matrixinversen, Beiträge zur Numer. Math. 7 (1979), 177–218.
- [14] S. Zlobec, An explicit form of the Moore-Penrose inverse of an arbitrary complex matrix, SIAM Rev.  ${\bf 12}~(1970),~132-134.$

Elektronski fakultet u Nišu Katedra za matematiku 18001 Niš, p.p. 73 Yugoslavia grade@elfak.ni.ac.yu

Filozofski fakultet u Nišu Grupa za matematiku 18000 Niš Yugoslavia (Received 06 12 1996)