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Abstract. We develop a few methods for computing the Moore-Penrose
inverse, based on full-rank factorizations which arise from different block decom-
positions of rectangular matrices. In this way, the paper is a continuation of the
previous works given by Noble [5] and Tewarson [10]. We compare the obtained re-
sults with the known block representations of the Moore-Penrose inverse. Moreover,
efficient block representations of the weighted Moore-Penrose inverse are introduced
using the same principles.

1. Introduction

Let C™*™ be the set of m x n complex matrices, and C**" = {X € C™*" :
rank(X) = r}. With Al* and A|, we denote the submatrix of A which contains
the first 7 columns of A and the first r rows of A, respectively. Similarly, A" and
A,| denote the last r columns and the last r rows of A, respectively. Finally, A:l
denotes the submatrix of A generated by the first r columns and the last r rows
of A. The identity matrix of the order k is denoted by I, and O denotes the zero
matrix of a convenient size.

Penrose [6], [7] has shown the existence and uniqueness of a solution X €
Cr*™ of the following four equations:

(1) AXA=A4, (2) XAX=X, (3) (AX)*=AX, (4) (XA)*=XA,

for any A € C™*". For a sequence S of elements from the set {1, 2, 3,4}, the set
of matrices which satisfy the equations represented in S is denoted by A{S}. A
matrix from A{S} is called an S-inverse of A and denoted by A(S).
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We use the following useful expansion for the Moore-Penrose generalized inverse
At of A, based on the full-rank factorization 4 = PQ of A [1], [2]:

AT= Q1P = Q"(QQ)(P'P) P = Q" (PTAQT) P
The weighted Moore-Penrose inverse is investigated in [3] and [8]. The main
results of these papers are:

PROPOSITION 1.1. [8] Let given positive-definite matrices M € C™*™ and
N € C*™™. For any matricr A € C™*"™ there exists the unique solution X =

A;rv[o’oN € A{1,2} satisfying

(5) (MAX)* = MAX (6) (XAN)* = X AN.

Similarly, we use the following notations:

A;rv[o’ No denotes the unique solution of the equations (1), (2), and

(7) (MAX)* = MAX, (8) (NXA)* = NX 4;

Al M.No 18 the unique solution of the equations (1), (2) and

9) (AXM)* = AX M, (10) (NXA)* = NX A;

Al M,on denotes the unique solution of the equations (1), (2) and

(11) (AXM)* = AX M, (12) (XAN)* = XAN.

PROPOSITION 1.2 [8] The equation (5) is equivalent to (AXM ~1)* = AXM 1
and (6) can be expressed in the form (N 1XA)* = N"1XA.

ProPoOSITION 1.3 [8] If A = PQ is a full rank factorization of A, then:

Al on = QN (QQN)) " (MP)*P)" (M P)*
= NQ*(P*MANQ*)"'P*M.

Using these notations, the following fact can be easily verified.

= Al

— 7t
=A oM~—1,N—1o’

PROPOSITION 1.4 (a) A}‘VIO,ON =A! Mo, N-1o

oM~1,0N
() Al e = QN (Q@QNH*) " (MP)*P)~ (MP)* = Apgoon-1,

(©) A= @V HA(QAQN 1)) (M P)*P) M 'P)*=Ap-10,0n-1,
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@ Al v =(@N)*(Q@QN)*) (M 'P)*P)" (M~'P)*.

From the part (a) of Proposition 1.4 and Proposition 1.2, it is easy to conclude
that each of the indices, used in notation of the weighted Moore-Penrose inverse,
can be written in one of the following form:

oM,oN  Mo,oN oM,No  Mo,No

For the sake of clarity, we use the notation ¢(M, N) for an arbitrary of these
indices. Following Proposition 1.3 and Propositionl.4, we conclude the following;:
L (M, N)=oM,oN = Al ,,  =(QN)*(QQN)*)~(M~'P)*P)~'(M~'P)*;
2. p(M,N)=Mo,oN = A\, . = (QN)*(Q(QN)*)~'(MP)*P)~L(MP)*;
8. p(M,N)=oM,No = Al \, \ = (QN-Y(QQN-Y)*)~(M~'P)* )~ (M~'P)’;
4. p(M,N)=Mo,No = AL\, \ =(QN~)*(Q@N~")")"(MP)*P)" (MP)".

