# ON INDEPENDENT VERTICES AND EDGES OF BELT GRAPHS

### Ivan Gutman

Communicated by Slobodan Simić

**Abstract**. Let m(G,k) and n(G,k) be the number of distinct k-element sets of independent edges and vertices, respectively, of a graph G. Let  $h, p_1, p_2, \ldots, p_h$  be positive integers. For each selection of  $h, p_1, p_2, \ldots, p_h$  we construct two graphs  $N = N_h(p_1, p_2, \ldots, p_h)$  and  $M = M_h(p_1, p_2, \ldots, p_h)$ , such that m(N,k) = m(M,k) and n(N,k) = n(M,k) for all but one value of k. The graphs N and M correspond respectively to a normal and a Möbius-type belt.

#### Introduction

In this paper we are concerned with finite graphs without loops, multiple and directed edges. If G is such a graph, then m(G,k) and n(G,k) denote the number of its distinct k-element independent edge and vertex sets, respectively,  $k=0,1,2,\ldots$ . Recall that m(G,O)=n(G,O)=1, m(G,1)= number of edges of G, n(G,1)= number of vertices of G. Independent edge and vertex sets of graphs and, in particular, the invariants m(G,k) and n(G,k) were much investigated in graph theory [1-16].

Nonisomorphic graphs  $G_1$  and  $G_2$  for which the equalities

$$m(G_1, k) = m(G_2, k) \tag{1}$$

and

$$n(G_1, k) = n(G_2, k) \tag{2}$$

hold for all  $k \geq 0$  are easily constructed; a pair of such graphs is depicted in Fig. 1.

Nonisomorphic graphs for which the equalities (1) and (2) are obeyed for all but one value of k are found even easier. The simplest examples of this kind are the two 2-vertex graphs and the two connected 3-vertex graphs. However, all such examples known until now consist of graphs with small number of vertices.

12 Gutman



Fig. 1

The invariants m(G, k),  $k = 1, 2, \ldots$ , are highly intercorrelated and a number of their "collective" properties is known: for instance, they form a unimodal sequence [16] and their distribution is asymptotically normal [3]. All the zeros of the matching polynomial (see below) are real-valued [1, 4, 5]. Numerous pairs of graphs were found for which if the relation  $m(G_1, k) > m(G_2, k)$  holds for some k, then  $m(G_1, k) \geq m(G_2, k)$  holds for all k [6, 13, 14].

Similar, but not fully analogous, properties of the numbers n(G, k) have also been deduced [7–12].

In view of the above, one may ask if, for graphs G with sufficiently large number of vertices,  $m(G, k^*)$  is determined by m(G, k),  $k \ge 1$ ,  $k \ne k^*$ . We show here that speculations in such a direction are not very promising. We namely have the following result.

Theorem 1. There exist graphs  $G_1$  and  $G_2$  with arbitrarily many vertices, for which both equalities (1) and (2) hold for all k,  $k \geq 0$ ,  $k \neq k^*$ , but are both violated for a certain  $k = k^*$ .

Theorem 1 is an immediate consequence of our main result, namely Theorem 2. In order to be able to formulate it we have to define the belt graphs.

## Belt graphs and statement of the main result

Let h be a positive integer. Let  $p_1, p_2, \ldots, p_h$  be positive integers. Define  $r_0 = 0, r_1 = p_1, r_2 = p_1 + p_2, \ldots, r_h = p_1 + p_2 + \ldots + p_h$ . For brevity, instead of  $r_h$  we shall write r.

Let  $P_{r+1}$  be the (r+1)-vertex path whose vertices are labeled consecutively by  $u_0, u_1, \ldots, u_r$ . Let  $P'_{r+1}$  be another copy of the (r+1)-vertex path, whose vertices are labeled by  $v_0, v_1, \ldots, v_r$ .

Definition 1. The graph  $L = L_h(p_1, p_2, \ldots, p_h)$  is obtained from  $P_{r+1}$  and  $P'_{r+1}$  by joining (by means of a new edge) the vertices  $u_{r_i}$  and  $v_{r_i}$ ,  $i = 0, 1, \ldots, h$ .

Definition 2. The graph  $N=N_h$   $(p_1,p_2,\ldots,p_h)$  is obtained from  $L_h(p_1,p_2,\ldots,p_h)$  by identifying the vertices  $u_0$  and  $v_0$  with  $u_r$  and  $v_r$ , respectively. We say that N is a normal belt graph.

Definition 3. The graph  $M=M_h(p_1,p_2,\ldots,p_h)$  is obtained from  $L_h(p_1,p_2,\ldots,p_h)$  by identifying the vertices  $u_0$  and  $v_0$  with  $v_r$  and  $u_r$ , respectively. We say that M is a Möbius-type belt graph.