The cases 1-4 can be written in the following way:
AL(M,N) = (QNID)* QNI ~t (M= p)y* p)y—L (M1 p)*

where M~ stands for one of the matrices M or M1, and NI~ denotes N or
N1, in view of one of the rules 1-4.

We restate the main block decompositions [4], [11-13]. For a given matrix
A € C"*" there exist the regular matrices R, G, the permutation matrices E, F
and the unitary matrices U, V, such that:

(T)) RAG = {0) 8]:1\71; () RAG:[g g]zNZ;
(Ty) RAF = fo g]=N3; (Ty) EAG=[§§ g]=N4;
(Ts) UAG = g 8]21\71; (Ts) RAV:[S 8]—]\71,
() UAV::g) g]zNQ; (Ty) UAF:[g g]_m,
@) Bav=|g 5] =N

A1 AnT — No-
SA;, SALT| 00
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where the multipliers S, T satisfy T=A}'Aja, S=AxA7Y

All A12:| [All A12 :|
T FAF = = = = N-.
(Tio0) [h1@2 Ay ApAidn| =M

(Th1) Transformation of similarity for square matrices:

I, K T, T
-1 *P—1 _ T * p—1 __ 1 2
RAR ' = RAFF*R _[(O) (O)]FR —[@) @]'

For the sake of completeness and comparison with our results, we describe
known block representations of the Moore-Penrose inverse.

In the begining, we restate the block representations of the Moore-Penrose
inverse from [11], [13]. For A € C**™, let

U

Us

R:[%], G =[G, Gsl, U:[

], V=MW, W],

where Ry, U; are the first r rows of R and U, respectively, and G, V; denote the
first r columns of G and V, respectively. Then the Moore-Penrose inverse can be
represented in the following way, where the block representations (M;) correspond
to the block decompositions (T3), i € {1,...,9}.

I, —RyR}
-G1G, GIGLRR}
= (G1 — G2G3G)(R, — RiRIRy),

(M) At :G[ ]R:G[_C:,EGI] [I,, —RiR}]R

B! —B~ R\ R}
M, Al =@ 1742 ]R
(Mz) [—G;GIB—I GYG1B'R, R}

I

=G[ ]Bl [I.,, —R:R}]R

eifeN
= (G1 — G2GIG1)B (R, — RiRIRy),

[ (I, + KK*)1 —(I, + KK*) 'Ry R} ]
My) at=r| ! 2R
(Ms) K*(I, + KK*)' —K*(I, + KK*) 'R, R}
=F I-?‘*:| (IT + KK*)_I [ITJ _RlR;] R7
. (I, + K*K) 1 (I, + K*K) 'K*
(My) AT=G -Gle (I + K*K)"' -GiGi(I, + K*K) ' K* k
[T
=G r I, + K*K)"'[I,, K*]E,
_—G£G1:| ( ) [ ]
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I 0] [T

T — [ _ T
(Ms) At =@ U=G _dla,

|-GiG1 O]
= (G — GoGiGy)UY,

|t 0w

I, —RiRI], . [I
0O O R_V_@

= Vi(Ry — RiR}Ry),

(M) Al=V

] [I,, —RiR}]R

‘B! O I, _
(M) Afzv_ o Q]Uzv[@)]wl, 0)U =WVB~'U;,
[B*(BB* + KK*)™' O
T —
(MS) At=F _K*(BB* +KK*)71 (O):|U
_F i*](BB*+KK*)1[Ir, 0]7,
B * * —1 R* * * —1 *
Gty A=y [BBFEE)TB (BB+ KKK
_ ) o)
_v g](B*B+K*K)_1[B*, K*]E.

These results are obtained by solving the equations (1)—(4).

Block decomposition (Thg,) is investigated in [5], [13], but in two differ-
ent ways. In [13], the Moore-Penrose inverse is represented by solving the corre-
sponding set of matrix equations. The results in [5] are obtained using a full-rank
factorization, implied by the block decomposition (Tg,). The corresponding rep-
resentation of the Moore-Penrose inverse is:

L) (4 L1\ 4 \
(i) 4t =| | (45,15 s 1Bar | L)) an i, s

1,
=F [T’;] (I + TT*)'AG (I, + S*S)7' [ I, S*].

The following block representation of the Moore-Penrose inverse was obtained
in [10] and [13] for the block decomposition (T1¢p):

Ir — — *\
(M) Al = [(Aﬁlfhz)*] (I + A7 Ao (AT Aro)) ™

1

X A1_11 (Ir + (A21A1_11)*A21A1_11)7 [Ira (A21A1_11)*] -

Also, in [14] is given the following block representation of the Moore-Penrose
inverse, based on the formula At = A*TA* T € A*AA*{1}: If A € C"*™ has

the form A = [i; ﬁ;z ], A1 € CT*7, then
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w o [A]"
(M{g) AV =[An, An] Kj [A;] ,

-1
where K11 = ([An, A12 ] A* |:A11:|) .
An
Block decomposition (771) is investigated in [9], but only for square matrices
and the group inverse.

The main idea of this paper is to continue the papers [5] and [10]. In other
words, we use the following algorithm: from the presented block decompositions
of matrices find the corresponding full-rank factorizatons A = PQ, and then ap-
ply described general representations for At and Al o(M,N)" Main advantages of
the introduced block representations are their simply derivation, computation and
possibility of natural generalization.

2. The Moore-Penrose inverse.

In the following theorem we derive a few representations of the Moore-Penrose
inverse, using described block decompositions and full-rank factorizations.

THEOREM 2.1 The Moore-Penrose inverse of o given matriz A € CI**" can
be represented as follows, where each block representation (G;) is derived from the
block decomposition (T;), i € {1,...,9,10a,10b,11}:

@) 4'=( m* ((R‘“”)”A(G-m*)*l o)
) () (R
R M )
) (B Ry BEe ) B ()

G A= [fé*] () ar[ie]) (e

_ (F‘T+F”*T|K*) ((RR*) I, +KK*)) 1(R*l“)*,

G0 A= 6 (1 1P )t e

= (@) + K B@C)) T (B + K B,y

|r

(Gs) At=(G1,)" (U|7'A (G! \r)*) _IU\T =(G*,)" ((G*G)fllr) _1U|r7
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o) A=V () avr) " (r) = vin(we ) (R

|7
-1
(Gy) At =V (B*U|TAV|”) B*U, = VI'B~'U,,,

* * -1 *
(Gs) Al=F [g] <U|,,AF [2]) U,=F [;;](BB*+KK*)_1UT,

-1
(Gy) At =V ([B*, K*]EAV'T) [B*, K*|E
=V"(B*B+ K*K)"'[B*, K*]E,

an . LN .
(Gma)AT:F[T*](An[Iﬁ S]EAF[T*D AN I, S*1E

- (F‘T n F”_”T*) (I + 8*8) Avs (I + TT*) ™ (Bjy + 8" By

A} * 0\ — * * Al - * ) — * *
(G AT =F 41 () pan, asmar |0 ]) wn) an, anle
12 12

A * * \— * * - * x
:F[Ail] (A1 AT+ AR ALY 1A11(A11A11+A21A21) I[All’ AGE,
12

1w b ) ey
= [ | (rvmmey i, ame [ 2 ]) ()’

Proof. (G1) Starting from (7}), we obtain
_ p-1 Ir o) -1 _ p-1 Ir -1
A=R [(O) (D)]G =R [(O)][IT’ 0]G—,

which implies

1 | I _qlr _ _
Ple[@]le, Q=I[I, 0]G'=aG",

Now, we get
A=q Ay P =@ ) (R ) a@ ) (R YY)
= (@) (@) R e ) (B

= (@) (R o)) (R)

|7

*
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The other block representations of the Moore-Penrose inverse can be devel-
oped in a similar way.

(G5) The block decomposition (T5) implies

I

pov [k

|-, e=in o6t =c

which means
At=(¢7)" (U4 (G_I\r)*)il Upr
=G, (U|TU*|TG*1‘T(G*)*1|T)71 U,=G 1) ((G*G)*II:)AUV.
(Gr) Tt is easy to see that (T7) implies

B

pov[?

]:U*"B, Q=[I, O|V*=V*,.