In Fig. 2 is depicted a graph L as well as two pairs of belt graphs. From these examples the meaning of the parameters  $h, p_1, p_2, \ldots, p_h$  is clear: The graph  $L = L_h(p_1, p_2, \ldots, p_h)$  is composed of h linearly arranged circuits of sizes  $(2p_i + 2), i = 1, 2, \ldots, h$ . The cyclomatic number of L is h. The graphs  $N = N_h(p_1, p_2, \ldots, p_h)$  and  $M = M_h(p_1, p_2, \ldots, p_h)$  are formed of h cyclically arranged circuits of sizes  $(2p_i + 2), i = 1, 2, \ldots, h$ . Their cyclomatic numbers are h + 1. Their number of vertices is 2r.

The graphs N can be viewed as representing normal (two-sided) belts. The graphs M, on the other hand, correspond to Möbius-type (one-sided) belts.



Fig. 2

If r is even, then N is a bipartite graph whereas M is non-bipartite. If r is odd, then N is non-bipartite and M is bipartite. Recall that r is odd if and only if among the parameters  $p_1, p_2, \ldots, p_h$  odd values occur odd number of times. In other words: r is odd if and only if among the circuits forming N and M there is an odd number of circuits whose size is divisible by 4.

Our main result reads now as follows.

THEOREM 2. Let  $h, p_1, p_2, \ldots, p_h$  be arbitrary positive integers. Let  $r = p_1 + p_2 + \cdots + p_h$ . Let  $N = N_h(p_1, p_2, \ldots, p_h)$  and  $M = M_h(p_1, p_2, \ldots, p_h)$  be belt graphs in the sense of Definitions 2 and 3. Then:

- (a) m(N,k) = m(M,k) and n(N,k) = n(M,k) for  $0 \le k \le r 1$ ,
- (b)  $m(N,r) = m(M,r) + (-1)^r 2$  and  $n(N,r) = n(M,r) + (-1)^r 2$
- (c) m(N,k) = m(M,k) = n(N,k) = n(M,k) = 0 for k > r.

The proof of Theorem 2 requires some preparations.

14 Gutman

# Matching and independence polynomials of belt graphs

The generating functions associated with the invariants m(G, k) and n(G, k) are

$$\alpha(G) = \alpha(G,x) = \sum_{k \geq 0} m(G,k) x^k \ \text{ and } \ \omega(G) = \omega(G,x) = \sum_{k \geq 0} n(G,k) x^k$$

Because G is supposed to be finite, both  $\alpha(G)$  and  $\omega(G)$  are polynomials; we call them matching [1, 2, 4, 5, 12] and independence polynomial [1, 10-12], respectively. (The matching polynomial is usually defined [1, 2, 4, 5, 15] in a slightly different, but fully equivalent, way; the definition given above is convenient for the present considerations.) These polynomials obey the following recurrence relations [1, 4]:

Lemma 1. (a) Let e = (u, v) be an edge of G, connecting the vertices u and v. Let  $N_v$  be the set of vertices of G, consisting of the vertex v and the first neighbors of v. Then

$$\alpha(G) = \alpha(G - e) + x\alpha(G - u - v);$$
  $\omega(G) = \omega(G - v) + x\omega(G - N_v)$ 

(b) If u is the only neighbor of v, then

$$\alpha(G) = \alpha(G - u) + x\alpha(G - u - v); \qquad \omega(G) = \omega(G - u) + x\omega(G - u - v)$$

Lemma 2. Let v' and v'' be two distinct vertices of the graph G and let e' = (u', v') and e'' = (u'', v'') be two distinct edges of G.

(a) If e' and e" are independent, then

$$\alpha(G) = \alpha(G - e' - e'') + x[\alpha(G - e' - u'' - v'') + \alpha(G - e'' - u' - v')] + x^2\alpha(G - u' - v' - u'' - v'')$$

(b) If e' and e'' are not independent, then

$$\alpha(G) = \alpha(G - e' - e'') + x[\alpha(G - u' - v') + \alpha(G - u'' - v'')]$$

(c) If v' and v'' are independent, then

$$\omega(G) = \omega(G - v' - v'') + x[\omega(G - v' - N_{v''}) + \omega(G - v'' - N_{v'})] + x^2\omega(G - N_{v'} - N_{v''})$$

(d) If v' and v'' are not independent, then

$$\omega(G) = \omega(G - v' - v'') + x[\omega(G - N_{v'}) + \omega(G - N_{v''})]$$

Needless to say that Lemma 2 is obtained by a two-fold application of the recurrence relations given in Lemma 1a.