Now,
-1
Af:V'T(B*UVU*“BV*\TV'T) B*U,=V!"(B*B) 'B*U,=V "B 'U,,.

(GIOa) From (Tloa) we obtain

— * All AllT _ " Ir .
A=F [SAII SA11T:|F =F |:S:|A11[I7'7 T]F,

which implies, for example, the following full rank factorization of A:

p=p [g] Au, Q=I[I, TIF".

Consequently, the Moore-Penrose inverse of A is

-1
Af:F[éf;]<A’{1[Ir, S*]EAFHI;D A4 (L, S*]E.

This part of the proof can be completed using

I,

EAF = [S

] An (I, T]
and

F |:j[:“:| — Flr +Fn—7‘\T*, [Ir: S*]E — E\r +S*Enfr|-
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(G1iop) Follows from

e IV VT _ X
P=E [A21]A11, Q=[An, Ap]F* 0

Remark 2.1. (i) A convenient method for finding the matrices S, T and A,
required in (Tyg,), was introduced in [5], and it was based on the following extended
Gauss-Jordan transformation:

[An Aia I]

A21 A22 O

I T A
0O 0 -S |-

(i) In [10] it was used the following full-rank factorization of the matrix A,
An Az ] )

represented in the form A = [ Ay Ap AT Ap|

| An _ ~1
P= |:A21:|’ Q_[IT7 A11A12]-

3. The weighted Moore-Penrose inverse.

Using the general representation of the weighted Moore-Penropse inverse pre-
sented in Proposition 1.3: AMo oN=NQ* (P*MANQ*)~'P*M, and the algorithm
of Theorem 2.1, we obtain the followmg block representation of the weighted Moore-
Penrose inverse A}'VIO’O N-

THEOREM 3.1 The weighted Moore-Penrose inverse A}vao,oN of A e C*»

possesses the following block representations (Z;), which correspond to the block
decompositions (T;), i € {1,...,9,10a,10b,11}:

(Z1)

0 ((r) s @ y)  (m)
(( :
2 [ ](Rw Y anawe[ £]) () s
) (
) (

"B) MAN(G7,)7)  (RB) M,

[I,, K*]EMAN (G- |)*)71[@, K*]EM,

-1
U, MAN (G~ )*) UM
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* —1 *
(Zs) NVIr ((R—l“) MANV"‘) (R—l“) M,
(Z:) NV (B*U,MANVI") ™ B*U,.M
B* B\ "
(Zs) NF [K*] (UTMANF [K*D UM

(Zy) NVI"([B*, K*|EMANV'")™'[B*, K*|EM

I,
T*

I,

(Z104) NF[ ~

](AII[IT, S]EMANF[ D_IAII[IT, S*|EM,

1
A * \— * * Ar * | — * *
(@0 37 |42 (it 1an, asmav [0 ) s, azen

(Z11) NR* [(TllerQ)*] ((R—lerl) MANR* [(T IIT2) D _1<R—1TT1)*M.

The following representations can be obtained from the main properties of
the weighted Moore-Penrose inverse and Theorem 3.1.

COROLLARY 3.1. The weighted Moore-Penrose inverse Al
be represented as follows:

o, Of A€ G can

(W) NEU (G, ((R17) Mt ANt (G*1|T)*)_1 (R2") by,

(W) N-U(G )" (R B) MEANt Y (G 1)) (R B) MY,

" (
(W3) NI ”F[ ]((R ) Ml ANt 1]F[K Dl(RlT)*M[l],

(W) N-U(G-1 *([I K*EMI-UANT-1(G-1 )*)_ [I,, K*]EMUY,
* ) 1
(Ws) NEU(G4)* (U, MEUANTY (G71,)7) T U, M),

(Ws) N[—llvlr((R—l“)* M[—I]AN[—”V‘T)A (R—l“)* M=,

W) N-WIr (B*U, MIEUANTIY I T By, M1,
| |
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* * -1
(Wy) NI-UF [f’;] (U|TM[—11AN[—1]F [f’;]) U, M1,