By applying Lemma 2a to the edges  $(u_{r-1}, u_r)$  and  $(v_{r-1}, v_r)$  of the belt graphs  $N = N_h(p_1, p_2, \ldots, p_h)$  and  $M = M_h(p_1, p_2, \ldots, p_h)$  and by recalling that in  $N, u_r \equiv u_0, v_r \equiv v_0$ , whereas in  $M, u_r \equiv v_0$  and  $v_r \equiv u_0$ , we arrive at

$$\alpha(N) = \alpha(L - u_r - v_r) + x[\alpha(L - u_0 - u_r - u_{r-1} - v_r) + \alpha(L - v_0 - v_r - v_{r-1} - u_r)] + x^2 \alpha(L - u_0 - u_r - u_{r-1} - v_0 - v_r - v_{r-1})$$
(3)  
$$\alpha(M) = \alpha(L - u_r - v_r) + x[\alpha(L - u_0 - v_r - v_{r-1} - u_r) + \alpha(L - v_0 - u_r - u_{r-1} - v_r)] + x^2 \alpha(L - u_0 - u_r - u_{r-1} - v_0 - v_r - v_{r-1})$$
(4)

Here L stands for the graph  $L_h(p_1, p_2, \ldots, p_h)$ . It is assumed that the vertices of L, N and M are labeled in accordance with Definitions 1, 2 and 3.

Bearing in mind that the graphs  $L-u_0-u_r-u_{r-1}-v_r$  and  $L-v_0-v_r-v_{r-1}-u_r$  as well as  $L-u_0-v_r-v_{r-1}-u_r$  and  $L-v_0-u_r-u_{r-1}-v_r$  are isomorphic, we obtain from (3) and (4):

$$\alpha(N) - \alpha(M) = 2x[\alpha(L - u_0 - u_r - u_{r-1} - v_r) - \alpha(L - u_0 - v_r - v_{r-1} - u_r)]$$
 (5)

The vertices  $u_{r-1}$  and  $v_{r-1}$  in N and M may be independent, but need not. It is easy to see that  $u_{r-1}$  and  $v_{r-1}$  are adjacent if  $p_h = 1$  and are independent if  $p_h > 1$ .

Suppose first that  $p_h > 1$ . Applying Lemma 2c to the vertices  $u_{r-1}$  and  $v_{r-1}$  and performing calculations fully analogous to those leading to eq. (5), we obtain

$$\omega(N) - \omega(M) = 2x[\omega(L - u_0 - u_r - u_{r-1} - u_{r-2} - v_r - v_{r-1}) - \omega(L - u_0 - v_r - v_{r-1} - v_{r-2} - u_r - u_{r-1})]$$
(6)

The precisely same formula (6) holds also in the case  $p_h = 1$ .

At this point it is convenient to introduce the abbreviate notation:

$$L - u_0 - u_r - u_{r-1} - \dots - u_{r-i} - v_r - v_{r-1} - \dots - v_{r-i+1} \equiv L_i' \tag{7}$$

$$L - u_0 - v_r - v_{r-1} - \dots - v_{r-i} - u_r - u_{r-1} - \dots - u_{r-i+1} \equiv L_i''$$
 (8)

Then equations (5) and (6) can be rewritten in a more compact form:

$$\alpha(N) - \alpha(M) = 2x[\alpha(L_1') - \alpha(L_1'')] \tag{5a}$$

$$\omega(N) - \omega(M) = 2x[\omega(L_2') - \omega(L_2'')] \tag{6a}$$

16 Gutman

#### Proof of Theorem 2

Lemma 3. For 
$$1 \le i \le r-2$$
,  $\alpha(L'_i) - \alpha(L''_i) = -x[\alpha(L'_{i+1}) - \alpha(L''_{i+1})]$ .

*Proof.* Notice that in the graph  $L'_i$  the vertex  $v_{r-i}$  is of degree one. The same is true for the vertex  $u_{r-i}$  in  $L''_i$ . Then Lemma 1b is applicable, yielding

$$\alpha(L_i') = \alpha(L - u_0 - u_r - u_{r-1} - \dots - u_{r-i} - v_r - v_{r-1} - \dots - v_{r-i}) + x\alpha(L_{i+1}'')$$

$$\alpha(L_i'') = \alpha(L - u_0 - u_r - u_{r-1} - \dots - u_{r-i} - v_r - v_{r-1} - \dots - v_{r-i}) + x\alpha(L_{i+1}'')$$

From the above relations Lemma 3 is deduced straightforwardly.  $\Box$ 

Lemma 4. 
$$\alpha(L'_1) - \alpha(L''_1) = (-1)^r x^{r-1}$$
.

Proof. From Lemma 3,

$$\alpha(L_1') - \alpha(L_1'') = -x[\alpha(L_2') - \alpha(L_2'')] = \dots = (-x)^{r-2}[\alpha(L_{r-1}') - \alpha(L_{r-1}'')]$$

From (7) is seen that  $L'_{r-1}$  consists of two vertices  $(v_0 \text{ and } v_1)$ , connected by an edge. Therefore,  $\alpha(L'_{r-1}) = 1 + x$ . From (8) follows that  $L''_{r-1}$  consists of two disconnected vertices  $(v_0 \text{ and } u_1)$ . Therefore,  $\alpha(L''_{r-1}) = 1$ .  $\square$ 

LEMMA 5. For  $1 \le i \le r - 2$ ,  $\omega(L'_i) - \omega(L''_i) = -x[\omega(L'_{i+1}) - \omega(L''_{i+1})]$  Proof is fully analogous to the proof of Lemma 3.

Lemma 6. 
$$\omega(L_2') - \omega(L_2'') = (-1)^r x^{r-1}$$
.

Proof. From Lemma 5,

$$\omega(L_2') - \omega(L_2'') = -x[\omega(L_3') - \omega(L_3'')] = \dots = (-x)^{r-3}[\omega(L_{r-1}') - \omega(L_{r-1}'')]$$

Lemma 6 follows from taking into account that  $\omega(L'_{r-1})=1+2x$  and  $\omega(L''_{r-1})=1+2x+x^2$ .  $\square$ 

Combining the formulas (5a) and (6a) with Lemmas 4 and 6 we arrive at:

Lemma 7. 
$$\alpha(N) - \alpha(M) = (-1)^r 2x^r$$
 and  $\omega(N) - \omega(M) = (-1)^r 2x^r$ .  $\square$ 

*Proof of Theorem* 2. The statements (a) and (b) of Theorem 2 are just another way of expressing the result of Lemma 7. It thus remains only to show that also the statements (c) in Theorem 2 are valid.

A graph with 2r vertices has at most r independent edges. Therefore, m(N,k) and m(M,k) must be zero for k > r.

One of the graphs N and M is bipartite. Denote this has graph by G' and color its vertices in the usual manner. This graph has equal number (=r) of vertices of each color. Each group of equally colored vertices forms an independent vertex set of cardinality r, hence n(G',r)=2. Evidently, n(G',k)=0 for k>r. For the other graph, say G'', which is non-bepartite, it cannot be n(G'',r)>0. Therefore, it must be n(G'',k)=0 also for k>r.

## By this also part (c) of Theorem 2 is verified. $\square$

#### REFERENCES

- D. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam 1988.
- [2] E.J. Farrell, Introduction to matching polynomials, J. Combin. Theory B 27 (1979), 75-86.
- [3] C.D. Godsil, Matching behaviour is asymptotically normal, Combinatorica 1 (1981), 369-376.
- [4] C.D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.
- [5] C.D. Godsil, I. Gutman, On the theory of the matching polynomial, J. Graph Theory 5 (1981), 137-144.
- [6] I. Gutman, Graphs with greatest number of matchings, Publ. Inst. Math. (Beograd) 27 (41) (1980), 62-76; Correction, Publ. Inst. Math. (Beograd) 32 (46) (1982), 61-63.
- [7] I. Gutman, Graphs with maximum and minimum independence numbers, Publ. Inst. Math. (Beograd) 34 (48) (1983), 73-79.
- [8] I. Gutman, On Independent Vertices and Edges of a Graph, in: R. Bodendiek, R. Henn (Eds.), Topics in Combinatorics and Graph Theory, Physica-Verlag, Heidelberg, 1990, pp. 291-296.
- [9] I. Gutman, Numbers of independent vertex and edge sets of a graph: some analogies, Graph Theory Notes New York 22 (1992), 18-22.
- [10] I. Gutman, Independent vertex palindromic graphs, Graph Theory Notes New York 23 (1992), 21-24.
- [11] I. Gutman, Independent vertex sets in some compound graphs, Publ. Inst. Math. (Beograd) 52 (66) (1992), 5-9.
- [12] I. Gutman, Some relations for the independence and matching polynomials and their chemical applications, Bull. Acad. Serbe Sci. Arts (Cl. Math. Natur.) 105 (1992), 39-49.
- [13] I. Gutman, F. Zhang, On the ordering of graphs with respect to their matching numbers, Discrete Appl. Math. 15 (1986), 25-33.
- [14] I. Gutman, F. Zhang, On a quasiordering of bipartite graphs, Publ. Inst. Math. (Beograd) 40 (54) (1986), 11–15.
- [15] L. Lovász, M.D. Plummer, Matching Theory, North-Holland, Amsterdam, 1986.
- [16] A.J. Schwenk, On unimodal sequences of graphical invariants, J. Combin. Theory B 30 (1981), 247–250.

Prirodno-matematički fakultet Univerzitet u Kragujevcu 34000 Kragujevac, p. fah 60 Yugoslavia (Received 29 05 1995)