(We) NFUVIT ([B*, K*| EMUANIYIN T (B, K*]EMI-Y,

I,

-1
TD AL, S*EMIEY,

(Wiaa) N | 2| (45,187, 510N |

*
All

* -1
i ]((AL)I[ATI, A3 EMII AN R [AD
A%, A

(Wies) NIUR [
12

x (Af) ' [Ar, A§1]EM[71]7

o el ) o e

1

4. Examples.

-1 0 1 2
-1 1 0 -1
0 -1 1 3
0 1 -1 -3
1 -1 0 1

Example 4.1. Consider A = . Using the Gauss-Jordan trans-

-1 =2
formation, we get the following reduced row-echelon form of the matrix A:
1 0 -1 -2
01 -1 -3
_ | K| _|(0 0 0 O
RAF—RA—[(O) ®:|— 00 0 01>
00 0 O
00 0 O

The matrix R4 is obtained using the permutation matrix F' = I, and the following

regular matrix:

-1 0

-1 1

-1 1
1 -1
0 1
1 0

QOO HOO
OO OOO
OHOODOO
_—HOoOOOoO OO

Using the method (G3) we obtain

-1 0
-1 1 1 0
-1 I.|_| 0o 1

’ F|: :| - _1 _1 I
-1 -2 -3

R =

sl e Nen]
—
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and the following Moore-Penrose inverse of A:

-5 _3
34 17 34
4 13 _ 5
51 102 102
Al =
7 5 1
102 102 51
1 _1 3
- 17 34 34

1
S ER
-1

- 3 5
34 17 34
13 4
102 102 51
-1 _5 _ T
51 102 ~ 102
-3 1 _ L

34 34 17 =

-1
1
-1
0

o)

Using (G10,) we obtain the same Moore-Penrose inverse of A.

4
Ezample 4.3. For the matrix A = _2
-10
1 0 0 O
-1 10 0 710
B=1_1 11 o] ﬂ_[
2 -1 0 1

Then, one can verify the following:

(em) =70 1 4]

Finally, using (G11), we get

-8 10
81 81
AT 79
162 162
At =
7u
54 54
4 5
- 81 81

-1

2

-3

4

1 2

0 -1 .

1 3 we obtain
-2 =5
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1 =5 1 47
Example 4.4. Consider A = | —2 7 0 1| and positive definite matrices
0 -3 2 9/
5 -1 3 03 2 1
M=|-1 2 -2|, N=
3 _2 3 -1 2 5 =2
| 001 -2 6

Block decomposition (77) can be obtained by applying transformation (73)
two times:

I, K
0o 0

I, O

RiAF; = [ 0 0

] =N3, RyN]F,= [ ] = N;.

Then, the regular matrices R, G can be computed as follows:
Ny =Nl = FINsRY = FJRIARRT = R=FI'R,, G=FR].

For given matrix the following can be obtained:

10 -1 -1 - =20
N3: 01 —% -3, Rl= —% —% 0l FI_I47
0 0 0 0 -2 -1 1
1 0 0 O
100 01 0 0
01 0
N, = , Re= , Fy=1;.
0 0 O
11 3 0 1

From R = R;, G = RT, we get
12 I =5 10 -1 -1
R_l = -2 7 5 G_1|2= 2 .
0 —3 01 3

Using formula (Z; ), we obtain the following representation for the weighted Moore-
Penrose inverse of A:

- __ 8841 __ 13865 _ 13865 -
207506 207506 207506
23355 38035 _ 14947
t 207506 207506 207506
AMo,oN =
2149 11585 ___7035
103753 103753 103753
42301 25265 3465

- 207506 207506 207506 -
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Ezample 4.5. Similarly, block decomposition (77) of the matrix A, considered in
Example 4.1 can be obtained by transformation (T3) two times, by means of the
following matrices:

——1 0 0 0 0 0
-1 1000 0
_|=1 1100 0 _
B=1"1 1010 0| D171
0 10010
L 1 000 0 1
1 0 0 0
_lo 10 0 _
Re=17 11 0| B2=1
(2 3 0 1
From R = Ry, G = R, we get
-1 0
-1 1
2 |0 -1 1 1 0 -1 =2
R_01’Gl2_[01—1—3'
1 -1
1 0

Using formula (G1), we obtain the Moore-Penrose inverse Af, as in Example 4.1.
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